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Sediment provenance studies were conducted to constrain the establishment of the 
eastern Laurentian or Humber passive margin in Newfoundland, Canada, and examine 
models for the opening of the Iapetus Ocean and Humber Seaway. Ediacaran to Cambrian 
Series 2 strata of the lower Labrador and Curling groups contain garnet, muscovite, and 
feldspar, and yield 1000–1500 Ma detrital zircon grains that reflect local derivation from 
Grenville Province basement rocks during regional extensional deformation. Cambrian 
Series 2 to early Miaolingian units of the upper Labrador and Curling groups are 
quartz-rich and characterized by 556–586 Ma and 1000–2700 Ma detrital zircon grains 
that instead reflect continental-scale drainage and transition to passive margin 
deposition along eastern Laurentia. The geological relationships along the Humber 
margin are compared with modern analogues in the Newfoundland-west Iberia rift 
system to propose a magma-poor rift model that includes two breakup sequences which 
formed in response to isostatic adjustment after the rupture of crust and mantle, 
respectively. Crustal breakup resulted in an Ediacaran to Cambrian Series 2 breakup 
sequence that was connected to hyperextension, mantle exhumation, and bimodal 
magmatism. Mantle breakup likely occurred >20 Myr after first mantle exhumation and 
resulted in a breakup sequence that is best characterized by Cambrian Series 2 to early 
Miaolingian strata. The mantle breakup sequence consists of regressive-transgressive 
cycles that record the transition from breakup to thermal subsidence and was probably 
driven by the separation of the Dashwoods microcontinent from eastern Laurentia and 
outboard opening of west Iapetus. The Humber Seaway opened between the Humber 
margin and Dashwoods and was at least partially underlain by exhumed continental 
mantle. Our scenarios support hypotheses for equivalent magma-poor rift elements 
elsewhere in the Caledonian-Appalachian orogen, and we predict that crustal and mantle 
breakup sequences are exposed in the Scotland-Ireland and Quebec-New England 
segments of the eastern Laurentian margin. 

1. INTRODUCTION 

There is general consensus that the eastern margin of Lau-
rentia resulted from Neoproterozoic extension and breakup 
of supercontinent Rodinia (e.g., Bradley, 2008; Hoffman, 
1991; Li et al., 2008; Macdonald et al., 2023; Pisarevsky et 
al., 2003; all ages follow Cohen et al., 2013, v. 2023/09). 
However, the timing and plate tectonic processes respon-
sible for the separation of eastern Laurentia from Baltica, 
Amazonia, and intervening terranes continue to be the sub-
ject of debate. One of the popular scenarios calls for Tonian 

to Ediacaran rift evolution to have culminated with ca. 570 
Ma breakup and opening of Iapetus Ocean, followed by 
540–535 Ma rifting along eastern Laurentia that featured 
the dispersal of peri-Laurentian microcontinental blocks, 
opening of the Humber (Taconic) Seaway, and creation of 
the eastern Laurentian or Humber passive margin (fig. 1A, 
e.g., Cawood et al., 2001). Although some Neoproterozoic 
rift events may have involved mantle plume-like activity 
(e.g., Kamo et al., 1995; Tegner et al., 2019), late Ediacaran 
rift stages included depth-dependent extension (Allen et 
al., 2009, 2010; Thomas, 1991, 1993) that resulted in hyper-
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thinned crust and exhumed continental mantle lithosphere 
analogous to that observed in modern magma-poor mar-
gins (Chew & van Staal, 2014; Macdonald et al., 2014; van 
Staal et al., 2013). van Staal et al. (2013) proposed that east-
ern Laurentian rift evolution included a hanging-wall block 
that developed into an isolated microcontinent, named 
Dashwoods, outboard of the Humber Seaway during late 
Ediacaran hyperextension and mantle exhumation. The 
magma-poor rift model of van Staal et al. (2013) called 
for ca. 565–550 Ma exhumation processes in western New-
foundland to reflect ultra-slow spreading and opening of 
the Humber Seaway and concurrent development of a mid-
ocean ridge system in west Iapetus on the outboard side 
of Dashwoods. Robert et al. (2021) proposed a model that 
further characterized ca. 720 Ma rifting of Laurentia-Ama-
zonia and opening of the Puntoviscana Ocean, ca. 600 Ma 
rifting of Laurentia-Baltica and opening of eastern Iapetus, 
and ca. 550 Ma hyperextension and opening of western 
Iapetus without coeval seafloor spreading in the Humber 
Seaway inboard of Dashwoods. Although hypotheses for 
the timing and nature of lithospheric breakup vary, there 
has been some agreement that post-rift thermal subsidence 
along the eastern Laurentian passive margin was delayed 
20–30 Myr because of the insulating effects of sedimentary 
cover, structural emplacement of hot mantle, thermal ex-
pansion of plate margin segments with thick crust, or other 
factors (Allen et al., 2010; Macdonald et al., 2023; van Staal 
et al., 2013). Seismic stratigraphic and field studies of mod-
ern passive margins have instead proposed that magma-
poor rifts have discrete phases of crustal and mantle 
breakup and corresponding isostatic adjustment and de-
position of breakup sequences prior to thermal subsidence 
(Alves & Cunha, 2018; Soares et al., 2012), but these strati-
graphic concepts have not yet been universally applied to 
ancient passive margin systems (e.g., Beranek, 2017). 

Ediacaran to lower Cambrian rocks assigned to the 
Labrador and Curling groups comprise the exposed base of 
the Humber margin in western Newfoundland, Canada, and 
are well suited to characterize the rift evolution of east-
ern Laurentia based on constraints from targeted sedimen-
tological, biostratigraphic, and regional bedrock mapping 
studies (figs. 1B, 2, 3, e.g., Cawood et al., 2001; Cawood & 
van Gool, 1998; James & Debrenne, 1980; Knight & Boyce, 
2014; Lavoie et al., 2003; van Staal & Barr, 2012; Williams 
& Hiscott, 1987). Published (Cawood & Nemchin, 2001) 
and unpublished (e.g., Allen, 2009 in White & Waldron, 
2022) detrital zircon U-Pb studies have used SIMS (sec-
ondary ion mass spectrometry) and LA-ICP-MS (laser abla-
tion-inductively coupled plasma-mass spectrometry) tech-
niques, respectively, to interpret the provenance of 
Labrador and Curling group strata, but these low-n datasets 
(<60 grains/sample) may not provide robust evaluations of 
maximum depositional age, regional correlations, or tec-
tonic significance. For example, there remains disagree-
ment about basal Labrador and Curling group strata that 
unconformably overlie crystalline basement rocks and rift-
related lavas being the result of syn-rift tectonic subsidence 
(White & Waldron, 2022; Williams & Hiscott, 1987), depo-
sition during the rift-drift transition (Cawood et al., 2001), 

or post-rift thermal subsidence (Lavoie et al., 2003; Mac-
donald et al., 2023). In this article, we report new detrital 
zircon U-Pb-Hf isotope results and detrital mineral per-
centages of Labrador and Curling group sandstones to in-
vestigate the establishment of the Humber passive margin. 
Our detrital zircon studies include high-n LA-ICP-MS 
datasets that facilitate statistical assessments using MAT-
LAB routines. The new data are integrated with published 
stratigraphic constraints for western Newfoundland to 
evaluate Humber margin evolution and provide testable 
models for the development of the Humber Seaway. We 
use evidence from modern magma-poor rift systems to pro-
pose a plate tectonic model which calls for the establish-
ment of the Humber passive margin to include Ediacaran 
to Cambrian breakup sequences that record the transition 
from breakup tectonism to thermal subsidence. We sum-
marize Ediacaran-Cambrian rift evolution in the southern 
Caledonian-northern Appalachian orogen and propose that 
the Scotland-Ireland and SE Canada-NE United States seg-
ments of eastern Laurentia also contain crustal and mantle 
breakup sequences. 

2. EDIACARAN TO CAMBRIAN STRATIGRAPHY 

Neoproterozoic to lower Paleozoic rocks of the Humber 
passive margin are integral parts of the northern Ap-
palachian orogen in New England and Atlantic Canada (fig. 
1A, e.g., James et al., 1989; Waldron & van Staal, 2001); 
the northern continuation of the Humber passive margin 
into the southern Caledonides is demonstrated by broadly 
equivalent rock units in Ireland and Scotland (e.g., upper 
Dalradian Supergroup: Prave et al., 2023; Strachan & 
Holdsworth, 2000). In western Newfoundland, ca. 950–1500 
Ma crystalline rocks of the Grenville Province (Pinware ter-
rane) represent the distal edge of the Laurentian craton and 
are the depositional substrates for Humber margin succes-
sions (Cawood & van Gool, 1998; Heaman et al., 2002; Hod-
gin et al., 2021). Labrador and Curling group strata that 
are the focus of this study, as well as underlying Protero-
zoic crystalline basement rocks, were variably affected by 
Cambrian-Ordovician (Taconic), Silurian (Salinic), Devon-
ian (Acadian), and later deformation events associated with 
the Appalachian orogenic system (e.g., Cawood, 1993; Ca-
wood et al., 1994; White & Waldron, 2019). Labrador Group 
strata are exposed in the weakly deformed Laurentian au-
tochthon, whereas coeval Laurentian rocks of the Curling 
Group are assigned to the Humber Arm allochthon and 
were transported westwards and emplaced onto platfor-
mal successions as a result of convergent margin tectonism 
(e.g., Lavoie et al., 2003; Waldron et al., 1998; Waldron & 
Stockmal, 1991). Fleur de Lys Supergroup strata comprise 
polydeformed and metamorphosed rocks that are equiva-
lents of Labrador and Curling group strata in west-central 
Newfoundland (fig. 2A, e.g., Cawood & Nemchin, 2001; Hi-
bbard, 1983). The eastern edge of the Humber margin sys-
tem is generally marked by the Baie Verte-Brompton line 
(figs. 1A, 2A), a long-lived fault zone in part defined by 
ophiolitic fragments that are juxtaposed against Fleur de 
Lys Supergroup strata (e.g., van Staal & Barr, 2012). 
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Figure 1. (A) Simplified map of the northern Appalachian orogen modified from Hibbard et al.              (2006). Humber   
margin rocks include autochthonous and allochthonous continental margin units exposed in the westernmost              
Appalachians. CA - Canada; CBI - Cape Breton Island; PEI - Prince Edward Island; U.S.A. - United States of                    
America. (B) Interpreted continental margin geometry of eastern Laurentia modified from Allen et al.               (2010)  that  
assumes formation by a simple-shear, low-angle detachment rift system. The ocean-continent transition is              
oversimplified and does not show zones of hyperextended crust and exhumed continental mantle in outboard                
regions. Selected igneous rock occurrences: BC - Birchy complex (556–564 Ma,            van Staal et al.   ,  2013); BR - Blair     
River dikes (576 Ma and 581 Ma:        Miller & Barr  ,  2004); BM - Baie des Moutons complex (583 M:          McCausland et al.  ,  
2011); DH - Disappointment Hill pluton (607 Ma:         Hodgin et al.  ,  2021); LRD - Long Range dikes (615 Ma:         Kamo et   
al.,  1989,  1995); LM - Lac Matapédia volcanics (565 Ma:         Hodych & Cox  ,  2007); LS - Lady Slipper pluton (555 Ma:         
Cawood et al.  ,  2001); MR - Mont Rigaud syenite (533 Ma:         McCausland et al.  ,  2007); RP - Round Pond granite (602        
Ma:  Williams et al.  ,  1985); SC - Skinner Cove Formation volcanics        (Cawood et al.  ,  2001); SI - Sept Îles complex       
(564 Ma,   Higgins & van Breemen   ,  1998); SH - St. Honoré complex (571 Ma:         McCausland et al.  ,  2009); TH - Tibbit     
Hill Formation volcanics (554 Ma:      Kumarapeli et al.  ,  1989). Ar-Ar cooling ages of pseudotachylyte from O’Brien         
and van der Pluijm     (2012). Zircon (U-Th)/He cooling ages from Powell et al.          (2018).  

The Humber margin is interpreted to include promonto-
ries and embayments framed by transform faults that are 
orthogonal to rift zones (fig. 1B, e.g., Allen et al., 2009, 
2010). The promontories generally have thin Paleozoic suc-
cessions, narrow thrust belts, and complex deformation of 
basement massifs, whereas the embayments have thicker 
stratigraphic successions with wider thrust belts and fewer 
exposed basement massifs (Thomas, 1977, 1991). The 
Humber passive margin in Newfoundland is part of the St. 
Lawrence promontory and segmented by the Serpentine 
Lake, Bonne Bay, Canada Bay, and Belle Isle transform fault 
systems (figs. 1B, 2A, 2B, Allen et al., 2009, 2010; Cawood 
& Botsford, 1991; Williams, 1979). Mafic to felsic igneous 
rocks in the St. Lawrence promontory and Quebec embay-
ment, including those along the Serpentine Lake, Bonne 
Bay, and Sept Îles transforms (fig. 1B), yield ca. 615–600 
Ma and ca. 580–550 Ma crystallization ages that constrain 
the timing of rift-related extension which ultimately re-
sulted in the birth of the Humber passive margin (fig. 1B, 
e.g., Macdonald et al., 2023). Other evidence for the timing 

of rift-related deformation in the northern Appalachians is 
derived from ca. 614–613 Ma pseudotachylytes from the 
Montmorency fault (St. Lawrence rift system) in southern 
Quebec that separate Proterozoic gneiss from lower Paleo-
zoic strata (O’Brien & van der Pluijm, 2012) and 761–582 
Ma zircon (U-Th)/He cooling ages for Proterozoic crys-
talline rocks on Anticosti Island (Powell et al., 2018) that 
were exhumed during regional extension. 

2.1. LABRADOR GROUP 

Labrador Group rocks are the stratigraphic archives of early 
Humber margin development in the Laurentian autochthon 
(e.g., James et al., 1989; Lavoie et al., 2003). The lowermost 
Labrador Group succession in southern Labrador and the 
Great Northern Peninsula and Belle Isle regions of NW 
Newfoundland consists of Bateau Formation shale, silt-
stone, cross-bedded sandstone, and conglomerate units up 
to 244 m-thick that unconformably overlie Proterozoic 
gneiss and are intruded by rift-related mafic rocks corre-
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Figure 2. Simplified bedrock geology of the Humber margin in (A) western Newfoundland and SE Labrador and                
(B) Port au Port Peninsula, Humber Arm, Bay of Islands, and Bonne Bay areas of western Newfoundland modified                   
from Knight   (2013). Detrital zircon sample locations are shown by white squares. Location information for              
quantitative mineral samples is provided in table S1 (online supplementary materials). Igneous rock              
abbreviations follow those in     figure 1 . BVBL – Baie Verte-Brompton line.       

lated with the ca. 615 Ma Long Range dike swarm (figs. 
2A, 3, Bostock et al., 1983; Kamo et al., 1989; Williams 
& Hiscott, 1987; Williams & Stevens, 1969). Lighthouse 
Cove Formation basalt lavas fed by Long Range dike sources 
are up to 310 m-thick and overlie both Bateau Formation 
and Proterozoic gneiss units in the Belle Isle area (fig. 3, 
Williams & Hiscott, 1987; Williams & Stevens, 1969). 

The lowermost Labrador Group succession in SW New-
foundland consists of massive to tabular to trough cross-
bedded feldspathic sandstone and conglomerate units of 
the Bradore Formation that unconformably overlie Protero-
zoic crystalline rocks (fig. 3, e.g., Williams, 1985). Equiv-
alent Bradore Formation strata in southern Labrador and 
the Belle Isle region unconformably overlie both Protero-
zoic gneiss and Lighthouse Cove Formation volcanic rocks 
(figs. 2A, 2B, e.g., Bostock et al., 1983; Cawood et al., 2001). 
Detailed sedimentological studies of the Bradore Formation 
have reported fluvial, tidal-influenced marine, and shallow-
marine shelf deposits with northeast- to east-directed pa-
leocurrent indicators (e.g., Hiscott et al., 1984; James et al., 
1989; Long & Yip, 2009). Bostock et al. (1983) noted that 
the Bradore Formation in the Belle Isle area ranges from 

10 to 175 m-thick and is locally exposed in the hanging-
walls of basement-involved normal faults, implying that it 
was deposited during extensional deformation. The precise 
timing and tectonic significance of Bradore Formation de-
position are uncertain; the basement-cover unconformity 
at the base of the unit was proposed by Cawood et al. 
(2001) to reflect the rift-drift transition in the Laurentian 
autochthon, whereas Williams and Hiscott (1987) and Allen 
et al. (2010) concluded that there is an unmapped uncon-
formity somewhere higher in the Bradore Formation that 
marks the onset of passive margin sedimentation. Landing 
and Bartowski (1996) and Landing (2012) correlated the 
Bradore Formation with Cambrian Series 2 strata of the U.S. 
Appalachians that overlie Proterozoic rocks and have lower 
Olenellus biozone faunas. The upper units of the Bradore 
Formation yield Dolopichnus, Conichnus, Skolithos linearis, 
Lingulichnus verticalis, and other trace fossils that are gen-
erally consistent with early Cambrian depositional ages 
(Hiscott et al., 1984; James et al., 1989; Long & Yip, 2009; 
Pemberton & Kobluk, 1978). Bradore Formation sandstone 
has yielded ca. 930–1223 Ma detrital zircon grains with a 
1124 Ma age peak (1 sample, n = 53, Cawood & Nemchin, 
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Figure 3. Schematic Ediacaran to Ordovician stratigraphy and depositional relationships for rock units of the              
Humber margin in Newfoundland summarized from Williams        (1985), Cawood and van Gool      (1998), Palmer et al.     
(2001), Lavoie et al.     (2003), Gillis and Burden     (2006), and Knight    (2013). Geological time scale after Cohen et al.         
(2013). See text for fossil and other depositional age constraints. BMDB - Blow Me Down Brook Formation, E. -                    
Early, Gp. - Group, HL - Hughes Lake complex, LRD - Long Range dikes, LS - Lady Slipper pluton, M - Middle, MM                        
- Mount Musgrave Group, PAP - Port au Port Peninsula, SE - southeast, WB - White Bay Group.                   

2001), which supports sedimentological evidence for the 
unit to have provenance from underlying and adjacent Pro-
terozoic crystalline rocks in western Newfoundland. 

The Forteau Formation conformably overlies the Bradore 
Formation in southern Labrador and western Newfound-
land (fig. 3, e.g., James et al., 1989; Knight et al., 2017). The 
type section in southern Labrador includes basal dolomite 
overlain by shale, fossiliferous sandy limestone, and cal-
careous siltstone and sandstone (Schuchert & Dunbar, 
1934). The Forteau Formation varies in thickness by region; 
shelf successions of an inboard, western facies belt in 
Labrador are <120 m-thick, whereas deep-water succes-
sions of an outer, eastern facies belt in western Newfound-
land are up to 700 m-thick (Riley, 1962) and represent a 
major depocenter that is not well understood in the lower 
Paleozoic platform-slope system (Knight, 2013). This west-
to-east facies transition is generally supported by paleocur-
rent indicators observed in shelf strata (e.g., Knight et al., 
2017). The lower Forteau Formation, in addition to the 
upper parts of the underlying Bradore Formation, are in-
terpreted to comprise a transgressive systems tract during 
early thermal subsidence along the Humber passive mar-
gin (e.g., Lavoie et al., 2003). A maximum flooding sur-
face is marked by a shale-dominated interval above the 
lower limestone unit, and upper shale, burrowed siltstone, 
and sandstone show the onset of a highstand systems tract 
that eventually gave way to a prograding carbonate shelf 
(Skovsted et al., 2017). Dated parts of the Forteau Forma-
tion are Cambrian Series 2 (Stages 3–4) based on Bonnia-

Olenellus biozone fossils, Archaeocyathan fauna, and other 
assemblages (Boyce, 2021; James & Debrenne, 1980; Knight 
et al., 2017; Skovsted et al., 2017). Detrital zircon studies 
of the Forteau Formation have not been completed because 
of the abundance of carbonate and fine-grained siliciclastic 
rocks in the unit and therefore the provenance of its strata 
with respect to the underlying Bradore Formation is uncer-
tain. 

The Hawke Bay Formation conformably overlies the 
Forteau Formation in southern Labrador and western New-
foundland (fig. 3, James et al., 1989; Schuchert & Dunbar, 
1934). The Hawke Bay Formation mostly consists of mas-
sive to planar cross-stratified quartz arenite with minor 
glauconitic sandstone, shale, and bioturbated limestone 
units that are up to 250 m-thick. Hawke Bay Formation 
lithofacies, ichnofauna, and west-southwest and east-
northeast-directed paleocurrent indicators support a high-
energy wave and storm-dominated shoreface environment 
(e.g., Knight & Boyce, 2014). Representative fauna from the 
Mesonacis bonnensis, Glossopleura, Polypleuraspis and other 
biozones indicate that the Hawke Bay Formation is Cam-
brian Series 2 (Stage 4) to early Miaolingian (Wuliuan) and 
deposited during a eustatic sea-level lowstand at the end of 
the Sauk I subsequence (Knight & Boyce, 2014; Lavoie et 
al., 2003; A. R. Palmer & James, 1980). Hawke Bay Forma-
tion sandstone has yielded ca. 955–2835 Ma detrital zircon 
grains with 1043, 1854, and 2780 Ma age peaks (1 sample, 
n = 64, Cawood & Nemchin, 2001), which indicate prove-
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nance from Archean cratons and flanking Proterozoic oro-
gens of eastern Laurentia. 

Upper Cambrian (Ehmaniella cloudensis biozone) to 
Lower Ordovician platformal carbonate successions (Port 
au Port and St. George groups) overlie the Labrador Group 
and are the youngest units of the Humber passive margin 
(e.g., James et al., 1989). Middle Ordovician carbonate and 
shale units in western Newfoundland (Table Head Group) 
heralded faulting and erosion of the Laurentian platform 
and were succeeded by the west-directed passage of a fore-
bulge and flysch deposition related to Taconic orogenesis 
(e.g., Knight et al., 1991; Waldron et al., 2003). 

2.2. CURLING GROUP 

Curling Group rocks comprise Laurentian margin strata of 
the Humber Arm allochthon, which is one of the west-
transported allochthons in western Newfoundland (figs. 2, 
3, e.g., Williams & Cawood, 1989). The Blow Me Down 
Brook Formation occupies the highest thrust sheet of the 
Humber Arm allochthon in the Bay of Islands area (Woods 
Island succession of Waldron et al., 2003) and likely repre-
sents the most distal unit of the Curling Group. The Blow 
Me Down Brook Formation mostly consists of micaceous 
feldspathic to lithic arenite with minor quartz arenite, con-
glomerate, and shale that together are >370 m-thick. The 
lithostratigraphic features of the unit are consistent with 
deposition by sediment gravity flows (S. E. Palmer et al., 
2001). Red mudstone of the Blow Me Down Brook For-
mation overlies and is interbedded with Ediacaran(?) pil-
lowed to massive basalt and breccia in several localities 
(e.g., Gillis & Burden, 2006; Waldron et al., 2003; Williams 
& Cawood, 1989), but elsewhere, overlying units contain 
Oldhamia (Lindholm & Casey, 1990; see Herbosch & 
Verniers, 2011) and acritarch species (Burden et al., 2001, 
2005; S. E. Palmer et al., 2001) that indicate late Terreneu-
vian to Cambrian Series 2 (Stage 4) to Wuliuan age con-
straints for the unit. The composite Blow Me Down Brook 
Formation succession may therefore correlate with several 
Labrador Group units of the Laurentian autochthon, in-
cluding Forteau and Hawke Bay formations of the early pas-
sive margin. Blow Me Down Brook Formation sandstone has 
yielded ca. 1019–3592 Ma detrital zircon grains with 1057, 
1841, and 2784 Ma age peaks (1 sample, n = 55, Cawood & 
Nemchin, 2001) that indicate provenance ties with Protero-
zoic and Archean rocks of the eastern Laurentian hinter-
land. 

The Summerside Formation occupies an intermediate 
thrust sheet of the Humber Arm allochthon in the Humber 
Arm area (Corner Brook succession of Waldron et al., 2003) 
and includes ~700 m of quartz to feldspathic arenite and 
shale units that comprise submarine fan deposits (fig. 3, 
e.g., S. E. Palmer et al., 2001). The base of Summerside 
Formation is not exposed, but it is interpreted to uncon-
formably overlie Proterozoic crystalline basement (Cawood 
& van Gool, 1998; Waldron et al., 2003). Summerside For-
mation strata contain Ediacaran to early Cambrian spher-
omorph acritarchs and other palynomorph assemblages (S. 
E. Palmer et al., 2001) and may comprise a rift-related unit 
correlative with the lowermost Labrador Group and lower 

parts of the Blow Me Down Brook Formation (e.g., Lavoie 
et al., 2003). Summerside Formation sandstone has yielded 
ca. 580-1186 Ma detrital zircon grains with 1012 Ma and 
1129 Ma age peaks (1 sample, n = 54, Cawood & Nemchin, 
2001) that demonstrate provenance from rift-related, Neo-
proterozoic igneous rocks and underlying and adjacent Pro-
terozoic crystalline basement units. 

The Irishtown Formation (Brückner, 1966) conformably 
overlies the Summerside Formation and consists of shale, 
quartz arenite, and conglomerate units with a structural 
thickness >1100 m (fig. 3, S. E. Palmer et al., 2001). Irish-
town Formation strata contain flute casts, load structures, 
and partial to complete Bouma sequences that indicate de-
position by turbidity currents and debris flows (Cawood & 
van Gool, 1998; S. E. Palmer et al., 2001). Granite, sand-
stone, shale, and limestone clasts with early Cambrian fos-
sils, especially those in conglomerate units deposited along 
the Bonne Bay transform, indicate derivation from Protero-
zoic crystalline basement and Labrador Group sources (e.g., 
Cawood & van Gool, 1998). The upper Irishtown Forma-
tion contains early Cambrian acritarchs (S. E. Palmer et al., 
2001) that suggest correlation with the Forteau or Hawke 
Bay formations and upper parts of the Blow Me Down Brook 
Formation (e.g., Lavoie et al., 2003). However, detrital zir-
con studies of the Irishtown Formation have not been com-
pleted and these proposed stratigraphic correlations are 
untested. Mid- to upper Cambrian to Middle Ordovician 
deep-water carbonate rocks (Northern Head Group) uncon-
formably overlie the Irishtown Formation and are probable 
time-equivalents to passive margin successions (Port au 
Port and St. George groups) of the Laurentian autochthon 
(fig. 3, e.g., Cawood & van Gool, 1998). 

2.3. FLEUR DE LYS SUPERGROUP 

Fleur de Lys Supergroup metaclastic rocks exposed in the 
Corner Brook Lake area of west-central Newfoundland over-
lie Mesoproterozoic orthogneiss and rift-related Ediacaran 
intrusive rocks (Mount Musgrave Group – MM in fig. 3, 
e.g., Cawood & Nemchin, 2001; White & Waldron, 2022). 
Equivalent successions in the Baie Verte Peninsula com-
prise parts of a cover sequence on top of Mesoproterozoic 
gneiss (WB – White Bay Group in fig. 3, e.g., Hibbard, 1983, 
1988; Hibbard et al., 1995) and an early Tonian volcanic-
sedimentary succession (Strowbridge et al., 2022). Fleur de 
Lys Supergroup lithologies in the Baie Verte Peninsula re-
gion include metaconglomerate, marble breccia, and psam-
mitic and pelitic schists that are interlayered with mafic 
metavolcanic rocks (e.g., Hibbard, 1988; Hibbard et al., 
1995). Birchy complex units in the Coachman’s Cove area of 
the Baie Verte Peninsula (fig. 2A) are part of an Ediacaran 
(ca. 564–556 Ma) rift succession and contain serpentinized 
peridotite, gabbro, mafic schist, and metasedimentary 
rocks that locally contain detrital chromite from nearby ul-
tramafic sources (van Staal et al., 2013). Flat Point Forma-
tion psammite, interpreted as cover to the Birchy complex 
(fig. 3), has yielded ca. 1026, 1075, 1305, 1480, and 1883 
Ma age peaks (1 sample, n = 69, van Staal et al., 2013), and 
Fleur de Lys Supergroup mica schist elsewhere in the Baie 
Verte Peninsula has yielded ca. 1050, 1150, 1361, 1501, and 
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2478 Ma age peaks (1 sample, n = 78, Willner et al., 2014). 
These detrital zircon U-Pb results are interpreted to reflect 
provenance from Archean and Proterozoic rocks of eastern 
Laurentia (e.g., Willner et al., 2014). 

3. METHODS AND MATERIALS 
3.1. SAMPLING STRATEGY 

Sandstone samples of the Labrador and Curling groups 
were collected using bedrock geological maps and strati-
graphic reports as guides (see location information in fig. 
2B and tables 1, S1, and S2). Well exposed stratigraphic sec-
tions with fossil constraints were targeted and measured by 
Jacob staff when possible (Soukup, 2022). Labrador Group 
samples comprise: (1) Bradore Formation sandstone units 
collected <10 m above the unconformity with Proterozoic 
crystalline rocks in the Bonne Bay and Indian Head Range 
areas (Williams, 1985; Williams & Cawood, 1989; Williams 
& Hiscott, 1987); and (2) Hawke Bay Formation sandstone 
units from Marches Point in the Port au Port Peninsula 
(Knight & Boyce, 2014). Curling Group samples comprise: 
(1) Blow Me Down Brook Formation sandstone units in 
the Bay of Islands (Candlelite Bay) and Bonne Bay (South 
Arm) areas (Burden et al., 2005; Lindholm & Casey, 1990; 
Williams & Cawood, 1989); (2) Summerside Formation 
sandstone units along Humber Arm (S. E. Palmer et al., 
2001); and (3) Irishtown Formation sandstone collected 
along Humber Arm and in the Bonne Bay area (S. E. Palmer 
et al., 2001). 

3.2. SCANNING ELECTRON MICROSCOPE – MINERAL 
LIBERATION ANALYSIS 

Quantitative mineral studies of 38 thin sections (Bradore 
Formation: n = 1, Hawke Bay Formation: n = 13, Blow Me 
Down Brook Formation: n = 20, Summerside Formation: n = 
2, Irishtown Formation: n = 2) were conducted at Memorial 
University of Newfoundland using a FEI Quanta field emis-
sion gun (FEG) 650 scanning electron microscope (SEM) 
equipped with Mineral Liberation Analysis (MLA) software 
version 3.14 (Beranek et al., 2022; Grant et al., 2018; 
Sylvester, 2012). Area percentage values for each sample 
are provided in table S1; the results reported in Section 4 
highlight only the key mineral constituents in each sam-
ple. Instrument conditions included a high voltage of 25 kV, 
working distance of 13.5 mm, and beam current of 10 nA. 
SEM-MLA maps were created using GXMAP mode by ac-
quiring Energy Dispersive X-Ray spectra in a grid every 10 
pixels, with a spectral dwell time of 12 ms, and comparing 
these against a list of mineral reference spectra. The MLA 
frames were 1.5 mm by 1.5 mm with a resolution of 500 pix-
els x 500 pixels. 

3.3. DETRITAL ZIRCON U-PB GEOCHRONOLOGY AND HF 
ISOTOPE GEOCHEMISTRY 

Laser ablation U-Pb and Hf isotope studies of 11 sandstone 
samples (Bradore Formation: n = 2, Hawke Bay Formation: 
n = 2, Blow Me Down Brook Formation: n = 3, Summerside 

Formation: n = 2, Irishtown Formation: n = 2) were con-
ducted at Memorial University of Newfoundland using a 
Thermo-Finnigan Element XR single-collector ICP-MS and 
Thermo-Finnigan Neptune multi-collector ICP-MS, respec-
tively. Laser ablation methods, isotopic results, and refer-
ence material values are reported in table S2. Photographs 
of field sample sites are provided in figure S1. Time-inte-
grated U-Pb and Hf analyte signals were analyzed offline 
using Iolite software (Paton et al., 2011). U-Pb ages were 
calculated using the VizualAge data reduction scheme 
(Petrus & Kamber, 2012). Concordance values were cal-
culated as the ratio of 206Pb/238U and 207Pb/206Pb ages 
and analyses with high error (>10% uncertainty) or exces-
sive discordance (>10% discordant, >5% reverse discordant) 
were excluded from maximum depositional age estimates 
and provenance interpretations. The reported ages for 
grains younger and older than 1200 Ma are based on 
206Pb/236U and 207Pb/206Pb ages, respectively. 

U-Pb dates are reported at 2  uncertainty and shown in 
probability density plots made with the AgeCalcML MAT-
LAB program (Sundell et al., 2021). The modes for each 
sample are informally reported as probability age peaks. 
Initial 176Hf/177Hf are reported as εHf(t) and represent iso-
topic compositions at the time of crystallization relative 
to the chondritic uniform reservoir (CHUR). Initial epsilon 
Hf (εHf[t]) calculations used the decay constant of Söder-
lund et al. (2004) and CHUR values of Bouvier et al. (2008). 
Age-corrected epsilon Hf (Hf[t]) vs. U-Pb age plots were 
made with the Hafnium Plotter MATLAB program of Sun-
dell et al. (2019). Maximum depositional ages were esti-
mated with the Maximum Likelihood Age algorithm of Ver-
meesch (2021). U-Pb and U-Pb-Hf statistical assessments 
reported in table S3 were conducted with the DZstats (Say-
lor & Sundell, 2016) and DZstats2D (Sundell & Saylor, 
2021) MATLAB programs, respectively. Multi-dimensional 
scaling (MDS) plots were made with the DZmds (Saylor et 
al., 2018) and DZstats2D (Sundell & Saylor, 2021) MATLAB 
programs. 

4. RESULTS 
4.1. LABRADOR GROUP 

4.1.1. BRADORE FORMATION 

Feldspathic sandstone (78% quartz, 13% potassium 
feldspar) that overlies Mesoproterozoic orthogneiss units 
in the Indian Head Range contains the highest ilmenite 
(0.54%), titanite (0.77%), and zircon (0.11%) values in the 
sample suite (sample MS2019-08 in table S1). This sample 
yields 281 detrital zircon grains (~99%) that range from 943 
± 13 Ma to 1247 ± 34 Ma and comprise a 1112 Ma age peak 
and four grains (~1%) from 1427 ± 47 Ma to 1469 ± 52 Ma 
(sample MS2019-08 in fig. 4). Quartz sandstone that over-
lies Mesoproterozoic granite in the Bonne Bay area yields 
286 detrital zircon grains (~98%) that range from 953 ± 24 
Ma to 1377 ± 44 Ma and comprise a 1033 Ma age peak, five 
grains (~2%) from 1427 ± 61 Ma to 1533 ± 36 Ma, and one 
(<1%) 1972 ± 35 Ma grain (sample MS2019-12 in fig. 4). 
Tonian to Stenian and Ectasian to Calymmian detrital zir-
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Table 1. Location, lithological, and depositional age estimate information for Labrador and Curling group rock samples. See text for published fossil age information.                      
Maximum depositional age (MDA) calculations were made with Maximum Likelihood Age algorithm of Vermeesch               (2021).  n  = number of grains     

Rock sample Latitude 
(°N) 

Longitude 
(°W) 

Location Lithology Fossil age constraints MDA 
estimate 

# of grains in youngest 
group 

Labrador Group 

Hawke Bay Formation 

MS2019-10 48.4991 -59.1215 Marches Point Glauconitic 
sandstone 

Cambrian Series 2 (Stage 4) to Miaolingian 
(Wuliuan) 

567 ± 44 
Ma 

n = 2 

31LB16 48.4968 -59.1265 Marches Point Quartz 
sandstone 

Cambrian Series 2 (Stage 4) to Miaolingian 
(Wuliuan) 

562 ± 9 Ma n = 3 

Bradore Formation 

MS2019-08 48.6031 -58.4272 Indian Head 
Range 

Feldspathic 
sandstone 

Cambrian Series 2 or older 970 ± 7 Ma n = 12 

MS2019-12 49.4636 -57.6563 Bonne Bay Quartz 
sandstone 

Cambrian Series 2 or older 971 ± 5 Ma n = 21 

Curling Group 

Irishtown Formation 

MS2019-14 49.4385 -57.8356 Bonne Bay Quartz 
sandstone 

Early Cambrian 574 ± 10 
Ma 

n = 3 

MS2019-01 48.9662 -58.0236 Humber Arm Quartz 
sandstone 

Early Cambrian 556 ± 12 
Ma 

n = 1 

Summerside Formation 

MS2019-06 48.9781 -57.9899 Humber Arm Quartz 
sandstone 

Ediacaran to early Cambrian 889 ± 19 
Ma 

n = 3 

MS2019-05 48.9780 -57.9896 Humber Arm Quartz 
sandstone 

Ediacaran to early Cambrian 595 ± 10 
Ma 

n = 1 

Blow Me Down Brook 
Formation 

30LB16 49.0705 -58.2840 Bay of Islands Feldspathic 
sandstone 

Terreneuvian to Miaolingian (Wuliuan) 586 ± 21 
Ma 

n = 1 

MS2019-04 49.0706 -58.2861 Bay of Islands Quartz 
sandstone 

Terreneuvian to Miaolingian (Wuliuan) 1002 ± 15 
Ma 

n = 8 

MS2019-15 49.4620 -57.9090 Bonne Bay Feldspathic 
sandstone 

Terreneuvian to Miaolingian (Wuliuan) 902 ± 11 
Ma 

n = 1 
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Figure 4. Detrital zircon results from Labrador Group       
rock units: basal Bradore Formation (MS2019-08) in        
the Indian Head Range, basal Bradore Formation        
(MS2019-12) in the Bonne Bay area, and Hawke Bay          
Formation (31LB16 & MS2019-10) at Marches Point,        
Port au Port Peninsula. CHUR - chondritic uniform         
reservoir. Crustal evolution trends show an average        
176Lu/177Hf value of 0.0115 and a range of         176Lu/177Hf  
values of 0.0193 to 0.0036 (e.g.,       Vervoort et al.  ,  1999).  n  
= number of grains that passed discordance filter         
against total number of analyses.      

con grains in the Bradore Formation have εHf(t) values that 
range from -1.0 to +5.1 (  = +2.4) and -0.4 to +7.5 (  = 
+4.6), respectively (fig. 4). 

4.1.2. HAWKE BAY FORMATION 

Quartz arenite to subfeldspathic sandstone units (83–97% 
quartz, 3–10% potassium feldspar) from Marches Point 
have notable magnetite (<0.01–0.35%), rutile (0.01–0.04%), 
and tourmaline (<0.01–0.03%) contents (samples 
PAP16_HB-1, -2A, -3A, -4A, -5, -6, -7, -8, -9, -10, -16B in 
table S1); other rocks are glauconitic and limy sandstone 
units (samples PAP16_HB11, MS2019-10 in table S1). A 
lower quartz sandstone from Marches Point yields three 
grains (~1%) from 559 ± 7 Ma to 594 ± 10 Ma, 62 grains 
(~22%) that range from 989 ± 21 Ma to 1167 ± 23 Ma and 

comprise a 1047 Ma age peak, 129 grains (~46%) that range 
from 1247 ± 43 Ma to 1972 ± 50 Ma and include an 1844 
Ma age peak, five grains (~2%) from 2052 ± 35 Ma to 2451 
± 57 Ma, 73 grains (~26%) that range from 2524 ± 42 Ma 
to 2954 ± 31 Ma and comprise a 2715 Ma age peak, and 
five (~2%) grains from 3243 ± 33 Ma to 3737 ± 23 Ma (sam-
ple 31LB16 in fig. 4). An upper, glauconitic sandstone from 
Marches Point yields 566 ± 7 Ma and 583 ± 6 Ma detrital zir-
con grains, 12 grains (11% ) that range from 926 ± 17 Ma 
to 1068 ± 20 Ma and comprise a 977 Ma age peak, 50 grains 
(~47%) that range from 1134 ± 12 Ma to 1975 ± 22 Ma and 
include a 1901 Ma age peak, four grains (~4%) from 2077 
± 40 Ma to 2366 ± 33 Ma, and 39 grains (~36%) that range 
from 2460 ± 26 Ma to 2872 ± 24 Ma and include a 2715 
Ma age peak (sample MS2019-10 in fig. 4). Ediacaran de-
trital zircon grains in the Hawke Bay Formation have εHf(t) 
values that range from +3.6 to +6.5 (  = +5.5). Tonian to 
Stenian, Orosirian, and Neoarchean age peaks that com-
prise most of the Hawke Bay Formation samples have εHf(t) 
values of -6.7 to +9.8 (  = +0.1), -14.2 to +8.3 (  = -2.1), 
and -20.0 to +4.7 Ma (  = -1.9), respectively. 

4.2. CURLING GROUP 

4.2.1. BLOW ME DOWN BROOK FORMATION 

Blow Me Down Brook Formation sandstone units are mi-
caceous and feldspathic (0.09–11.27% muscovite, 
0.04–10.63% potassium feldspar) and have albite 
(9.22–23.63%) and chlorite (0.22–7.73%) alteration and 
trace garnet (0.01–0.16%) and ilmenite (<0.01–0.08%) con-
tents (samples MS2019-04 and -15, 30LB16, BOI16_B2, 
-B3a, -B3b, -B4, -B5, -B6, -B7, -B8, -B8b, -B9, -B10, -B11, 
-B12, -B13, -B14, -B15, -B16 in table S1). Micaceous felds-
pathic sandstone along the South Arm of Bonne Bay yields 
47 detrital zircon grains (~35%) that range from 902 ± 6 
Ma to 1173 ± 39 Ma and include a 1030 Ma age peak, 61 
grains (~46%) that range from 1201 ± 16 Ma to 2177 ± 87 Ma 
and include a 1394 Ma age peak, and 26 grains (~19%) that 
range from 2569 ± 61 Ma to 3016 ± 20 Ma and include a 2696 
Ma age peak (sample MS2019-15 in fig. 5). Quartz sand-
stone from the Bay of Islands yields 17 detrital zircon grains 
(~44%) that range from 948 ± 58 Ma to 1147 ± 28 Ma and 
comprise a 1046 Ma age peak, 13 grains (~33%) from 1236 
± 41 Ma to 1866 ± 36 Ma, 2157 ± 25 Ma and 2271 ± 28 Ma 
single grains (~5%), and seven grains (~18%) from 2616 ± 
44 Ma to 3006 ± 27 Ma (sample MS2019-04 in fig. 5). Felds-
pathic sandstone interbedded with MS2019-04 quartz sand-
stone yields a 579 ± 16 Ma detrital zircon grain (<1%), 76 
grains (~70%) that range from 947 ± 14 Ma to 1931 ± 79 Ma 
and include a 1071 Ma age peak, 2300 ± 33 Ma and 2326 ± 18 
Ma grains (~2%), and 30 grains (~28%) that range from 2493 
± 58 Ma to 2914 ± 21 Ma and include a 2725 Ma age peak 
(sample 30LB16 in fig. 5). The single Ediacaran grain sam-
ple 30LB16 has an εHf(t) value of +4.0. Tonian to Stenian, 
Ectasian to Calymmian, and Neoarchean ages that make up 
most Blow Me Down Brook Formation samples yield εHf(t) 
values of -7.8 to +9.0 (  = +2.2), -15.1 to +8.5 (  = +1.2), 
and -4.9 to +3.9 (  = +0.5), respectively. 
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Figure 5. Detrital zircon results from Curling Group       
rock units: Blow Me Down Brook Formation        
(MS2019-15) in Bonne Bay area, Blow Me Down Brook          
Formation strata (MS2019-04 & 30LB16) in the Bay of          
Islands, Summerside Formation strata (MS2019-05 &       
MS2019-06) in Humber Arm area, and Irishtown        
Formation strata (MS2019-01 & MS2019-14) in       
Humber Arm area. CHUR - chondritic uniform        
reservoir. Crustal evolution trends show an average        
176Lu/177Hf value of 0.0115 and a range of         176Lu/177Hf  
values of 0.0193 to 0.0036 (e.g.,       Vervoort et al.  ,  1999).  n  
= number of grains that passed discordance filter         
against total number of analyses.      

4.2.2. SUMMERSIDE FORMATION 

Summerside Formation quartz sandstone units have no-
table albite (21.91% 22.78%), garnet (0.02%, 0.03%), mus-
covite (0.05%, 3.42%), rutile (0.19%, 0.32%), and zircon 
(0.03%, 0.05%) contents (samples MS2019-05, -06 in table 
S1). A lower quartz sandstone unit from Pettipas Point 
along Humber Arm yields a 586 ± 9 Ma detrital zircon grain 
(<1%), 144 grains (50%) that mostly range from 920 ± 20 
Ma to 1190 ± 22 Ma and comprise a 1038 Ma age peak, 107 
grains (~37%) from 1216 ± 27 Ma to 1904 ± 42 Ma, 2208 ± 40 

Ma to 2239 ± 61 Ma grains (<1%), and 35 grains (~12%) from 
2497 ± 60 Ma to 2952 ± 34 Ma (sample MS2019-05 in fig. 5). 
An upper quartz sandstone from Pettipas Point yields 104 
grains (~43%) that mostly range from 917 ± 11 Ma to 1197 
± 9 Ma and comprise a 1012 Ma age peak, 102 grains (~42%) 
from 1202 ± 26 Ma to 2090 ± 81 Ma, and 37 grains (~15%) 
that mostly range from 2495 ± 38 Ma to 2935 ± 20 Ma. 
(MS2019-06 in fig. 5). The single Ediacaran grain in sam-
ple MS2019-05 has an εHf(t) value of +2.9. Tonian to Sten-
ian age peaks that make up most of the Summerside Forma-
tion samples yield εHf(t) values of -12.1 to +6.0 (  = -0.4), 
whereas subsidiary Ectasian to Orosirian and Neoarchean 
age groups have εHf(t) values of -16.2 to +8.0 (  = 0.0) and 
-13.0 to +5.4 (  = +0.6), respectively. 

4.2.3. IRISHTOWN FORMATION 

Irishtown Formation sandstones are quartz-rich (88.44%, 
93.33%) and include minor albite, ankerite, chlorite, and 
muscovite (samples MS2019-01, -14 in table S1). Quartz 
sandstone from a unit with pebble to cobble clasts of gran-
ite, sandstone, and fossiliferous limestone in the Bonne Bay 
area yields 569 ± 8 Ma, 583 ± 6 Ma, 599 ± 7 Ma, and 620 
± 11 Ma detrital zircon grains (~2%), 77 grains (~29%) that 
range from 947 ± 12 Ma to 1192 ± 18 Ma and comprise a 
1056 Ma age peak, 117 grains (~44%) that range from 1199 
± 38 Ma to 1999 ± 25 Ma and include a 1888 age peak, three 
grains (~1%) from 2145 ± 26 Ma to 2391 ± 25 Ma, 60 grains 
(~23%) from 2474 ± 78 Ma to 3194 ± 24 Ma, and two (<1%) 
3310 ± 23 Ma to 3675 ± 18 Ma grains (MS2019-14 in fig. 5). 
Quartz sandstone along Humber Arm yields a 552 ± 8 Ma 
grain (<1%), 45 grains (~23%) from 970 ± 10 Ma to 1195 ± 
35 Ma and comprise a 1045 Ma age peak, 79 grains (~40%) 
that range from 1249 ± 20 Ma to 2021 ± 61 Ma and in-
clude a 1884 age peak, six grains (~3%) from 2145 ± 35 Ma 
to 2361 ± 38 Ma, 64 grains (~33%) that range from 2526 ± 
28 Ma to 3079 ± 68 Ma and include a 2723 Ma age peak, 
and one (<1%) 3816 ± 34 Ma grain (MS2019-01 in fig. 5). 
Four Ediacaran detrital zircon grains have εHf(t) values of 
-0.6 to +4.2 (  = +1.2). Tonian to Stenian, Orosirian, and 
Neoarchean age peaks that make up most Irishtown Forma-
tion samples have εHf(t) values of -4.5 to +9.6 (  = +1.3), 
-24.6 to +9.6 (  = -6.2), and -10.7 to +3.4 (  = -1.2), respec-
tively. 

5. INTERPRETATION 
5.1. MDA ESTIMATES AND TIMING OF EDIACARAN-
CAMBRIAN DEPOSITION ALONG THE HUMBER MARGIN 

5.1.1. LABRADOR GROUP 

Bradore Formation sandstones above the basement-cover 
unconformity in western Newfoundland yield Tonian (970 ± 
7 Ma, 971 ± 5 Ma) MDA estimates that are ca. 450 Myr older 
than the depositional ages proposed for the unit based on 
marine ichnofacies (Hiscott et al., 1984; Long & Yip, 2009; 
Pemberton & Kobluk, 1978) and correlations with lower 
Olenellus biozone units in the U.S. Appalachians (Landing, 
2012; Landing & Bartowski, 1996), respectively (table 1). 
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We therefore interpret that our Bradore Formation samples 
were deposited between 970 Ma and 509 Ma based on the 
MDA calculations and Cambrian Series 2 fossils in overlying 
strata of the Forteau Formation (e.g., Skovsted et al., 2017). 
In this interpretation, the MDA estimates are much older 
than the true depositional age and indicate Ediacaran to 
early Cambrian erosion of underlying or adjacent crys-
talline rocks during extensional deformation and filling of 
local structural basins (e.g., Bostock et al., 1983). The age 
range of the Bradore Formation is relevant because some 
plate tectonic models have proposed that the switch from 
syn-rift to passive margin deposition is recorded by the 
unconformity at the base of the Bradore Formation (Ca-
wood et al., 2001) or a speculative unconformity somewhere 
within the Bradore Formation (Allen et al., 2010; Williams 
& Hiscott, 1987) that would potentially divide the unit into 
lower and upper successions of different ages. If the latter 
model is correct, one solution is that a lower, unfossilifer-
ous succession sampled herein comprises an unconformity-
bounded unit of pre-Cambrian Series 2 strata, whereas an 
upper succession consists of Cambrian Series 2 (~519–509 
Ma) strata with marine ichnofauna and ties to Olenellus bio-
zone units elsewhere in the Appalachians. The current out-
crop exposure of the potential lower succession in western 
Newfoundland is uncertain, but we predict it is of mappable 
extent and at least several tens of meters thick. We pro-
pose that targeted field and sediment provenance studies 
are necessary to fully examine these relationships and in-
terpret the physical stratigraphy and tectonic significance 
of lower Bradore Formation rocks. 

Carbonate and siliciclastic rocks of Forteau Formation 
are entirely within the Bonnia-Olenellus biozone and argue 
for the transition to passive margin deposition by the late 
early Cambrian (James et al., 1989; Lavoie et al., 2003) or 
Stage 4 of Cambrian Series 2 (~514 Ma, Knight et al., 2017). 
In combination with the storm-dominated shoreline de-
posits of the upper Bradore Formation, the lower and mid-
dle units of the Forteau Formation were deposited as parts 
of eastward-deepening, shelf-to-basin succession during 
eustatic sea-level rise and development of a transgressive 
systems tract that resulted in a maximum flooding surface 
and highstand system tract (Sauk I subsequence, Knight 
et al., 2017). Hawke Bay Formation shoreface to shelf de-
posits that conformably overlie the Forteau Formation yield 
Ediacaran (562 ± 9 Ma, 567 ± 44 Ma) MDA estimates and 
are ca. 50 Myr older than the Cambrian Series 2 (Stage 4) 
to early Miaolingian (Wuliuan) fossil ages proposed for the 
unit (table 1). Hawke Bay Formation strata are generally 
linked to regression and a sea-level lowstand near the 
boundaries of the Sauk I and Sauk II subsequences (e.g., A. 
R. Palmer & James, 1980), however, Landing et al. (2024) 
proposed that these rocks may comprise siliciclastic bypass 
shelf or highstand system tract deposits. Regardless, our 
results indicate that quartz-rich strata of the Hawke Bay 
Formation yield Ediacaran to Archean detrital zircon grains 
that are older than the time of sediment accumulation, 
which is consistent with continent-scale drainage and sed-
iment recycling along the Humber margin by 514–505 Ma 
(cf., Cawood et al., 2012). Hawke Bay Formation strata are 

overlain by upper Cambrian carbonate shoals and tidal flat 
strata that formed northeast-trending facies belts and 
deepened towards the southeast (James et al., 1989). 

5.1.2. CURLING GROUP 

Feldspathic and quartz sandstone from Oldhamia- and 
acritarch-bearing successions of the Blow Me Down Brook 
Formation that overlie mafic volcanic rocks in the Bay of Is-
lands (Burden et al., 2005; Gillis & Burden, 2006; Lindholm 
& Casey, 1990; S. E. Palmer et al., 2001) yield Ediacaran 
(586 ± 21 Ma) and Stenian (1002 ± 15 Ma) MDA estimates, 
respectively (table 1). Micaceous feldspathic sandstone 
from an Oldhamia-bearing succession in the Bonne Bay 
area (Lindholm & Casey, 1990) yields a Tonian (902 ± 11 
Ma) MDA estimate (table 1). Herbosch and Verniers (2011) 
conducted a global review of Oldhamia occurrences. They 
hypothesized that Blow Me Down Brook Formation ichno-
fauna are consistent with Cambrian Series 2 (Stage 4) to 
early Miaolingian depositional ages but acknowledged that 
these age assignments were influenced by proposed corre-
lations with the Forteau and Hawke Bay formations of the 
Labrador Group. Acritarchs in the Blow Me Down Brook 
Formation (Skiagia, Comosphaeridium, Annulum squa-
maceum, Fimbriaglomerella membrancea, and others; Bur-
den et al., 2001; S. E. Palmer et al., 2001) instead suggest 
late Terreneuvian to Cambrian Series 2 (Stage 4) depo-
sitional ages for the unit using the reference frames of 
Moczydłowska (1991) and Moczydłowska and Zang (2006), 
but these microfossils could be recycled and overestimate 
the true depositional age. Our Blow Me Down Brook For-
mation samples, likely collected from the upper parts of 
the unit, were therefore deposited between ca. 529 Ma and 
504 Ma based on the available late Terreneuvian to early 
Miaolingian fossil constraints. In this interpretation, the 
MDA estimates are much older than the time of sediment 
accumulation and indicate early Cambrian erosion of Edi-
acaran and older igneous rocks or their supracrustal deriv-
atives (cf., Cawood et al., 2012). However, basal turbidite 
units of the Blow Me Down Brook Formation are interbed-
ded with mafic lavas correlative with ca. 551 Ma Skinner 
Cove Formation volcanic rocks (see Cawood et al., 2001). 
The Blow Me Down Brook Formation may therefore contain 
an unrecognized unconformity that separates a lower suc-
cession with ca. 551 Ma mafic volcanic and siliciclastic 
rocks from an upper succession of lower Cambrian silici-
clastic rocks. Palmer et al. (2001) recognized such a poten-
tial lower succession in the Bay of Islands region that is of 
mappable extent and at least several tens of meters thick. 

Quartz sandstone units of the Summerside Formation 
yield Ediacaran (595 ± 10 Ma) and Tonian (889 ± 19 Ma) 
MDA estimates (table 1). Palmer et al. (2001) reported that 
large, granular sphaeromorph acritarchs in these succes-
sions are consistent with late Precambrian depositional 
ages, but also noted that the microfossils may have been re-
cycled into Curling Group strata during the early Cambrian. 
For example, overlying Irishtown Formation quartz sand-
stone units with Ediacaran (556 ± 12 Ma, 574 ± 10 Ma) MDA 
estimates (table 1) also contain these large sphaeromorph 
acritarchs and yield the late Terreneuvian to Cambrian Se-
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ries 2 (pre-Bonnia-Olenellus biozone; Moczydłowska & 
Zang, 2006) microfossils Annulum squamaceum and Fim-
briaglomerella membrancea(?) that are recognized in the 
Blow Me Down Brook Formation. We interpret that the Edi-
acaran and Tonian MDA estimates for the Summerside and 
Irishtown Formations are older than the true depositional 
ages of the rock units, and based on published lithostrati-
graphic correlations with the upper Labrador Group (e.g., 
Lavoie et al., 2003), are Cambrian Series 2 to early Miaolin-
gian in age. 

5.2. SEDIMENT PROVENANCE 

Ediacaran detrital zircon grains comprise 0–2% of our sam-
ples (<1% of dataset) and are sourced from rift-related ig-
neous rocks in the St. Lawrence promontory (fig. 1B; see 
compilation by Macdonald et al., 2023). For example, 566 
Ma and 586–579 Ma age groups in the Blow Me Down 
Brook, Summerside, Irishtown, and Hawke Bay formations 
are similar in age to the 564 Ma Birchy complex schist 
in the Baie Verte Peninsula (van Staal et al., 2013) and 
565 Ma Sept Îles intrusion (Higgins & van Breemen, 1998) 
and 583 Ma Baie des Moutons complex (McCausland et 
al., 2011) in the Quebec Appalachians. Other Ediacaran 
age fractions in our samples overlap in uncertainty with 
551 Ma Skinner Cove Formation volcanic rocks (Cawood 
et al., 2001), 555 Ma Lady Slipper tonalite (Cawood et al., 
1996), and ca. 607 Ma Hare Hill granite and Disappointment 
Hill tonalite (Hodgin et al., 2021) in SW Newfoundland, 
581–576 Ma Blair River dikes in Cape Breton Island (Miller 
& Barr, 2004), and 615 Ma Long Range dikes in NW New-
foundland and Labrador (Kamo et al., 1989). Ediacaran de-
trital zircon grains accordingly have chondritic to super-
chondritic Hf isotope compositions that are consistent with 
igneous rocks sourced from the partial melting of meta-
somatized lithospheric mantle during extension or conta-
mination of asthenospheric mantle-derived magmas with 
Proterozoic crust (e.g., Miller & Barr, 2004; Volkert et al., 
2015). With the exception of the Bradore Formation sam-
ples underlain by crystalline basement, each of the units 
reported herein show Ediacaran contributions and six of 
the nine samples yield 595–556 Ma MDA estimates, which 
together demonstrates contributions from rift-related ig-
neous rocks or their recycled derivatives. However, the low 
magnitude of Ediacaran grains in individual samples is 
probably the result of low zircon yield from mafic source 
rocks or much higher fertility of polycyclic, Tonian and 
older detrital zircon grains in the sedimentary system (cf., 
Cawood et al., 2012). Quartz-rich deposits of the Hawke Bay 
and Irishtown formations have the highest percentages of 
Ediacaran grains in the sample suite and indicate that Cam-
brian Series 2 to early Miaolingian sea level changes, re-
cycling processes, and sediment transport delivered well-
sorted sediment to both shoreface and submarine fan 
environments. 

Early Neoproterozoic and Mesoproterozoic detrital zir-
con grains represent 1–12% (6% of dataset) and 29–91% of 
our samples (59% of dataset), respectively, and mostly in-
dicate provenance from the eastern Grenville orogen (fig. 
6; cf., Cawood & Nemchin, 2001). Our samples are char-

acterized by 1110–970 Ma age peaks and ca. 1600–920 Ma 
age fractions that correspond with arc magmatism and ac-
cretionary events of the Labradorian (1680–1600 Ma), Pin-
warian (1500–1450 Ma), Elzevirian (1250–1190 Ma), and 
Grenvillian (1190–980 Ma) orogenies and post-Grenvillian 
extension in western Newfoundland, southern Labrador, 
and Quebec (see Rivers, 1997; Whitmeyer & Karlstrom, 
2007). For example, Bradore Formation sandstone above 
the basement unconformity in the Bonne Bay area has a 
1033 Ma age peak (sample 2019-12, fig. 4) that reflects de-
rivation from the 1032 Ma Lomond River granite at the 
southern end of the Long Range Inlier (fig. 2), which else-
where in the Great Northern Peninsula comprises ca. 
1630–980 Ma igneous and metaigneous rocks (Heaman et 
al., 2002). Indian Head Range granitoids that similarly un-
derlie Bradore Formation strata in SW Newfoundland yield 
zircon U-Pb ages of 1140–1135 Ma and have 1540–1240 
Ma inheritance (Hodgin et al., 2021). Blow Me Down Brook 
and Summerside Formation rocks locally contain potassium 
feldspar, muscovite, and garnet grains along with 
1030–1012 Ma detrital zircon age peaks and 1650–970 Ma 
age fractions and therefore also demonstrate that Humber 
Arm allochthon strata had local sources from the eastern 
Grenville Province. Early Tonian (ca. 950 Ma) age fractions 
may indicate volcanic rock sources in the Baie Verte Penin-
sula (Strowbridge et al., 2022), but otherwise correspond 
with post-Grenvillian magmatism in southern Labrador (ca. 
955 Ma: Heaman et al., 2002). Mid-Tonian (ca. 920–830 Ma) 
detrital zircon grains are minor constituents in our sam-
ples and may be ultimately sourced from ca. 920–840 Ma 
mafic to felsic intrusive rocks in Scotland and Ireland or re-
cycled through upper Neoproterozoic strata in NE Lauren-
tia (e.g., Cawood, Nemchin, Strachan, et al., 2007; Olierook 
et al., 2020). These ca. 920-840 Ma igneous rocks were lo-
cated near SE Greenland prior to the opening of the North 
Atlantic Ocean and generally indicate south to southwest-
directed transport of Tonian detrital zircon grains during 
Neoproterozoic to early Cambrian time. 

Paleoproterozoic detrital zircon ages comprise 0–33% of 
our samples (17% of dataset) and are interpreted to have 
provenance from igneous rocks associated with the Trans-
Hudson, New Quebec, Torngat, and other orogens that 
record the ca. 2000–1800 Ma collision of Archean cratons 
(fig. 6, e.g., Hoffman, 1988; Whitmeyer & Karlstrom, 2007). 
For example, several of our samples yield ca. 1900–1800 Ma 
age peaks that correspond to Aillik Group felsic volcanic 
rocks and Island Harbour Bay granitoids of the Makkovik 
Province in SE Labrador (e.g., LaFlamme et al., 2013). The 
subchondritic to superchondritic Hf isotope compositions 
of Stenian to Calymmian detrital zircon grains indicate 
contributions from depleted mantle and reworked Paleo-
proterozoic crust (e.g., Olierook et al., 2020), whereas 
Statherian to Orosirian detrital zircon grains have more 
negative εHf(t) excursions and indicate reworking of 
Archean crust (e.g., LaFlamme et al., 2013). Paleoprotero-
zoic detrital zircon grains are likely polycyclic and recycled 
through post-Grenville strata during the multi-stage 
breakup of Rodinia (e.g., Cawood, Nemchin, Strachan, et 
al., 2007). 
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Figure 6. Precambrian basement domains of the      
Laurentian craton in North America and Irish and         
British Isles modified from Ross and Villeneuve        (2003),  
Cawood, Nemchin, Strachan, Prave and Krabbendam       
(2007), Piercey and Colpron     (2009), and White and     
Waldron  (2022). UK – United Kingdom.      

Archean detrital zircon ages make up 0–30% of our sam-
ples (17% of dataset) and demonstrate provenance from 
the Superior and North Atlantic cratons in eastern Canada 
and southern Greenland, respectively (fig. 6, e.g., Hoffman, 
1988). The most proximal sources of Neoarchean to 
Mesoarchean detrital zircon age fractions in our samples, 
which result in ca. 2800–2700 Ma age peaks, may be derived 
from metaigneous rocks in the Nain Province or North At-
lantic craton of Labrador (e.g., Dunkley et al., 2020) that 
yield subchondritic to superchondritic Hf isotope composi-
tions (e.g., Wasilewski et al., 2021) like those documented 
in Labrador and Curling group strata. The U-Pb ages and 
subchondritic to chondritic Hf isotope compositions of Pa-
leo- to Eoarchean (ca. 3300–3800 Ma) detrital zircon grains 
in the Hawke Bay and Irishtown formations overlap with 
those from North Atlantic craton gneiss units in Labrador 
(Wasilewski et al., 2021) and SW Greenland (Kemp et al., 
2019). Archean detrital zircon grains in our samples were 
likely recycled through Proterozoic strata that have prove-
nance from underlying crystalline basement or sedimentary 
sequences in the Grenville foreland (e.g., Cawood, Nem-
chin, Strachan, et al., 2007). 

5.3. TESTING STRATIGRAPHIC CORRELATIONS WITH 
DETRITAL ZIRCON STATISTICAL ASSESSMENTS 

Fossil and other geological constraints have been used to 
argue stratigraphic continuity between Labrador Group, 
Curling Group, and Fleur de Lys Supergroup rocks in west-
ern Newfoundland, and, more broadly, connections with 

the Neoproterozoic to lower Paleozoic platform-slope sys-
tem of eastern Laurentia (fig. 3, e.g., James et al., 1989; 
Lavoie et al., 2003). Taconic and younger deformation 
events have disrupted original depositional relationships 
and therefore our new detrital zircon results provide an 
opportunity to examine proposed Ediacaran to Cambrian 
stratigraphic correlations with statistical assessments (Kol-
mogorov-Smirnov, Kuiper, Cross-correlation, Similarity, 
and Likeness test results in table S3). Herein we use the 
Kolmogorov-Smirnov (K-S) D statistic and multi-dimen-
sional scaling (MDS) to interpret stratigraphic connections. 
Although K-S dissimilarities are sensitive to sample size, 
corresponding MDS plots provide sensible configurations 
because most detrital studies rely on the relative differ-
ences between age distributions (Vermeesch, 2018). Other 
detrital zircon studies have effectively used the K-S test 
D statistic to resolve provenance connections for datasets 
with sample size differences (Beranek et al., 2023; McClel-
land et al., 2021, p. 2023). The K-S test D statistic is most 
sensitive about the median of the age distribution, which 
is preferred here so that small populations do not signif-
icantly influence pairwise comparisons (Sundell & Saylor, 
2017; Wissink et al., 2018). 

5.3.1. CORRELATIONS BETWEEN LOWER LABRADOR 
AND LOWER CURLING GROUP STRATA 

Pairwise comparisons of two Bradore Formation samples 
(MS2019-08, MS2019-12) yield U-Pb and U-Pb-Hf isotope 
K-S test D statistic values of 0.44 and 0.19, respectively 
(perfect overlap between two cumulative distribution func-
tions would return D values = 0, no overlap would return 
D values = 1; Vermeesch, 2018). The U-Pb D statistic value 
of 0.44 results from our samples having distinct unimodal 
Mesoproterozoic age peaks that reflect differences in the 
crystallization ages of underlying basement rocks, whereas 
the U-Pb-Hf isotope D statistic value of 0.19 indicates less 
dissimilarity because both sandstone units were mostly de-
rived from similar Neoproterozoic to Mesoproterozoic 
crustal units of the eastern Grenville orogen. The Bradore 
Formation samples are correspondingly far apart in the U-
Pb MDS plot (fig. 7A), but close neighbors in the U-Pb-
Hf isotope MDS plot (fig. 7B). Bradore Formation strata 
filled local basins (Bostock et al., 1983), and therefore the 
two samples could be time-equivalent, but not have strati-
graphic continuity. 

Pairwise comparisons of two Summerside Formation 
turbiditic sandstones (MS2019-05, MS2019-06) yield U-Pb 
and U-Pb-Hf isotope K-S test D statistic values of 0.10 
and 0.13, respectively. These results support the hypothesis 
that turbidity current processes result in well-mixed de-
posits (DeGraaff-Surpless et al., 2003) which are not sta-
tistically different in detrital zircon U-Pb-Hf isotope space 
(figs. 7A, 7B). Pairwise comparisons of three Blow Me Down 
Brook Formation debris flow sandstones (MS2019-04, 
MS2019-15, 30LB16) yield slightly greater U-Pb and U-Pb-
Hf isotope K-S test D statistic values of 0.12 to 0.23 and 
0.11 to 0.33, respectively (figs. 7A, 7B). Stratigraphic cor-
relations proposed for the Summerside and Blow Me Down 
Brook formations (fig. 3, Lavoie et al., 2003 and references 
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Figure 7. Multidimensional scaling plots of (A) detrital       
zircon U–Pb age results and (B) detrital zircon U-Pb-Hf          
isotope results of Labrador and Curling group samples         
(this study) and published Fleur de Lys Supergroup         
samples (mica schist and Flatwater Pond Group clast         
from  Willner et al.  ,  2014  and Flat Point Formation     
from  van Staal et al.   ,  2013) using the K-S D-statistic      
(see text for information). The distance between any         
two samples in MDS space approximates their        
statistical dissimilarity, with two samples that cluster        
together having lower statistical dissimilarity and       
those that are far apart having greater statistical         
dissimilarity. Perfect overlap between two cumulative       
distribution functions would return K-S test D values =          
0, no overlap would return K-S test D values = 1;            
(Vermeesch,  2018). Solid black lines and dotted gray        
lines are closest and second-closest statistical       
neighbors, respectively, and determined during      
pairwise comparisons. The calculated stress value of        
0.10 in figure 7A indicates a “fair” goodness of fit (see            
Vermeesch,  2013). BMDB - Blow Me Down Brook, FdL -          
Fleur de Lys, Fm. - Formation, Gp. - Group.          

therein) are supported by the low (0.10 to 0.20) U-Pb K-S 
test D statistic values and grouping of the five samples in 

figure 7A. We interpret that the greater U-Pb-Hf isotope K-
S test D statistic values (0.18 to 0.31) between the five sam-
ples and distinct sample-grouping in figure 7B results from 
the poorly mixed nature of Blow Me Down Brook Formation 
debris flow strata. If the proposed stratigraphic correlations 
between lower Curling Group strata are correct, the Blow 
Me Down Brook and Summerside formations were sourced 
from basement-involved fault scarps or resulted from sedi-
ment bypass that delivered variably mixed sediment to the 
distal parts of the Humber margin. Proposed stratigraphic 
correlations between the Blow Me Down Brook, Summer-
side, and Bradore formations (Lavoie et al., 2003) are not 
evident from our U-Pb and U-Pb-Hf isotope K-S test D sta-
tistic values of 0.45 to 0.65 and 0.47 to 0.62, respectively, 
and corresponding distances shown in figures 7A and 7B. 
However, based our interpretations for the Bradore Forma-
tion herein, the results do not preclude time equivalence 
between basal units of the Labrador and Curling groups in 
SW Newfoundland. 

5.3.2. CORRELATIONS BETWEEN UPPER LABRADOR AND 
UPPER CURLING GROUP STRATA 

Pairwise comparisons between two Hawke Bay Formation 
shoreface sandstones (31LB16, MS2019-10) yield U-Pb and 
U-Pb-Hf isotope K-S test D statistic values of 0.18 and 
0.12, respectively, and correspondingly have close proxim-
ity to each other in figures 7A and 7B. Pairwise compar-
isons between these Hawke Bay Formation samples and 
an Irishtown Formation turbiditic sandstone (MS2019-01) 
similarly yield low U-Pb and U-Pb-Hf isotope K-S test D 
statistic values of 0.08 and 0.15 to 0.17, respectively (figs. 
7A, 7B). An Irishtown Formation sandstone (MS2019-14) 
that is part of a debris flow succession likewise yields low 
U-Pb and U-Pb-Hf isotope K-S test D statistic values of 
0.16 and 0.19 and 0.09 and 0.18, respectively, when com-
pared with the two Hawke Bay Formation samples. To-
gether these data provide statistical evidence that supports 
the proposed stratigraphic correlations (e.g., Lavoie et al., 
2003) between quartz-rich strata of the upper Labrador and 
Curling groups. It is also notable that this debris flow sam-
ple (MS2019-14) has proximity and close-neighbor rela-
tionships with other Curling Group units in U-Pb and U-
Pb-Hf isotope space (figs. 7A, 7B), which is consistent with 
predicted correlations or interfingering (e.g., Lavoie et al., 
2003) between parts of the Blow Me Down Brook, Summer-
side, and Irishtown formations. 

5.3.3. CORRELATIONS WITH FLEUR DE LYS SUPERGROUP 
STRATA 

The Flat Point Formation psammite of van Staal et al. 
(2013) that overlies ca. 564–556 Ma rocks of the Birchy 
complex plots near MS2019-05 and MS2019-06 in U-Pb 
space and correspondingly yields U-Pb K-S test D statistic 
values of 0.13 and 0.14 when compared to the Summerside 
Formation samples, whereas the Fleur de Lys Supergroup 
mica schist of Willner et al. (2014) has apparent statistical 
ties with our Bradore Formation samples in U-Pb space (fig. 
7A). A boulder of Fleur de Lys Supergroup sandstone in an 
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Ordovician conglomerate (Willner et al., 2014) similarly has 
proximity to our Summerside Formation samples in U-Pb 
space and yields U-Pb K-S test D statistic values of 0.16 and 
0.20 when compared to MS2019-05 and MS2019-06 (fig. 
7A). However, this sandstone boulder sample plots in U-
Pb-Hf isotope space near MS2019-04 of the Blow Me Down 
Brook Formation (D statistic value of 0.24) and is more dis-
tanced from our samples of the Summerside and Bradore 
formations in figure 7B. Our working hypothesis is that 
these Fleur de Lys Supergroup rocks were correlative with 
parts of the lower Curling Group, including Summerside 
and Blow Me Down Brook strata known or inferred to over-
lie rift-related volcanic rocks and Grenville Province crust 
(e.g., Cawood & van Gool, 1998; Williams & Cawood, 1989). 
For example, Blow Me Down Brook Formation strata that 
overlie pillowed and massive lavas in the Bay of Islands may 
be correlative with Flat Point Formation units that cover 
the Birchy complex in the Baie Verte Peninsula. 

6. DISCUSSION 
6.1. LATE EDIACARAN TO EARLY CAMBRIAN 
ESTABLISHMENT OF THE EASTERN LAURENTIAN 
MARGIN 

The tectonic setting and paleogeographic significance of 
Humber margin strata have long been debated in the liter-
ature, which has fueled controversies for the Ediacaran to 
Cambrian evolution of eastern Laurentia. Most studies in-
terpret the Humber margin in Newfoundland to have faced 
the Humber Seaway and outboard Dashwoods microconti-
nent, and not the Iapetus Ocean, but the details of these 
published scenarios vary (e.g., Cawood et al., 2001; Hodgin 
et al., 2022; Macdonald et al., 2014; Robert et al., 2021; 
Waldron & van Staal, 2001). For example, the two-phase 
rift model of Cawood et al. (2001) called for coeval, early 
Cambrian seafloor spreading in both the Humber Seaway 
and Iapetus Ocean, whereas Robert et al. (2021) favoured 
a single mid-ocean ridge system in west Iapetus between 
Dashwoods and outboard Western Sierras Pampeanas and/
or Arequipa-Pampia-Antofalla terranes. van Staal et al. 
(2013), Chew and van Staal (2014), and van Staal and Dewey 
(2023) used the available data to propose a magma-poor rift 
setting for the eastern Laurentian margin system in Scot-
land, Ireland, Atlantic Canada, and eastern United States, 
and specifically predicted that Birchy complex rocks in 
western Newfoundland comprise parts of an ancient ocean-
continent transition zone akin to those documented along 
the west Iberian margin and in the Alps. The Humber mar-
gin in this magma-poor rift scenario was established after 
hyperextension along the west side of the Dashwoods mi-
crocontinent, which was interpreted by van Staal et al. 
(2013) to have initiated as a hanging-wall block (or H-block, 
see Péron-Pinvidic & Manatschal, 2010), and bounded by 
detachment faults which exhumed continental mantle to 
the surface. Humber margin strata in the model of van Staal 
et al. (2013) were deposited following the Cambrian Series 
2 onset of thermal subsidence, ~20–30 Myr after hyper-
extension and the late Ediacaran rift-related magmatism 
in the Canadian Appalachians. An unexplored element of 

van Staal et al. (2013)'s hypothesis is that some magma-
poor margins are established by a two-step process with 
crustal breakup before mantle breakup (e.g., Huismans & 
Beaumont, 2011, 2014) and stratigraphic studies have ac-
cordingly recognized crustal and mantle breakup sequences 
in basins that record the transition between the timing of 
rupture and onset of thermal subsidence (Alves & Cunha, 
2018; Chao et al., 2023; Soares et al., 2012, 2014). In com-
bination with the new depositional age, sediment prove-
nance, and stratigraphic interpretations reported herein, 
we use modern magma-poor rift analogues to propose that 
the Labrador and Curling groups comprise parts of crustal 
and mantle breakup sequences deposited along eastern 
Laurentia. 

6.1.1. LATE EDIACARAN CRUSTAL BREAKUP IN WESTERN 
NEWFOUNDLAND 

The crustal breakup phase in the Newfoundland (SE Grand 
Banks)-west Iberia magma-poor rift system, which we use 
as a modern analogue for late Ediacaran to early Cambrian 
evolution of the Humber margin (fig. 8A), was characterized 
by hyperextension or extreme thinning of the crust to <10 
km (e.g., thinning and exhumation phases of Peron-Pin-
vidic et al., 2013; Péron-Pinvidic & Manatschal, 2010) and 
bimodal magmatism along inherited, basement-involved 
faults in onshore (Peace et al., 2024) and offshore New-
foundland (Beranek et al., 2022; Hutter & Beranek, 2020; 
Johns-Buss et al., 2023) and onshore (Mata et al., 2015) and 
offshore Portugal (Pereira et al., 2017). Major faults at this 
stage of rift evolution were localized along the edges of H-
blocks and penetrated the mantle lithosphere (e.g., decou-
pled deformation of Sutra et al., 2013), eventually result-
ing in the exhumation of lower crust and mantle rocks. The 
tectonic erosion of H-blocks during the exhumation phase 
locally generated extensional allochthons, which are un-
rooted, thin (<5 km-thick) crustal slices underlain by major 
detachment systems in outboard areas floored by exhumed 
mantle (Péron-Pinvidic & Manatschal, 2010). Crustal 
breakup sequences span ~20 Myr in the Newfoundland-
west Iberia rift system and are mostly recognized by fluvial-
deltaic strata that were deposited during a forced regres-
sion in terrestrial and shallow-marine settings (fig. 8B), 
whereas correlative deep-water breakup sequences contain 
debris flow and turbiditic strata delivered to continental 
slope environments by sediment bypass processes (Alves & 
Cunha, 2018). 

We propose that late rift and crustal breakup processes 
in the Newfoundland sector of the eastern Laurentian rift 
system occurred between 570–550 Ma and resulted from 
hyperextension and crustal necking processes (fig. 8A, cf., 
Chew & van Staal, 2014; van Staal et al., 2013) best doc-
umented by Birchy complex and related ocean-continent 
transition zone rock units in the Baie Verte Peninsula. The 
tectonic erosion of Laurentian crust and development of 
an extensional allochthon in the Baie Verte area (Rattling 
Brook block of van Staal et al., 2013), which is basement to 
some Fleur de Lys Supergroup strata, is also consistent with 
late Ediacaran thinning and exhumation during crustal 
breakup. Bimodal magmatism coincident with late Edi-
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Figure 8. Schematic tectonic and stratigraphic development of the Humber margin in western Newfoundland. (A)              
Late Ediacaran to early Cambrian rift to crustal breakup phase in eastern Laurentia that featured stretching (blue                  
faults), necking and hyperextension (red faults), and exhumation of lower crust and continental mantle (green                
faults). This model follows the tectonic evolution of the Newfoundland (SE Grand Banks)-west Iberia conjugate                
margin system proposed by Péron-Pinvidic and Manatschal        (2010), Peron-Pinvidic et al.     (2013), and Sutra et al.      
(2013). (B) Late Jurassic to Early Cretaceous crustal breakup sequence in the Lusitanian basin, western Portugal,                 
proposed by Alves and Cunha      (2018). (C and D) Proposed late Ediacaran to early Cambrian crustal breakup             
sequences in autochthonous (lowermost Bradore Formation) and allochthonous (lowermost Summerside and Blow             
Me Down Brook formations) parts of the Humber margin in western Newfoundland. (E) Late Ediacaran to early                  
Cambrian mantle breakup to passive margin phase that featured the separation of the Dashwoods microcontinent                
from eastern Laurentia and opening of the Humber Seaway and west Iapetus Ocean. This model generally follows                  
the isolation of the Dashwoods microcontinent and exhumation of Birchy complex rock units proposed by van Staal                  
et al.   (2013). (F) Mid-Cretaceous mantle breakup sequence in the inner proximal Porto basin (west Iberia margin)                
proposed by Soares et al.      (2012). (G) Mid-Cretaceous mantle breakup sequence in the distal Newfoundland basin as             
proposed by Soares et al.      (2012)  using stratigraphic nomenclature from ODP Leg 210, site 1276          (Tucholke et al.  ,  
2004). (H and I) Proposed early Cambrian mantle breakup sequences in autochthonous (Bradore, Forteau, and                
Hawke Bay formations) and allochthonous (Summerside, Blow Me Down Brook, and Irishtown formations) parts of                
the Humber margin in western Newfoundland. Apt. - Aptian, Barr. - Barremian, Berr. - Berriasian, BMDB - Blow Me                    
Down Brook Formation, Cen. - Cenomanian, Haut. - Hauterivian, HST - highstand systems tract, LBS - lithospheric                  
breakup surface, LC - Lighthouse Cove Formation, MFS - maximum flooding surface, LST - lowstand systems tract,                  
TST - transgressive systems tract, SB - sequence boundary, Tith. - Tithonian, Tur. - Turonian, Val. - Valanginian.                   
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acaran crustal breakup processes, like that observed in the 
modern Newfoundland-west Iberia system, was focused 
near basement-involved transfer or transform faults. Iso-
static adjustment may have been a driving force for partial 
melting of subcontinental mantle rocks along these faults 
during crustal breakup. For example, igneous rocks as-
signed to the ca. 551 Ma Skinner Cove Formation and ca. 
555 Ma Lady Slipper pluton are exposed along the Serpen-
tine Lake and Bonne Bay transform faults (figs. 1B, 2B). Tib-
bit Hill Formation volcanic rocks, Lac Matapédia volcanic 
rocks, and Sept Îles complex rocks in mainland Atlantic 
Canada were also emplaced during the 570–550 Ma inter-
val along the Missisquoi, Saguenay-Montmorency, and Sept 
Îles transforms (fig. 1B), respectively. The stratigraphic 
components, thicknesses, and exact locations of the late 
Ediacaran crustal breakup sequences are not well con-
strained, but based on Newfoundland-west Iberia modern 
analogues it is feasible that basal, unfossiliferous strata as-
signed to the Bradore Formation in the Bonne Bay and In-
dian Head Range areas are late Ediacaran and deposited 
during a forced regression (fig. 8C). Potentially time-equiv-
alent rocks of the lowermost Blow Me Down Brook For-
mation that overlie and are interbedded with Ediacaran 
mafic volcanic units (Gillis & Burden, 2006; S. E. Palmer 
et al., 2001; Waldron et al., 2003) are also crustal breakup 
sequence candidates and deposited by sediment bypass 
processes in deep water settings (fig. 8D). Although spec-
ulative, we predict that Summerside Formation turbiditic 
strata are parts of a crustal breakup sequence based on de-
trital zircon statistical correlations with Flat Point Forma-
tion rocks that cover the Birchy complex (fig. 8D). The base 
of the Summerside Formation is not exposed and its depo-
sitional relationships with underlying crystalline basement, 
Ediacaran volcanic rocks, or other units are uncertain. We 
call for future studies to precisely date the eruption ages 
of Ediacaran volcanic rocks in the Humber Arm allochthon 
and conduct new mapping and physical stratigraphic stud-
ies of interbedded and overlying Curling group rocks to test 
our hypotheses and characterize the map extent and devel-
opment of this crustal breakup sequence. 

6.1.2. LATE EDIACARAN TO EARLY CAMBRIAN MANTLE 
BREAKUP IN WESTERN NEWFOUNDLAND 

The mantle breakup to passive margin phase in the New-
foundland-west Iberia rift system, which we use as a mod-
ern analogue for the early Cambrian evolution of the Hum-
ber margin (fig. 8E), was characterized by excess 
magmatism in outboard regions underlain by exhumed 
mantle and hyperextended crust (e.g., Bronner et al., 2011; 
Eddy et al., 2017), isostatic adjustment during stress release 
(e.g., Braun & Beaumont, 1989), and breakup-related depo-
sition that included regressive-transgressive cycles linked 
to regional uplift and relative sea level fall. Lithospheric 
breakup in the Newfoundland-west Iberia rift system oc-
curred ~20 Myr after first mantle exhumation, which im-
plies that full continental rupture is unrelated to the thin-
ning and exhumation phases of rift development 
(Péron-Pinvidic & Manatschal, 2010). Soares et al. (2012) 
showed that the mantle breakup sequence of western Por-

tugal has four units which from oldest to youngest repre-
sent a forced regressive systems tract, transgressive sys-
tems tract, highstand systems tract, and transgressive 
systems tract with aggradational patterns at the base that 
transition upwards into carbonate-rich passive margin de-
posits (fig. 8F). An unconformity or lithospheric breakup 
surface is located at the base of the forced regressive in-
terval in the inner proximal region underlain by thick crust 
(fig. 8F), but more distal regions of the Newfoundland mar-
gin show conformable contacts or diastems with strata re-
lated to mass wasting and sediment bypass (fig. 8G, Alves 
& Cunha, 2018; Soares et al., 2012). 

We propose that the mantle breakup to passive margin 
phase in western Newfoundland resulted from complete 
lithospheric rupture between eastern Laurentia and Dash-
woods. The precise timing of mantle breakup is uncertain, 
but it initiated after ca. 570–550 Ma exhumation of the 
Birchy complex. Lithospheric breakup in the modern New-
foundland-west Iberia rift system was diachronous and 
propagated from south to north, perhaps because of north-
ward decrease in magma budget (Bronner et al., 2011); it 
is possible that lithospheric breakup in the eastern Lau-
rentian rift system was also time-transgressive. Using the 
mantle breakup framework of Soares et al. (2012) and Alves 
and Cunha (2018), in combination with the established se-
quence stratigraphy of fossil-bearing units in the Labrador 
Group (e.g., Knight, 2013; Skovsted et al., 2017), we pro-
pose that: (1) lower to upper Bradore Formation strata are 
parts of a forced-regressive systems tract and the result 
of isostatic adjustment after mantle breakup; (2) upper 
Bradore Formation and lower Forteau Formation marginal-
marine to marine strata preserve a transgressive systems 
tract capped by a maximum flooding surface; and (3) upper 
Forteau Formation and Hawke Bay Formation strata com-
prise a highstand systems tract capped by a sequence 
boundary and overlain by Miaolingian and younger passive 
margin rocks of the Port au Port Group (fig. 8H). A com-
parable stratigraphic evolution is inferred for lower Cam-
brian rock units of the Humber Arm allochthon, including: 
(1) turbiditic to debris flow deposits that comprise most of 
the Summerside and Blow Me Down Brook formations; and 
(2) Irishtown Formation turbiditic strata that are capped by 
a sequence boundary and overlain by passive margin rocks 
of the Northern Head Group (fig. 8I). 

6.2. CORRELATIONS WITH LAURENTIAN RIFT SYSTEMS 
ALONG THE SOUTHERN CALEDONIAN-NORTHERN 
APPALACHIAN OROGENIC BELT AND TARGETS FOR 
FUTURE RESEARCH 

Crustal and mantle breakup events proposed in western 
Newfoundland were part of a continuum of Neoproterozoic 
to early Paleozoic rift processes that terminated with the 
establishment of the eastern Laurentian margin. Here we 
build on hypotheses for ancient magma-poor rift segments 
in the southern Caledonides and northern Appalachians to 
explore the tectonic significance of Ediacaran to Cambrian 
strata in eastern Laurentia and consider targets for future 
research. 
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6.2.1. SCOTLAND AND IRELAND 

Metasedimentary and metaigneous rocks of the Argyll and 
Southern Highland groups and their equivalents comprise 
the upper parts of the Dalradian Supergroup and record the 
Ediacaran to early Cambrian tectonic evolution of the Scot-
land and Ireland sectors of eastern Laurentia (e.g., Prave 
et al., 2023; Strachan & Holdsworth, 2000). The plate tec-
tonic setting and depositional ages of these rocks are gen-
erally constrained by: (1) 604 ± 7 Ma and 612 ± 19 Ma 
syn-depositional barite deposits associated with upper Ar-
gyll Group mafic volcanic rocks (Easdale subgroup, Moles & 
Selby, 2023); (2) 595 ± 4 Ma (Halliday et al., 1989) and 601 ± 
4 Ma (Dempster et al., 2002) zircon U-Pb ages for intrusive 
and tuffaceous units in the upper Argyll Group, respectively 
(e.g., Tayvallich volcanics); (3) correlation between some 
upper Argyll Group rocks and ca. 580 Ma Gaskiers diamic-
tites (e.g., Prave et al., 2009); (4) ca. 576 Ma detrital zircon 
grains in Southern Highland Group equivalents that were 
derived from underlying rift-related volcanic rocks (Asta 
spilites; Strachan et al., 2013); and (5) Cambrian Series 2 
siliciclastic and carbonate rocks of the uppermost South-
ern Highland Group and their equivalents that yield Ton-
ian to Mesoarchean detrital zircon grains consistent with 
provenance from crystalline basement units in Labrador 
and Greenland (Cawood et al., 2003; Cawood, Nemchin, & 
Strachan, 2007; Cawood, Nemchin, Strachan, et al., 2007; 
Strachan et al., 2013). 

Chew (2001) and Chew and van Staal (2014) concluded 
that upper Dalradian Supergroup successions contain 
ocean-continent transition zone rocks, including serpen-
tinized continental mantle blocks and syn-sedimentary 
melange, which developed during regional hyperextension. 
For example, the Ben Lui schist unit in the Argyll Group of 
Scotland contains detrital chromite, chromian magnetite, 
and fuchsite grains and serpentinite olistoliths sourced 
from exhumed mantle rocks (Chew, 2001). Ultramafic de-
tritus and serpentinite olistoliths are also embedded in 
graphitic pelites and spatially associated with mafic vol-
canic rocks of the Easdale subgroup (Chew, 2001) that are 
potentially correlative with ca. 612–600 Ma units in Scot-
land (Moles & Selby, 2023). Chew and van Staal (2014) 
proposed that these ocean-continent transition zone rocks 
were generated in a setting analogous to those of the Birchy 
complex in western Newfoundland, which based on our tec-
tonic model herein, calls for the Ben Lui schist and related 
mafic volcanic rocks in the Argyll Group (Easdale and Tay-
vallich subgroups) to indicate the onset of crustal breakup 
by 610-600 Ma and deposition of a crustal breakup se-
quence in the Irish and British Isles (fig. 9A). Hyperex-
tension and crustal breakup may have been connected to 
the outboard development of a Laurentian-affinity H-block 
(e.g., Tyrone Central Inlier in Ireland, Chew & van Staal, 
2014). Although speculative, we propose that a later vol-
canic event, identified by ca. 576 Ma detrital zircon grains 
and mafic lavas in the upper Southern Highland Group 
and equivalents (Loch Avich Lavas Formation, Fettes et 
al., 2011; Asta spilites, Strachan et al., 2013), approximate 
the onset of mantle breakup (fig. 9A). In this scenario, 

full lithospheric rupture was magma-assisted and occurred 
~20 Myr after first mantle exhumation, like that proposed 
for the modern Newfoundland-Iberia rift system. It follows 
that Ediacaran to Cambrian Series 2 strata of the upper 
Southern Highland Group and its equivalents comprise a 
mantle breakup sequence (fig. 9A). We predict that the old-
est parts of the Scotland-Ireland mantle breakup sequence 
were deposited during late Ediacaran crustal breakup 
processes in western Newfoundland (fig. 9B), which implies 
southward propagation of the eastern Laurentian rift sys-
tem. 

Future studies that constrain the depositional age, 
high-n detrital zircon provenance, and regressive-trans-
gressive depositional cyclicity of upper Dalradian Super-
group strata are warranted to test our hypotheses. Potential 
candidates within the proposed mantle breakup sequence 
in Scotland include the Ardveck Group (upper Southern 
Highland Group equivalents) that were predicted by Ca-
wood, Nemchin, & Strachan, 2007 to be correlative with 
the Bradore, Forteau, and Hawke Bay formations in western 
Newfoundland (figs. 9A, 9B). Ardveck Group strata sit un-
conformably on Precambrian rocks and are overlain by car-
bonate units of the Durness Group that are equivalent to 
passive margin units of the Port au Port Group (fig. 9A, Ca-
wood, Nemchin, & Strachan, 2007). 

6.2.2. NORTHEASTERN UNITED STATES AND 
SOUTHEASTERN CANADA 

The eastern Laurentian rift system in the Quebec, Vermont, 
and Massachusetts Appalachians includes metasedimen-
tary and metaigneous rocks that are exposed within struc-
tural inliers and windows. Eastern Laurentian rift evolution 
in these autochthonous and allochthonous successions is 
generally defined by: (1) ca. 570–555 Ma bimodal volcanic 
rocks (e.g., Tibbit Hill and Pinney Hollow formations; 
Hodych & Cox, 2007; Kumarapeli et al., 1989); (2) upper 
Ediacaran to Cambrian Series 2 sandstone, conglomerate, 
and shale units that overlie or are interlayered with vol-
canic rocks and locally overlie Grenville Province crys-
talline basement (e.g., Shickshock, St-Roch, Caldwell, and 
Oak Hill groups and Hoosac, Dalton, and Pinnacle forma-
tions; Allen et al., 2010; Landing, 2012; Pinet et al., 1996); 
and (3) Cambrian Series 2 and younger carbonate and sili-
ciclastic rocks that indicate a transition to passive margin 
deposition (e.g., Forestdale and Cheshire formations; e.g., 
Landing, 2012; Macdonald et al., 2014). 

Allochthonous Laurentian margin successions, including 
metasedimentary units assigned to the Rowe belt in New 
England and Pennington Sheet in Quebec, contain lenses of 
ultramafic rocks interpreted as segments of an ocean-con-
tinent transition zone (Chew & van Staal, 2014; Macdonald 
et al., 2014). Ultramafic lenses in the Rowe belt are exposed 
within metasedimentary units correlative with the ca. 571 
Ma Pinney Hollow Formation, which indicates late Edi-
acaran mantle exhumation processes in New England were 
broadly equivalent to those in Newfoundland (fig. 9C, e.g., 
Karabinos et al., 2017; Macdonald et al., 2014). We interpret 
the available data to indicate that ca. 570–555 Ma igneous 
rocks and ultramafic-bearing metasedimentary successions 
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Figure 9. Proposed timing and correlation of late Ediacaran to early Cambrian breakup phases, breakup              
sequences, and related tectonic events along the eastern Laurentian margin system in the (A) Scottish and Irish                  
Caledonides, (B) western Newfoundland Appalachians, and (C) southeast Canadian and northeast U.S.             
Appalachians. See text for supporting information and discussion of specific rock units shown. Cryo. -                
Cryogenian, DF - Dalton Formation, DZ - detrital zircon grains, FP - Flat Point Formation, Gp. - Group, GD -                     
Grenville dikes in southeastern Canada and northeastern U.S., Ord. - Ordovician, lLG/lCG - lowermost Labrador                
and Curling groups, LG/CG - Labrador and Curling groups, SC - Skinner Cove Formation, SGp. - Supergroup, TP -                    
Transition period that occurs between mantle breakup and thermal subsidence.           

in this region were generated during crustal breakup and 
hyperextension. As with the tectonic models for Scotland-
Ireland and Newfoundland proposed herein, late Ediacaran 
crustal breakup in southern Quebec, Vermont, and Mass-
achusetts may have been linked with the rifting of a Lau-
rentian-affinity H-block (Rowe block or Chain Lakes block; 
Karabinos et al., 2017; Macdonald et al., 2014). The crustal 
breakup sequence would include Pinnacle, Pinney Hollow, 
and ultramafic-bearing Rowe belt units in New England and 
equivalent units in Quebec that are interbedded and overlie 
Ediacaran volcanic rocks (fig. 9C); such units could be the 
targets of future bedrock mapping and multi-proxy sedi-
ment provenance studies that aim to precisely constrain the 
chronology of crustal breakup. The age of mantle breakup 
is uncertain, but recycled 536 ± 27, 537 ± 21, and 540 ± 
24 Ma detrital zircon grains in lower Paleozoic strata of 
the Laurentian autochthon and Taconic allochthons in New 
England (all ages reported at 2 , Macdonald et al., 2014) 
may constrain the timing of late Ediacaran to early Cam-
brian magma-assisted lithospheric rupture that occurred 
~10–30 Myr after hyperextension and mantle exhumation 
(fig. 9C). Based on established stratigraphic correlations 
along the eastern Laurentian margin (e.g., Landing, 2012; 
Lavoie et al., 2003), we predict that lower Cambrian rocks 
that record the transition to passive margin deposition in 
Quebec (e.g., Oak Hill Group strata) and New England (e.g., 
Dalton, Cheshire, and other formations) comprise mantle 

breakup sequences and contain regressive-transgressive 
depositional cycles comparable to those for the Bradore, 
Forteau, and Hawke Bay formations in western Newfound-
land (fig. 9C). 

7. CONCLUSIONS 

Labrador and Curling group strata in western Newfound-
land constrain the establishment of the Humber passive 
margin along eastern Laurentia. Upper Ediacaran to Cam-
brian Series 2 sandstone units of the lower Labrador and 
Curling groups, including terrestrial to deep-marine strata 
that overlie crystalline rocks and rift-related lavas, have im-
mature detrital mineral constituents (e.g., feldspar, mus-
covite, garnet) and ca. 1000–1500 Ma detrital zircon age 
fractions which indicate local provenance from eastern 
Grenville Province basement. Deep-marine units of the 
lowermost Curling Group are probably correlative with 
metasedimentary rocks (Fleur de Lys Supergroup) that 
overlie ultramafic units within an ocean-continent transi-
tion zone. Using modern analogues from the Newfound-
land-west Iberian rift system in the North Atlantic Ocean, 
upper Ediacaran to Cambrian Series 2 strata comprise parts 
of a crustal breakup sequence that was deposited in re-
sponse to 570–550 Ma hyperextension along the eastern 
Laurentian margin. Crustal breakup was associated with 
the development of major detachment faults at the edges 
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of the Dashwoods H-block, which eventually resulted in 
the exhumation of continental mantle. Late Ediacaran to 
early Cambrian breakup of mantle lithosphere was associ-
ated with the separation of Dashwoods from eastern Lau-
rentia and ultra-slow spreading in the Humber Seaway mar-
ginal ocean basin. Lithospheric rupture was followed by the 
deposition of a mantle breakup sequence, including Cam-
brian Series 2 to Miaolingian sandstones of the lower to 
upper Labrador and Curling groups, that yield 556–586 Ma 
and 1000–2700 Ma detrital zircon grains and indicate de-
rivation from Proterozoic igneous and sedimentary rocks. 
The mantle breakup sequence from oldest to youngest com-
prises a Cambrian Series 2 forced-regressive systems tract, 
an overlying Cambrian Series 2 transgressive systems tract 
capped by a maximum flooding surface, and a Cambrian Se-
ries 2 to early Miaolingian highstand systems tract capped 
by a sequence boundary. Upper Cambrian to Lower Ordovi-
cian carbonate rocks that overlie the mantle breakup se-
quence constrain the establishment of the Humber passive 
margin in western Newfoundland. Analogous magma-poor 
rift processes and stratigraphic products are recognized in 
the Scotland-Ireland and SE Canada-NE United States seg-
ments of the eastern Laurentian margin system and may in-
dicate southward-propagation and opening of the Humber 
Seaway during the late Ediacaran to early Cambrian. 
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