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NEW IDRIA SERPENTINITE PROTRUSION, DIABLO RANGE,
CALIFORNIA: FROM UPPER MANTLE TO THE SURFACE

ROBERT G. COLEMAN*,¶, JARED T. GOOLEY**,***,†, ROBERT T. GREGORY§,
and STEPHAN A. GRAHAM*

ABSTRACT. The New Idria serpentinite body in the Coast Ranges of California is
a diapir that resulted from the interaction of the migrating Mendocino trench-ridge-
transform fault triple junction, transpression, metasomatic fluids, and previously sub-
ducted oceanic crust and mantle. Northward propagation of the San Andreas fault
progressively eliminated the original subduction zone, allowing seawater to penetrate
into the formerly subducting abyssal peridotite mantle, triggering serpentinization.
The associated physical changes in density, volume, and strength yielded an expand-
ing, buoyantly rising serpentinite protrusion, facilitated by transpression along the
San Andreas fault. Sedimentary facies and intrusion of minor cross cutting syenite
and alkali basalt dikes indicate that the serpentinization-driven diapir buoyantly rose
and widely breached the surface by ca. 14 Ma, attending migration of the Mendocino
Triple Junction past the latitude of New Idria.

Key words: Serpentinite Protrusion, Peridotite, Metasomatism, San Andreas
Fault, Mendocino Triple Junction

introduction
The New Idria serpentinite body is an ellipsoidal serpentinite diapiric dome, 22

km long and 8 km wide, exposed between the San Andreas fault to the west and the
San Joaquin Valley to the east (figs. 1, 2). It crops out in the southern Diablo Range at
the structural and topographic culmination of the NW-SE trending Coalinga anti-
cline, lying between the Vallecitos syncline to the northeast and the Avenal syncline to
the southwest. Its greatest elevation is nearly 1600 m at San Benito Mountain, tower-
ing over the adjacent San Joaquin Valley sitting at about 70 m above sealevel. The
Coalinga anticline plunges southeast into the subsurface, but the fold-form continues
southward, where it is expressed as Kettleman North Dome. Oil was discovered in
folded uppermost Cretaceous strata on Coalinga anticline in 1890 (Anderson, 1952),
followed over the past 125 years by extensive drilling and reflection seismic surveys
across the Coalinga region. Together, outcrop and subsurface data form the basis for
reconstructing a detailed stratigraphic and erosional history of the emplacement of
the New Idria serpentinite dome (Anderson and Pack, 1915; Arnold and Anderson,
1910; Bramlette, 1946; Casey and Dickinson, 1976; Carlson and others, 1984; Bate,
1985; Dibblee and others, 1999). New Idria is the largest of a number of similar
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serpentinite bodies that crop out adjacent to the San Andreas fault, from Table
Mountain in the south, to the Tiburon Peninsula in the north (fig. 1).

The Coalinga Earthquake of 1983, which occurred 25 km southeast of the New Idria
serpentinite dome on a blind thrust beneath Coalinga anticline, was studied intensely by
the United States Geological Survey (USGS), providing new geophysical parameters dem-
onstrating that the New Idria serpentine body extends at least 10 km below the surface
(Rymer and Ellsworth, 1990). Seismic, magnetic and gravity data revealed that at this depth
the dome consists of serpentinized peridotite (;40%) with reduced seismic velocity and
specific gravity. Continuing metasomatic (rheological) weakening and expansion of the
serpentinized abyssal peridotite (Warren, 2016) facilitated its upward, aseismic, plastic
ascent (Wentworth, 1990; Tsujimori and others, 2007a; Moore and Lockner, 2013) (fig. 3).
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Figure 1. Map of central California showing principal serpentinite bodies and faults discussed in the
text. Dashed lines are approximate paleolatitudes of the Mendocino Triple Junction from Stock and
Molnar (1988).
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Following the definition of Lockwood (1971), the New Idria massif is a serpentin-
ite protrusion. Use of the term ‘protrusion’, instead of ‘intrusion’ emphasizes a process
that highlights the difference between ultra-high temperature processes involving
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ultramafic magmas versus low-temperature processes involving metasomatic (Zharikov
and others, 2007) and rheologic changes during serpentinization. The history of the
diapir spans nearly 170 m.y. from the Jurassic, when its ultramafic rocks formed as part
of the oceanic Kula plate, to the present. Serpentinite protrusions, formerly mapped as
products of altered igneous ultramafic intrusions, are now known to be metasomatized
abyssal mantle peridotite (Lockwood, 1971). Metasomatism facilitates serpentinization,
resulting in expansion up to ;40% within the peridotite, a loss of density that
enhanced buoyancy, and a loss of rheological strength (Andreani and others, 2007;
Bach and others, 2012; Bayrakci and others, 2016). The initiation of the San Andreas
transform fault promoted deep penetration of seawater driving the serpentinization
and enabled the formerly high-density mantle to flow upward, decoupling it from the
overlying dense mafic (basalt-gabbro) Kula oceanic crust. The surface exposures are a
mixture of fragmented serpentinite (95%), a mélange that forms a huge deposit of
short fiber chrysotile asbestos (Ross and Nolan, 2003) containing 5% inclusions of
metamorphic rocks (eclogite, blueschist, amphibolite, andradite-bearing antigorite ser-
pentinite and Franciscan mélange). Rare boulders of the original abyssal peridotite
protolith are exposed in stream terraces.

In this paper, we review the geologic setting of the protruding serpentinite, its
petrologic characteristics, the tectonics of xenolithic rocks, the rheological properties
of the protrusion, and the sedimentary and stratigraphic record of associated strata.
These data help constrain the roles of Mendocino Triple Junction (MTJ) migration
and accompanying thrusting and folding of the San Andreas transform margin. In ag-
gregate, these processes combined to bring the New Idria serpentinite body to the sur-
face (Suzuki, 1986; Vermeesch and others, 2006; Titus and others, 2007; Moore and
Lockner, 2013).

tectonic history of central california
Much of the tectonic history of central California can be attributed to two phases.

First, Late Jurassic to Eocene time, subduction of the Farallon plate beneath the North
American plate produced one of the most well studied convergent margins in the rock
record (Ingersoll, 1982). Elements of this convergent margin consist of the Sierra
Nevada magmatic arc, the Great Valley forearc basin, and the Franciscan accretionary
wedge and obducted Coast Range Ophiolite that comprises much of the Coast and
Diablo Ranges today (fig. 1). Oblique convergence of the Kula-Farallon and North
American plates persisted until collision of the East Pacific Rise with the North
American convergent margin, forming the MTJ around ca. 28 Ma (Atwater, 1970;
Atwater and Molnar, 1973; Dickinson and Snyder, 1979; Atwater, 1989). In this second
tectonic regime, the newly developed right-lateral San Andreas transform plate bound-
ary and subsidiary strike-slip faults dissected the remnant elements of the Mesozoic con-
vergent margin and translated the newly established Salinian block northward by
approximately 360 km or greater since ca. 23 Ma (Sharman and others, 2013; Gooley
and others, 2021b). As a result of northward migration of the southern terminus of the
subducting slab (fig. 1), arc magmatism and associated volcanic detritus that was shed
into the basin was progressively shut off (Graham and others, 1984; Gooley and others,
2021a). Transpression along the central segment of the San Andreas fault caused fold-
ing and uplift of Franciscan and overlying Mesozoic–Cenozoic basin strata (fig. 3), in
which numerous isolated serpentinite bodies have been emplaced (fig. 1). Tsujimori
and others (2007a) summarized the possible protoliths of the New Idria serpentinite
body. While the protolith has generally been regarded as abyssal peridotite from the
Kula plate (Coleman, 1996), as explained below, other models with supporting evidence
have been presented for possible dismembered Coast Range Ophiolite or serpentinized
forearc mantle wedge (Lazar and others, 2021). While clues to the geologic origins of
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the New Idria diapir continue be revealed, here we synthesize the petrologic, strati-
graphic, geophysical, and structural constraints on the metasomatism of peridotite and
emplacement, uplift, and exhumation of the New Idria serpentinite diapir.

new idria serpentinite body: petrologic constraints

The New Idria serpentinite body contains mainly highly sheared, crushed and
incoherent material that is made up of soft, crumbly aggregates and sheets of serpen-
tine asbestos (fig. 4) (Mumpton and Thompson, 1975). The serpentinite contains up
to 60 percent chrysotile (asbestos) associated with lizardite, brucite, and magnetite;
the rare occurrences of abyssal mantle peridotite protolith consist of olivine, clinopyr-
oxene, orthopyroxene, and chromite. The serpentinite has little strength at the sur-
face, and landforms that develop on it are easily eroded into rounded hills.

The few occurrences of abyssal peridotite preserved within the New Idria serpentin-
ite contain remnants of original mantle mineral assemblages. The latter are typical of
depleted harzburgite common in some of the less serpentinized peridotites of the
California Coast Ranges (Loney and others, 1971; Graymer and others, 2014). Petrologic
studies (Coleman, 1971, 1980a, 1980b, 1996) of California peridotites show that
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harzburgite is the main mantle protolith, with smaller amounts of dunite. Only rarely
is clinopyroxene present, explaining the low silica activity during the main phases of
serpentinization. Reddish-brown ribs of silica-carbonate rock within the New Idria ser-
pentinite body developed during a very late-stage hydrothermal event that produced
the mercury deposits once mined at the town of New Idria (Eckel and Myers, 1946).

The New Idria serpentinite contains numerous tectonic xenolith inclusions, sev-
eral up to 1500 meters in length, as well as many others less than a meter in diameter
(fig. 4). Santa Rita Peak exposes one of the largest tectonic inclusions, made up of
mostly of antigorite serpentine with accessory andradite garnet and minor magnetite.
This inclusion is typical of an earlier, deeper level serpentinization event in which
jadeite formed at P . 0.8 GPA at T= 200–400 °C (Tsujimori and others, 2007b).
These inclusions have a random distribution within the serpentinite body and their in-
ternal metamorphic fabrics distinctly differ from one inclusion to another (Coleman,
1961; Tsujimori and others, 2007a). The elongation of the larger jadeite-bearing
inclusions exposed along Clear Creek are roughly parallel to the axis of the Coalinga
anticline. These inclusions are commonly rimmed by highly sheared antigorite ser-
pentine rinds, in contrast to the main serpentinite body that consist of flaky incoher-
ent chrysotile-lizardite-brucite-magnetite assemblages.

Some contacts between the inclusions and the serpentinite bear evidence of a pe-
riod of calcium metasomatism (rodingite assemblages) at an earlier stage of develop-
ment. Although tectonic inclusions within the New Idria serpentinite exhibit some
tendency of elongation toward parallelism with the shape of the protrusion, internal
fabrics of the inclusions have random structural attitudes discordant to the plane of
elongation of the host body. These tabular and elongate shapes, combined with steep
dips of the bounding faults, suggest that they developed during the upward squeezing
of the semiplastic serpentinite protrusion.

The newly formed serpentinite expanded upward, exhuming tectonic xenolith
inclusions from the truncated Franciscan mélange. Continued incorporation of tec-
tonic inclusions since middle Miocene time within the serpentinite diapir has pre-
served a historical record of dynamic rheomorphic and metasomatic events (fig. 5).
These tectonic inclusions represent diverse rock types, and all specimens examined
have undergone metamorphism of different intensities, including rare eclogites. The
protolith for some of these inclusions, such as mafic volcanic-pyroclastic rocks, gray-
wacke, chert, and shale, contain blueschist mineral assemblages consisting of chlorite,
glaucophane, pumpellyite, albite, jadeite and stilpnomelane, can be traced to the
Franciscan mélange. Rare occurrences of gneissic amphibolite and eclogite occur as
small boulders in Clear Creek (Coleman, 1957; Tsujimori and others, 2007a).

The wide range of P/T parameters exhibited by these metamorphic xenolithic
blocks supports the idea that the New Idria serpentinite diapir captured these blocks
at various crustal levels and at different times during its expanding ascent (fig. 5).
Ages of blueschist facies rocks within the Franciscan Complex range from 95 to 120
Ma (Wakabayashi, 2015). The less abundant higher-grade tectonic blocks, including
eclogite within the serpentinite, range in age from 150 to 160 Ma (Mattinson and
Echeverria, 1980; Mattinson, 1986, 1988; Moore and Blake 1989; Mattinson and
Hopson, 1992; Wakabayashi and others, 2010; Ukar and others, 2012). The younger
blueschist represents large coherent areas of metagraywacke and metabasalt recrystal-
lized during subduction of the Franciscan forearc mélange during middle to Late
Cretaceous times. In contrast, the higher-grade rocks, such as blueschist and eclogite,
have Tithonian to Kimmeridgean ages and are much smaller than the individual xen-
olithic tectonic blocks that have a talc-actinolite or antigorite rinds recording their
upward transport within serpentinite (Coleman and Lanphere, 1971; Coleman,
1980a; Wakabayashi and others, 2010; Ukar and others, 2012).
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The discovery of peridotite, eclogite and amphibolite retrograded assemblages
within the New Idria serpentine mélange confirms the notion that the serpentine was
derived from peridotites in the upper mantle. The eclogite crystallized at T = 580–620°C
at P .1.0 GP and the amphibolite T = 630–680 °C at P = 0.8–1.0 GPa (K-Ar 135 1/� 7
Ma) with retrograde blueschist T = 200–290°C at P = ;0.5 GPa (Tsujimori and others,
2007a). The Coyote Hills serpentine protrusion at the intersection of the Hayward–
Calaveras faults near San Jose (fig. 1) was invaded by alkaline basalt dikes bearing mantle
xenoliths. Titus and others (2007) estimated the P/T range for spinel lherzolite xenoliths
within the Coyote Lake alkali basalt equilibrated at 970 to 1700 °C within a mantle shear
zone at depths 38 to 43 km that connects upward with the San Andreas fault system.
Numerous other alkali basaltic eruptions track the northward migration of the
Mendocino Triple Junction and are related to the developing San Andreas transform sys-
tem (McLaughlin and others, 1996; Furlong and Schwartz, 2004).
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These new data allow a regional connection with blueschist facies subduction ages
for Franciscan mélange in California Coast Ranges and Klamath Siskiyou Mountains
(Coleman and Lanphere, 1971; Ghent and Coleman, 1973; Ukar and others, 2012).
Metamorphism within the Franciscan mélange under higher temperatures produced a
retrograde younger PT path within the rising serpentinite diapir. These diverse PT paths
are sometimes considered to be the result of refrigeration or counter-clockwise PT move-
ments within the serpentinite protrusions, rather than random subsurface tectonic cap-
ture of the high-grade blocks into the rising weak, viscous serpentine protrusions
(Horodyskyj and others, 2009).

hydration of peridotite
The rheologic changes in density (-), volume (1), and strength (-) within the pa-

rental peridotite to serpentinite are impressive (Gerya and others, 2002; Christensen,
2004; Herzberg, 2004; Bach and others, 2012; Germanovich and others, 2012; Evans
and others, 2013; Rouméjon, and Cannat, 2014). At Moho depths, the protolith was
transected by the vertical San Andreas fault and the first stages of serpentine metaso-
matism began. Eastward and upward transport within the Franciscan mélange culmi-
nated in the middle Miocene (fig. 6). The hydration of the New Idria peridotite to
serpentinite is a retrogressive metasomatic (metamorphic) chemical reaction that can
be described in simple terms (Martin and Fyfe, 1970; Mumpton and Thompson 1975;
Lowell and Rona, 2002; Escartín and others, 2001), as follows:
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Figure 6. Structural cross-sections showing truncation of the Franciscan mélange wedge by the San
Andreas fault to the west and protrusion of the serpentinite upward aided by blind thrusting beneath and
into Great Valley forearc strata. Adapted from Namson and others (1990) and Coleman (1996). Lines of
sections shown on figure 2.
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2Mg2SiO2 1 3H2O ! Mg3Si2O5 OHð Þ2 1 Mg OHð Þ2 13–14 wt% H2Oð Þ
forsterite water serpentine brucite water

(1)

Serpentinization is an exothermic chemical reaction at estimated temperatures
up to ;300 °C (Fyfe and Lonsdale, 1981). The evidence of increasing temperature
for the New Idria protrusion exists along the serpentinite contact with the overlying
shale, which preserves thermal transformation of disordered silica (opal) diatom skel-
etons to ordered silica polymorphs (quartz), which are controlled primarily by tem-
perature .80 °C (Murata and others, 1979). Furthermore, Vermeesch and others
(2006) observed high vitrinite reflectance values in Great Valley Group strata near the
contact with the New Idria serpentinite body, and partial to complete annealing of de-
trital apatite fission tracks at ca. 14 Ma that they associated with development of a mid-
dle Miocene thermal halo around the rapidly emplaced diapir.

The earliest serpentinization of the New Idria diapir was initiated by the incur-
sion of marine water whose pH likely rose to 10–12 during metasomatism of peridotite
(Barnes and others, 1972; Moody, 1976). The metasomatic evolution of the New Idria
serpentinite body involves aseismic interaction between deformation, fluid infiltra-
tion, and multiple metasomatic fluid reactions (Bezacier and others, 2013). These
changes occurred over geological time scales (;1–15 Myr) within a weak, plastic, and
expanding serpentinized abyssal peridotite mass.

emplacement of the new idria serpentinite body

Stratigraphic Constraints
A key piece of evidence for the timing of principal emplacement and unroofing

of the New Idria serpentinite body is the upper middle Miocene Big Blue Formation,
an areally and temporally restricted sedimentary unit consisting overwhelmingly of
detrital serpentinite, which crops out for about 30 km along the east flank of
Coalinga anticline and the western margin of the San Joaquin Valley (figs. 2 and 3).
Initial unroofing of the serpentinite diapir began during deposition of the underly-
ing middle Miocene Temblor Formation (14–18 Ma; Scheirer and Magoon, 2006),
based on local lenses of serpentinous detritus within the arkosic Temblor Formation
documented in the subsurface of Coalinga oil field (Bate, ms, 1984, 1985). The Big
Blue Formation is unfossiliferous, but is inferred to be late middle Miocene in age
(Luisian provincial benthic foraminiferal stage, Casey and Dickinson, 1976; 13.5–15
Ma, using the time scales of Johnson and others, 2005 and McDougall, 2007). The
Big Blue is bracketed by the biostratigraphically well-constrained fossiliferous
Temblor Formation below and the Santa Margarita Formation above. By virtue of its
distinctive character, the Big Blue Formation was recognized early in the geologic
investigation of the Coast Ranges (Arnold and Anderson, 1910; Anderson and Pack,
1915; Adegoke, 1969). Subsequent workers (Casey and Dickinson, 1976; Casey, 1984;
Bate, ms, 1984, 1985; Beery, ms, 1988) documented its sedimentary characteristics,
facilitating an understanding of the timing of New Idria emplacement and the associ-
ated paleogeography.

Although the Big Blue Formation records extensive surface breaching of the New
Idria serpentinite body, stratigraphic and petrologic evidence indicates that Coalinga
anticline began to develop by the Cretaceous. McGuire (1988a, 1988b) noted rare
clasts of red radiolarian chert derived from the Franciscan Complex in Maastrichtian
strata in the Coalinga region. The upper Paleocene–lower Eocene Cantua Sandstone
is a deep-marine turbiditic unit stratigraphically confined to the Vallecitos syncline
(fig. 7), paired with and adjacent to the Coalinga anticline to the northwest (Nilsen
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and others, 1974; Graham and Berry, 1979; Anderson, 1996). Subsequently, the limbs
of the Vallecitos syncline were uplifted and erosionally beveled deeply into Upper
Cretaceous forearc strata (fig. 7). The presence of red radiolarian chert pebbles in
the middle Eocene Domengine Formation at the western end of the Vallecitos syn-
cline (Schulein, ms, 1993; Sharman and others, 2017) indicates that Cretaceous fore-
arc strata were completely eroded and Franciscan subduction complex rocks were
exposed and provided detritus to Vallecitos syncline by at least middle Eocene time.
The upper lower to middle Miocene Temblor Formation exposed across Coalinga
anticline includes nonmarine to shallow marine sandstone whose facies, paleocur-
rents and petrology (Bate, 1985; Bent, 1985) demonstrate that the Cretaceous forearc
strata and Franciscan rocks continued to be unroofed in up-plunge portions of
Coalinga anticline (fig. 8). In sum, an ancestral Coalinga anticline existed at least 50
Myr prior to Big Blue Formation sedimentation, and we thus speculate that the pre-
existent Coalinga anticline likely served as a Miocene structural guide for localizing
the ascending New Idria body.

The Big Blue Formation and overlying upper Miocene Santa Margarita Formation
are truncated across the breadth of the down-plunge end of Coalinga anticline by a
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latest Miocene-early Pliocene unconformity that locally truncates the entire Cenozoic
section (fig. 3). This unconformity likely reflects accelerated uplift and shortening of
the eastern Coast Ranges (Namson and others, 1990), perhaps due to a change in pole
of rotation of the Pacific-North America plate pair (Miller and Graham, 2018).
Subsequent deposition occurred in the form of the shallow marine-nonmarine, upper-
most Miocene-Pliocene Etchegoin Formation, which itself is folded on Coalinga anti-
cline and Monocline Ridge (figs. 2 and 6) in reflection of ongoing San Andreas
deformation. During this period, the Vallecitos syncline at times was topographically iso-
lated and housed a lake, whose record is a poorly dated but likely Pliocene unnamed
ostracod-bearing serpentinous mudstone that is the youngest unit folded into the syn-
cline (Rentschler, 1985).

Big Blue Depositional Facies
The Big Blue Formation outcrop belt provides an oblique cross-sectional view of

the Big Blue depositional system for about 30 km, from the edge of the protrusive

Current
Current

Direction

Direction
Current

Direction
Fluvial DepositsFluvial Deposits

ExposedExposed
Tidal FlatsTidal Flats

Shallow Marine DepositsShallow Marine Deposits

Lower VariegatedLower Variegated
IntervalInterval

(Late Saucesian)(Late Saucesian)

Upper Siltstone ClaystoneUpper Siltstone Claystone
and Big Blue Formationand Big Blue Formation

(Luisian)(Luisian)

LagoonLagoon

Up
pe

r S
ho

re
fa

ce

Up
pe

r S
ho

re
fa

ce

Alluvial FansAlluvial Fans

Fluvial Deposits

Exposed
Tidal Flats

Alluvial Fans

Shallow Marine Deposits

Lower Variegated
Interval

(Late Saucesian)

Upper Siltstone Claystone
and Big Blue Formation

(Luisian)

Sedimentary Facies

Offshore

Lower shoreface

Upper shoreface

Fluvial / Bar

Lagoon

Tidal flat

Alluvial

Serpentinite diapir

Exposed Cretaceous–Jurassic
stratigraphy

Lagoon

Up
pe

r S
ho

re
fa

ce

Stratigraphic section

Oil field (subsurface control)

Etchegoin
Fm.

Kreyenhagen
Fm.

Temblor
Fm.

Big Blue Fm.

Santa
Margarita Fm.

20
0

0
40

0
60

0 
(m

)

1

1
2

3

4

5

6

1

CoalingaCoalingaCoalinga

2

3

4

5

6

1 2 3

4

5
6

1 2 3

4

5
6

Detrital serpentinite DiatomiteShale/claystoneSandstone

Lithology (stratigraphic sections)
ConglomerateFossiliferous sandstone

0 2 4 6 8km8km0 2 4 6 8km

A

CB

Figure 8. Lithostratigraphy and paleogeography of the Temblor and Big Blue formations on Coalinga
anticline. (A) Lithostratigraphy from stratigraphic measured sections; (B) Paleogeography and depositio-
nal environments of the lower Temblor Formation on cross-section A; (C) Paleogeography and depositio-
nal environments of the Big Blue Formation on cross-section A. Redrawn from Bate (ms, 1984, 1985).

544 R. G. Coleman and others—New Idria serpentinite protrusion,



A

C

B

D

E F

a

2 
m

Figure 9. Outcrop photos of the New Idria serpentinite body and associated middle Miocene strata.
(A) Cliff exposure of the Big Blue Formation containing lenses of conglomerate. Erosional bases of con-
glomerate are traced with a dashed white line. (B) Casts of polygonal desiccation cracks in serpentinous
mudstone facies. (C) Cast of a canine paw trace in serpentinous mudstone facies (similar photo is shown
in Bate, 1985). (D) Exposure of foliate serpentinite breccia facies of Casey and Dickinson (1976) showing
a large block of antigorite serpentinite, labeled “a” just above a horse (circled), encased in flaky sheared
serpentinite (from Arnold and Anderson, 1910). (E) Serpentinite block from the Joe Pit asbestos mine.
The exterior surface has been gouged and rounded by abrasion within the plastic New Idria diapiric mass.
The interior exhibits multiple sets of fractures due to rotation of the block during protrusion. (F)
Coherent tectonic block of serpentinite exposed in the KCAC open pit asbestos mine in the southern end
of the New Idria protrusion.
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mass downslope through bouldery to gravelly braided stream deposits, to lower gradi-
ent stream deposits, and finally to distal muddy coastal tidal flat deposits, all compris-
ing serpentinous detritus (figs. 8 and 9). The Big Blue Formation also extends an
unknown distance to the east of the outcrop in the subsurface, where it has been
reported in some petroleum exploration wells (Bate, 1985; Beery, 1988).

The Big Blue Formation comprises three principle lithofacies (Casey and Dickinson,
1976; Bate, 1985; Beery, ms, 1988): (1) foliate serpentinite breccia; (2) bedded conglom-
erate and breccia (3) serpentinous sandstone and claystone. The foliate serpentinite
breccia lithofacies consists of flakey serpentinite with a distinct foliation, in which are set
porphyroclasts of massive serpentinite featuring tectonically polished surfaces and rang-
ing in size from centimeters to 10 meters across (fig. 9D, E, and F). This lithofacies crops
out for about 3 km along Martinez Creek, where it comprises the entire Big Blue
Formation and attains its greatest stratigraphic thickness at 250 m.

The proximal conglomeratic lithofacies is well developed laterally to the foliate
serpentinite breccia to the north and south. The conglomeratic lithofacies consists of
well-bedded gravel to cobble conglomerate organized into sheets and lenticular chan-
nel-fills (fig. 9A), interpreted as braided stream deposits by Casey and Dickinson
(1976), Bate (ms, 1984, 1985) and Beery (ms, 1988). Clasts consist nearly entirely of
sub-angular to subrounded serpentine, set in a serpentine-sand matrix. Casey and
Dickinson (1976) reported that the conglomeratic lithofacies generally laps onto the
foliate serpentinite, but locally appears to interfinger with it, indicating that the pro-
trusive serpentine locally overrode its own detritus.

The serpentinous sandstone and claystone lithofacies interfingers laterally with the
conglomeratic lithofacies, and dominates the Big Blue Formation in the northern and
southern distal ends of the outcrop belt. Most sandstone beds are well laminated. The
exact depositional environment of this lithofacies is uncertain. Bate (1985) recognized
mud cracks, a robust shallow marine ichnofossil assemblage, and a canine pawprint in
serpentinous mudstone in the southern part of the outcrop belt (fig. 9B and C), from
which he inferred a tidal flat environment (fig. 8). At its southern outcrop limit near the
crest of Coalinga anticline, the Big Blue Formation transitions over a distance of 2 km
from 40 m of interbedded serpentinous fine conglomerate, sandstone and mudstone to
less than 10 m of flakey serpentinous mudstone. The Big Blue Formation ultimately
merges into the uppermost member of the quartzo-feldspathic shallow marine Temblor
Formation (Bate, 1985). Serpentinous detritus did not persist in the rigors of a shallow
marine environment dominated by quartz and feldspar grains (Bent, 1985), but
Woodring and others (1940) noted a concentration of uvarovite and serpentine grains
in the “First Zone” of the Temblor Formation, its uppermost unit, in Kettleman North
Dome oilfield, some 35 km to the southeast. Bent (1985) interpreted this zone as a
basinward correlation marker to the Big Blue Formation.

Geophysical and Geologic Constraints on Structure
Synthesis of the geophysical data gathered by the USGS from the 1983 Coalinga

earthquake and the USGS San Andreas Fault Observatory at Depth (SAFOD) Parkfield
studies provides an explanation for the New Idria structure (Rymer and Ellsworth, 1990;
Wentworth and others, 1993; Hickman and Langbein, 2004; McPhee, 2004). Minor
earthquakes to the south in the Kettleman Hills antiform (Guzofski and others, 2007)
support the above conclusions. The surface expression of eastward thrusting seen in seis-
mic profiles is a tectonic wedge of Franciscan mélange consisting of trench sediments
and detached serpentinized abyssal peridotites, as illustrated by Wentworth and Zoback
(1989, 1990). Geophysical measurements cannot distinguish between Great Valley and
Franciscan ophiolites, and deeper ocean crust from the subducted Farallon plate (fig.
10). Therefore, published reconstructions usually show the basement beneath the
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Coalinga antiform as a continuous monolithologic unit consisting of Great Valley base-
ment (ophiolite) (fig. 6) (Griscom and Jachens, 1990; Namson and others, 1990;
Walter, 1990; Wentworth and Zoback, 1990).

Although the Coalinga anticline had an ancestral expression well before deposi-
tion of the Big Blue Formation, extensive folding of San Joaquin basin fill was con-
comitant with northward propagation of the San Andreas fault, facilitated by the
petrophysical contrast between igneous/metamorphic arc basement west of the San
Andreas fault and sheared Franciscan Complex subduction complex basement to the
east (Graham, 1987). Harding (1976) documented San Andreas-related folding adja-
cent to the fault in the southern and central San Joaquin Basin by late early Miocene
time, coeval with passage of the Mendocino Triple Junction at that latitude (fig. 1)
(Atwater and Stock, 1998). Transpressional shortening intensified across the central
California Coast Ranges in latest Miocene and Pliocene, seemingly in response to a
slight change in pole of rotation between the Pacific and North America plate pair
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from Wentworth and others (1992).
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(Miller and Graham, 2018). Namson and others (1990) constructed a balanced struc-
ture section across Coalinga anticline down-plunge of the exposed New Idria serpen-
tinite body and inferred about 11 kilometers of late Cenozoic shortening. This
contraction continues to the present, judging from the 1983 Coalinga earthquake.
Namson and others (1990) depicted Great Valley forearc strata as resting depositio-
nally upon the low-pressure Coast Range Ophiolite in their cross section. By infer-
ence, the updip New Idria serpentine body should be linked to the CRO shown in
their cross section (fig. 6), but the New Idria body clearly is not an ophiolite sequence,
given its pervasively sheared serpentinous nature and inclusion of high-pressure/low-
temperature (HP/LT) eclogitic and other exotic tectonoclasts (fig. 4) derived from
depths of 40 km or more. While Namson and others (1990) disfavored a diapiric ori-
gin for the New Idria serpentine body, thrust shortening and diapirism are intrinsi-
cally linked in many salt provinces around the world (for example, Jackson and
others, 1990; Harrison, 1995; Letouzey and others, 1995; Sans and Vergés, 1995;
Hudec and Jackson, 2012).

The transpressional regime between the San Andreas fault and the Great Valley
forearc sequence (Page and others, 1998) has produced eastward wedging of the
stranded Franciscan mélange and underlying Farallon oceanic crust (Wentworth and
others, 1984; fig, 6). Detached and stranded slabs of oceanic crust consisting of upper
mantle abyssal peridotite within the mélange were partly serpentinized by seawater
invading the new compressional regime produced by this change in plate motion
(Page and Brocher, 1993). Marine water pumping into the detached abyssal perido-
tite as it wedged into the Franciscan mélange promoted serpentinization and diapir-
ism. Continued transpression along the east side of the San Andreas fault to the
present time has produced the New Idria serpentinite diapir (Vermeesch and others,
2006; Tsujimori and others, 2007a). The abyssal peridotite!serpentine protrusion
expanded and weakened during its aseismic rheological and metasomatic transforma-
tion (Roland and others, 2010).

The rheological properties of the serpentine at the surface highly contrast with
its parent, abyssal peridotite (fig. 11). A volume increase of 40 to 50% and density
decrease of 24% (3.33 to 2.55 g/cc), accompanied by increasing Poisson’s ratio, led to
buoyancy and weakness (Escartín and others, 2001). This decrease in density and
strength enabled buoyancy forces to insert the serpentinite within the Franciscan, as
low-density, weak serpentinite rose laterally, lubricating blind thrust faults (Coleman,
1980a; Irwin, 1977). Earlier formed HP/LT metamorphic blocks of eclogite and blues-
chist in the truncated subduction zone became entrained within the serpentinite
(figs. 4 and 6). Many active landslides mark the flanks of the New Idria serpentinite
protrusion (fig. 4). From these, Cowan and Mansfield (1970) estimated a shear
strength of 1 bar (106 dynes/cm2) for the serpentinite diapir. Deposition of detrital
serpentinite in Los Gatos Creek terrace deposits as young as 500 years old (Atwater
and others, 1990) indicates that the New Idria serpentinite mass continues to pro-
trude upward. It will do so as long as the tectonic transpressive regime of the San
Andreas fault prevails and sub-surface serpentinization of the peridotite wedge within
the Franciscan mélange continues (Reynard and others, 2007).

Wentworth and others (1993) inferred that blind thrusting during the 1983
Coalinga earthquake under the crest of the Coalinga anticline along Los Gatos Creek
resulted in more than a meter of uplift. Integrating periodicity of earthquakes over a
longer time period and estimating repeat times (200 to 1000 yr) for similar intensity
earthquakes yields a late Holocene uplift rate of 1–2 mm/yr (Stein and King, 1984;
Atwater and others, 1990). Assuming for simplicity that repeat times for seismic events
have remained constant for the last 20 Myr, the New Idria/Coalinga anticline area
could have undergone more than 20,000 to 100,000 seismic events related to
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Figure 11. Selected abyssal peridotites in various stages of serpentinization showing a linear relation-
ship with changes in their rheological properties during long-term tectonic deformation. Seismic velocity
is shown as compressional wave velocity Vp km/sec obtained by geophysical field and/or laboratory meas-
urements. Vp is plotted against percentage of serpentine in the metasomatized peridotites. Serpentine
percentage in the peridotite also can be estimated by petrographic methods, using specific gravity or by
measuring (H2O) loss on ignition (LOI). St Peter's and St Paul's abyssal peridotite (sample 16) protruding
within transform faults transecting the Mid-Atlantic Ridge (Melson and others, 1972; Bonatti, 1976).
Samples 17 and 18 weight by (LOI) during wet chemical analysis (Escartín and others, 2001; Carlson and
Miller, 2003; Mevel, 2003). Surface samples 1–4 are from New Idria serpentine body and illustrate the
great range in degree of serpentinization. Seismic traverse across the body reveals 100% serpentine at the
surface, 58% at 6 km depth and 42% at 15 km depth (Robert Jachens, USGS, written communication,
1996). Samples 5–9 from Burro Mountain peridotite–serpentine protrusion 85 km west of New Idria with
a core of peridotite that is 19% serpentine and a peripheral zone of 98% serpentine using LOI (Coleman
and Keith, 1971; Loney and others, 1971). Samples 10,11,12 from the Mariana Arc Islands are from ser-
pentine protrusions (mud volcanos) that contain xenoliths of peridotite-serpentine that are 70 to 52% ser-
pentine with a seismic velocity 5.2 to 7.0 Vp km/sec (Ballotti and others, 1992). Sample 13 is an unaltered
peridotite xenolith from Jabal Turf Quaternary alkali basalt, Saudi Arabia, estimated to have originated at
depth of 25 km, as a good example of a dry abyssal peridotites that formed within an oceanic spreading
center (Ghent and others, 1980). Sample 14, Cedars abyssal peridotite, northern California (PCC-1 USGS
standard rock sample), has been analyzed many times in different laboratories (Flanagan, 1969; Blake and
others, 2012) and now is used as typical of depleted abyssal peridotite of the upper mantle. Sample 15 is
abyssal peridotite from the Semail ophiolite in Oman that has been analyzed by numerous studies
(Boudier and Coleman, 1981; Christensen and Smewing, 1981). Sample 17 and 18 are greywackes within
the Franciscan mélange where the meta-greywackes have distinctly higher density and Vp velocities than
the unaltered sediments. These different rheologies overlap those of serpentinized peridotite, making it
difficult to distinguish the lithologies within the Franciscan mélanges using only geophysical methods
(Brocher, 2005).
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continued blind thrusting, enabling the diapiric rise of the serpentinite protrusion
(Atwater and others, 1990; Stein and King, 1984). Each of these seismic and/or aseis-
mic events would introduce additional water into the system to sustain the peridotite
to serpentine metasomatism and expansion. Similarly, Berry (1973) suggested that
the high fluid pressure present today proximal to the Coast Ranges (for example,
Yerkes and others, 1990; Johnson and McEvilly, 1995) may result from aseismic creep
where serpentinite is present along the San Andreas, Hayward, and Calaveras faults
(Moore and Rymer, 2007; Moore and Lockner, 2013). Forty kilometers north of the
New Idria serpentine body where the San Andreas and Calaveras faults converge, geo-
physical modeling reveals tabular folded serpentinite bodies detaching and ascending
on a décollement within Franciscan mélange (Watt and others, 2014). Modeling of
the New Idria magnetic anomaly and seismic velocities suggests a volume of 200 to
250 km3 of serpentinite remains to be protruded in the future (fig. 1).

evolution and uplift of the new idria diapir

The deformational history of the New Idria serpentinized peridotite is critical to
understanding its formation and protrusion within the Franciscan forearc mélange (ten
Brink and others, 1999). Field geophysical measurements for gravity, magnetic, and GPS
have been made, as well as laboratory studies of density, seismic velocities, magnetic prop-
erties, and bulk rock 1 mineral chemical and trace element analysis (Hickman and
Langbein, 2004). Large-scale geologic mapping has established stratigraphic and struc-
tural relationships (Coleman, 1996; Tsujimori and others, 2007a). Combined geologic
and new GPS measurements along the San Andreas fault reveal transpressional folding of
the Franciscan mélange and Great Valley strata (Titus and others, 2011). This regional
stress produced numerous plastic protrusions of serpentine on the eastern side of the San
Andreas fault from Table Mountain to New Idria and to the San Francisco Bay region
(fig. 1) (Dickinson, 1966; Wentworth and Zoback, 1989; McPhee and others, 2004;
Blakely and others, 2005). The transpression which developed after the Mendocino
Triple Junction passed the latitude of New Idria in middle Miocene time produced east-
directed blind thrusting of serpentinite into Franciscan mélange. Using a decade of GPS-
In SAR satellite measurements along the 240 km creeping segment San Andreas fault
between San Juan Bautista and Parkfield, Ryder and Bürgmann (2008) established a hori-
zontal surface aseismic creep rate of up to ;31 mm/yr and a deep-slip rate of ;33 mm/
yr. They also determined a relative uplift rate of 7 mm/yr, almost twice the rate deduced
from long-term geologic estimates of 4 mm/yr attributable to the diapiric rise of the New
Idria serpentinite and non-tectonic signals, such as agriculture groundwater withdrawal
and oil production.

Significantly, recorded earthquake epicenters are sparse within the New Idria ser-
pentinite dome and other smaller diapiric bodies along this 250 km creeping segment
of the San Andreas fault (Titus and others, 2011). The lack of seismic activity within
these protrusions suggests that serpentinite continues its expansion by a combination
of aseismic tectonic transpressive forces produced by the San Andreas fault (Platt and
others, 2018), along with a weak plastic serpentinite mass modulated by the activity of
H2O (Moore and Rymer, 2007). Bonnin and others (2010) used SKS (shear wave
splitting) within the crust and mantle (asthenosphere) along the San Andreas fault in
central coastal California as far south as the New Idria diapir to distinguish a deforma-
tional boundary that formed serpentinite at the level of the former Moho. Weak grav-
ity measurements over the New Idria diapir support the idea that mobile serpentinite
is an integral part of San Andreas fault deformation.

The geodynamic rates of serpentinization over time are difficult to estimate. The
Coast Ranges of California are rising at an average rate of 2 to 3 mm/yr (Page and
others, 1998) and the New Idria, Burro Mountain, and Mount Diablo serpentine
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protrusions have measured rates of 4 to 7 mm/yr (Coleman, 1996; Tsujimori and
others, 2007a; Ryder and Bürgmann, 2008). The exhumation rate of a serpentinite
diapir would be a function of its degree of serpentinization, shape of the body, and
especially, its size: larger masses for a specific degree of serpentinization would have
body forces greater than the frictional resistance of the country rock walls and would
ascend faster than smaller diapirs. However, this observation is not informative about
the rate of serpentinization, which is controlled by P, T, and composition of the aque-
ous fluid, as well as the spatial parameters.

synthesis and discussion

The protolith of the New Idria serpentinite protrusion has been generally inter-
preted as an abyssal peridotite restite produced by basaltic melt extracted beneath
an oceanic spreading center (Coleman, 1996). However, it should be noted that
recent comparison of bulk-rock geochemistry of New Idria serpentinites to global geo-
chemical compilation has shown, in part, greater geochemical similarities to depleted
mantle wedge rather than highly variable abyssal serpentinites (Lazar and others,
2021). Reflecting wholesale serpentinization, only minor amounts of the original peri-
dotite now exist within the New Idria diapir. The serpentinite dome is in fault contact
with surrounding marine Mesozoic and Cenozoic sedimentary rocks (Dibblee, 1972,
2007) (fig. 2). These flanking rocks include Franciscan mélange of Jurassic-
Cretaceous age, Upper Cretaceous Panoche and Moreno formations of the Great
Valley forearc basin fill, and overlying Cenozoic sequences of marine sandstone and
shale (Coleman, 1986) (fig. 3).

The basement for the west side of the Mesozoic Great Valley forearc sequence is
considered to be oceanic crust (Orme and Graham, 2018) that formed as part of an
intra-oceanic arc system in Late Jurassic time, 161 to 169 Ma (Hopson and others,
1981; Coleman, 1986; Robertson, 1989). Cenozoic marine strata as young as Pliocene
age unconformably overlie the folded Franciscan mélange and Mesozoic forearc basin
strata of the Great Valley Group (Dibblee, 1971; Nilsen and Dibblee, 1979; Mattinson
and Echeverria, 1980). The contact of the serpentinite body with the surrounding
sediments is marked by high angle faults and shear zones that indicate upward differ-
ential movement of the serpentinite body relative to the surrounding mélange and
sedimentary strata (Coleman, 1980a, 1980b, 1996) (fig. 2). The northeastern contact
along the New Idria serpentinite with overlying strata is a thrust, as the subjacent
Mesozoic and Cenozoic sediments are overturned to the east by the serpentinite pro-
trusion (Eckel and Myers, 1946; Coleman, 1957). Wentworth and others (1984),
Jachens and others (1995), and McPhee and others (2004) used seismic refraction
data to infer that extensive structural wedging of Franciscan mélange beneath the
Great Valley forearc strata and underlying oceanic crust took place in the Miocene,
although stratigraphic evidence (Harding, 1976; McGuire, 1988a,b; Mitchell and
others, 2010; Sharman and others, 2017), indicates that an ancestral version of the
Diablo Range and specifically Coalinga anticline, existed as early as the Maastrichtian.

When the MTJ initiated ca. 28 Ma and migrated past the latitude of New Idria
near the end of the middle Miocene (ca. 12–14 Ma), based on outcrop patterns of
dated volcanics (for example Dickinson, 1997) (fig. 1) and plate reconstructions of
Stock and Molnar (1988), the crust-cutting San Andreas transform fault allowed sea-
water to invade the upper mantle. Serpentine began to replace abyssal peridotite as
detachment and wedging produced fractures that allowed marine water to initiate a
slow metasomatism of the abyssal peridotite. The result was a profound decrease in
density and strength, and an increase in volume. Accordingly, a large fragment of
now-buoyant abyssal peridotite derived from the previously subducting Kula plate
(Warren, 2016) disengaged from the downgoing oceanic lithosphere, and ascended
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into the Franciscan mélange wedged under the Great Valley forearc sequence
(Wentworth and others, 1984; fig. 4).

The regional fault that marks the present-day contact between the Great Valley
forearc sequence and the Franciscan mélange is called the Coast Range thrust (Bailey
and others, 1964, Graymer and others, 2014). This tectonic contact was first thought
to represent the preserved trace of the Mesozoic subduction zone (Ernst, 1970), but
the seismic evidence produced by Wentworth and others (1984) and Jachens and
others (1995) does not support this idea in the New Idria area. The faults marking the
boundary between the New Idria serpentinite protrusion and the surrounding
Franciscan mélange represent a detached segment of the Coast Rage thrust (figs. 2
and 6). Wedging of the detached Franciscan mélange under the Great Valley forearc
sediments further elevated the ancestral Diablo Range, while weak and expanding ser-
pentinite rose buoyantly within thrust sheets and into the pre-existent Coalinga anti-
cline (fig. 6). San Andreas fault tectonics produced northeast-directed transpressive
folding (Titus and others, 2007; Dickinson and Snyder, 1979; Graham and Williams,
1985; Rentschler and Bloch, 1988; Namson and Davis, 1988; Graham and others,
1989; Tsujimori and others, 2007a; Miller and Graham, 2018) that, combined with the
rheology of a weak, plastic, and expanding serpentinite-peridotite mass, permitted
upward protrusion into the pre-existent Coalinga anticline at an estimated 5 cm/yr.

The New Idria serpentinite body breached the surface in middle Miocene time,
as marked by local concentrations of serpentine detritus in the Temblor Formation
(fig. 3) and much more expansive serpentine deposits in the Big Blue Formation
(figs. 2 and 3), which developed as an alluvial apron off the eastern flank of the New
Idria uplift (Casey and Dickinson, 1976; Bate, ms, 1984, 1985; Carlson and others,
1984; Beery, ms, 1988) (fig. 3). Thereafter, denudation of this spectacular protrusion
left a continuous record of detrital serpentine in the San Joaquin Basin and Vallecitos
syncline, as demonstrated by serpentinous mud, sand and pebbles within the
Etchegoin (5.5–4.5 Ma), San Joaquin (4.5–2.5 Ma) and Tulare (2.5–0.6 Ma) forma-
tions, as well as in modern stream deposits (per age assignments of Scheirer and
Magoon, 2006).

A small amount of alkali basalt magma differentiated to syenite and intruded the
southern part of the New Idria diapir (figs. 3 and 4). During the middle Miocene
(;12 Ma), it enhanced metasomatic alteration in restricted zones within the serpen-
tinite and tectonic inclusions (Coleman, 1957) (fig. 4). These metasomatic alterations
produced the California State gem benitoite (BaTiSi3O9), dated at ca. 12 Ma (Laurs
and others, 1997; Obradovich and others, 2000). Continued upward diapiric move-
ment of the New Idria serpentinite body to the present has elevated and exposed tec-
tonic inclusions that preserve a HP/LT blueschist-eclogite metamorphic history.
Fission track dating of detrital apatite from Great Valley forearc sediments nearest to
their contact with the New Idria serpentinite diapir have an apparent age of 13 Ma
(Vermeesch and others, 2006). These fission track ages coincide with the passage of
the Mendocino Triple Junction, and the initial protrusion of the New Idria serpentin-
ite, as well as the igneous intrusion of syenite, alkali basalt, and metasomatic forma-
tion of the gem minerals benitoite and neptunite within the protrusion.

Offset depositional contacts that developed during exhumation of the New Idria
serpentinite mélange indicate a possible vertical uplift rate of ;4–5 mm/yr, nearly
four times the average rate for the California Coast Range of 1 mm/yr (Page and
others, 1998). Further evidence of this uplift rate is given by a small patch of Pliocene
sediments deposited upon the north end of the serpentine body (figs. 2 and 4).
These rocks are correlated with the youngest sediments deposited in the Vallecitos
syncline at ;2–5 Ma (Rentschler, 1985). The vertical displacement between the
trough of the syncline and the small patch of sediments on the crest of the New Idria
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serpentinite dome is 850 meters, supporting the estimate for the Pliocene uplift rate
of ;5 mm/yr (Coleman, 1996).

conclusion
The classification of isolated peridotite bodies as Alpine-type ultramafic igneous

intrusions gave way to an interpretation that these bodies were detached fragments of
upper mantle peridotite emplaced as a consequence of tectonic and metasomatic
processes (Coleman, 1980b, 1996). Geochemical and rheological studies indicate that
many such serpentinite bodies in western California were plastic mobile protrusions
driven by continuous expansion during metasomatism attending San Andreas trans-
form evolution (Tsujimori and others, 2007a). Protrusion is initiated by a volume
increase as small as 12%, reducing density and increasing Poisson’s ratio, thereby facil-
itating the weak and plastic serpentinite-peridotite mass to rise along blind thrust
faults into brittle sedimentary cover strata.

The New Idria protrusion first breached the surface 14–18 Ma and was widely
exposed by 14 Ma, reflecting passage of the migrating Mendocino Triple Junction. As
the Mendocino Triple Junction continued its northward migration past the latitude of
San Francisco Bay, and the San Andreas fault evolved in its wake, transform faulting and
fracturing allowed seawater to penetrate into the upper mantle abyssal peridotite within
the fault zone; this fluid initiated serpentinization (metasomatism). Transpressional tec-
tonic forces developed along the San Andreas fault between the Pacific and North
American plates mobilized weak, plastic, buoyant serpentinite bodies that form upward
bulbous detachments that gradually protruded to the surface as elongate domes.
Approximately 11 km of E-W horizontal shortening on the east side of the San Andreas
fault at the latitude of Coalinga (Namson and others, 1990) reflects transpression inte-
gral to the story of New Idria’s diapiric evolution.
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