[AMERICAN JOURNAL OF SCIENCE, VOL. 319, May, 2019, P. 381-429, DOI 10.2475/05.2019.02]

ALTERNATING CONTRACTION AND EXTENSION IN THE SOUTHERN
CENTRAL ANDES (35°-37°S)

LUCAS M. FENNELL*", SOFIA B. IANNELLI*, ALFONSO ENCINAS**,
MAXIMILIANO NAIPAUER*, VICTOR VALENCIA**%*, and ANDRES FOLGUERA*

ABSTRACT. The Andes are thought to be formed through discrete contractional
stages separated by periods of little to no orogenic construction. This paper analyzes
the intervals between the main contractional phases that built the Southern Central
Andes between 35° and 37°S in order to determine whether they were characterized by
neutral, contractional or extensional conditions. During an interruption in orogenesis
between the Late Cretaceous and the Miocene shortening phases, two extensional
stages are recorded through the opening of a series of intra- and retro-arc basins. U-Pb
dating of detrital zircons in a sample collected from the Los Angeles unit, a syn-
extensional volcano-sedimentary succession located at ~35°40’S along the Chile and
Argentina international border, provided a maximum depositional age of 67.1 +2.4/
—0.9 Ma. This age, in association with evidence of regional crustal thinning, suggests a
previously unrecognized extensional phase during latest Cretaceous times. Limited
shortening succeeded this extensional event and was followed by a second extensional
episode during late Oligocene and earliest Miocene times. While the first extensional
event was restricted to the core of the Late Cretaceous orogen, the second episode
affected a wide area ranging between the present forearc and retroarc areas. A
structural section across the Malargiie fold-thrust belt at ~36°S indicates inversion of
normal faults where extension was focused and new thrust generation in areas not
affected by extensional deformation. Our data reveal that the growth of the Southern
Central Andes is the product of a complex alternation of contractional and extensional
phases, with inherited structures playing a role in their tectonic evolution. A compari-
son with other Cordilleran orogenic systems such as the Puna-Altiplano plateau, the
northern Peruvian Andes and the North American Sevier-Laramide orogenic belt,
suggests that extensional deformation in the Southern Central Andes responds better
to changes in plate kinematics, rather than to localized events within a continuous
contractional setting.

Key words: fold-thrust belt, intra-arc basin, retroarc basin, inheritance, geodynamics,
tectonic regime

INTRODUCTION

The growth of orogenic systems can be characterized as a succession of contrac-
tional phases, whose onset tends to correlate with changes in subduction parameters,
collision of oceanic or continental features and even climatic events (Lamb and Davis,
2003; Heuret and Lallemand, 2005; Lallemand and others, 2005; Sobolev and Ba-
beyko, 2005; Oncken and others, 2006; Espurt and others, 2008; Martinod and others,
2010; van Dinther and others, 2010, Capitanio and others, 2011). However, in
orogenic systems developed along active subduction settings such as the Andes,
changes at the plate margins affect and may even interrupt their growth (Ramos, 2010;
Horton, 2018). The interruptions in the growth of these subduction-type orogenic
systems can be characterized by extensional or neutral conditions, which are mainly
driven by: 1) changes in relative convergence rates or absolute rate of the upper-plate
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Fig. 1. (A) Cretaceous to Paleocene rift and transtensional basins in southern South America, related to
the opening of the Southern Atlantic Ocean and extensional reactivations linked to the initial rise of the
Andes, respectively (based on Ramos, 2009 and Gianni and others, 2015). (B) Late Oligocene to earliest
Miocene intra-arc extensional basins (light brown), magmatic belts (dark brown) and volcanic plateaus in
the Southern Central Andes (based on Fennell and others, 2018).

(Heuret and Lallemand, 2005; Lallemand and others, 2005; Schellart, 2008; Schellart
and Moresi, 2013; Horton, 2018; Munoz and others, 2018); 2) steepening and rollback
of the subducted slab (Munoz and others, 2000; Ramos, 2009; Ramos and Folguera,
2009; Encinas and others, 2016; Horton, 2018; Fennell and others, 2018); 3) extreme
crustal thickening leading to gravitational spreading (Coney and Harms, 1984; Dewey,
1988; Schoenbohm and Strecker, 2009; Giovanni and others, 2010; Wells and others,
2012; Giambiagi and others, 2016). As a consequence, the tectonic evolution of some
sectors of the Andes has been characterized by shortening with alternating periods of
neutral to extensional conditions (Ramos and Folguera, 2005; Charrier and others,
2015; Folguera and others, 2016; Horton and Fuentes, 2016; Echaurren and others,
2016; Horton, 2018). Through the study of the fold-thrust belt’s structure and
associated syntectonic strata, we are able to define areas that were affected by crustal
shortening or extension, which can be used to identify changes in the tectonic regime
through time.

After a Neoproterozoic to late Paleozoic complex evolution that alternates com-
pressional and extensional tectonic regimes including accretion of several alloch-
tonous terranes, the Early Jurassic marked the beginning of the Andean Cycle in South
America (for a review, see Ramos, 2009). The first stages of this cycle were closely
linked to the breakup of Pangea, when a major extensional regime resulted in the
development of several rift systems that were responsible for the opening of important
hydrocarbon-bearing basins in Argentina (Uliana and others, 1989). Extension in
southern South America continued until the Early Cretaceous, resulting in the
development of a series of rift basins related to the opening of the southern Atlantic
Ocean, such as the Salta rift system in northwestern Argentina and western Bolivia (fig.
1A) (Ramos, 2009). This was followed by the onset of contractional deformation on
South America’s western margin during the mid-Cretaceous, when the Andes ex-
perienced their first constructional phase (fig. 1A) (Somoza and Zaffarana, 2008).
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Consequently, a series of pre-existing rifts basins and basement heterogeneities
trending parallel to the E-W contractional stress field suffered an extensional reactiva-
tion between the latest Cretaceous and the Paleocene (fig. 1A) (Gianni and others,
2015).

The growth of the Andes between 35° and 37°S initiated in the Late Cretaceous,
with the onset of the first phase of contractional deformation and synorogenic
deposition within the adjacent foreland basin (Ramos and Folguera, 2005; Tunik and
others, 2010; Orts and others, 2012; Mescua and others, 2013; Balgord and Carrapa,
2016; Horton and Fuentes, 2016; Fennell and others, 2017). Reduced sedimentation
and unconformity development in the foreland during the Paleogene has led to the
proposal of a neutral tectonic regime (Horton and Fuentes, 2016), although some
works have suggested the occurrence of a middle to late Eocene contractional phase
(Groeber, 1946, 1947; Cobbold and Rossello, 2003; Charrier and others, 2007, 2015;
Sagripanti and others, 2012; Alvarez Cerimedo and others, 2013; Mosolf and others,
2018). Furthermore, a number of authors have documented evidence of extensional
activity in the Southern Central Andes during the late Paleogene (Hervé and others,
1995; Suarez and Emparan, 1995; Charrier and others, 1996, 2002; Lopez-Escobar and
Vergara, 1997; Godoy and others, 1999; Munoz and others, 2000; Jordan and others,
2001). Following these pioneering works, more recent research constrained this
extensional episode between the late Oligocene and the earliest Miocene, character-
ized by the opening of a series of intra-arc extensional basins and widespread mafic
volcanic eruptions between the present forearc and retroarc areas (fig. 1B) (Kay and
others, 2005, 2007; Kay and Copeland, 2006; Burns and others, 2006; Radic, 2010;
Rojas Vera and others, 2010; Garcia Morabito and Ramos, 2012; Dhyr and others,
2013a, 2013b; Ramos and others, 2014a; Winocur and others, 2015; Encinas and
others, 2016). Shortening resumed in the early Miocene (Horton and Fuentes, 2016),
when a new phase of orogenic construction began, generating the present structural
relief (Silvestro and others, 2005; Giambiagi and others, 2008; Silvestro and Atencio,
2009; Sagripanti and others, 2011, 2012; Turienzo and others, 2012; Alvarez Cerimedo
and others, 2013; Tapia and others, 2015; Fuentes and others, 2016; Horton and
others, 2016).

The main objective of this contribution is to analyze the intervals between the
main contractional phases that built the Southern Central Andes, with the aim of
determining whether they were characterized by neutral, contractional or extensional
conditions. In order to do this, structural and geochronological analyses were per-
formed in volcaniclastic units deposited between the Late Cretaceous and Miocene in
the arc and retroarc regions. Field work was carried out in the Malargtie fold-thrust belt
located in west-central Argentina, analyzing exposures of these volcaniclastic units and
aiming to determine their depositional framework and their significance to the
evolution of the Andean orogenic system between 35° and 37°S.

GEOLOGICAL AND TECTONIC SETTING

The Andes constitute a more than 7000 km-long subduction-type orogen, which
has been divided into the Northern, Central and Southern Andes based on great
differences in their geological history along strike (Gansser, 1973; Ramos, 1999). The
study area is part of the Southern Central Andes (27°-46°30’S), which are located
between the Juan Fernandez aseismic ridge and the Chile mid-ocean ridge (fig. 2)
(Gansser, 1973; Ramos, 1999). In this sector, the South American plate is moving
westwards over the subducting Nazca plate, resulting in a N78°E oriented convergence
at a rate of ~8 cm/yr (Gripp and Gordon, 2002). The Southern Central Andes at the
latitudes of the study area (35°-37°S) are segmented into five morphostructural units,
which correspond, from west to east, to the Coastal Cordillera, the Central Depression,
the Principal Cordillera, the San Rafael Block and the present foreland zone (fig. 2).
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Fig. 2. Main morphostructural units of the Southern Central Andes and location of the study area in
west-central Argentina. The Southern Central Andes, following the subdivision of the Andes of Gansser
(1973) and Ramos (1999), are located between the Juan Ferndndez aseismic ridge and the Chile mid-ocean
ridge (see inset in the upper-left corner). Black triangles represent the present magmatic arc, product of the
ongoing convergence between the Nazca and South American plates at a rate of 8 cm/yr (Gripp and
Gordon, 2002). The Andean orogenic front and the eastern border of the Neuquén basin are based on
Sagripanti and others (2011).

Moreover, the Principal Cordillera can be subdivided into the western and eastern
Principal Cordilleras (compare Munoz and others, 2018), the latter being constituted
by a series of eastverging fold-thrust belts located in Argentine territory (fig. 2). In
particular, the Meso-Cenozoic history of the study area, located in the Argentinean
Andean flank between 35° and 37°S, is recorded in rocks presently exposed in the
Malargtie fold-thrust belt, a hybrid thick- and thin-skinned system formed through
tectonic inversion of normal faults and new thrust generation (fig. 2) (Kozlowski and
others, 1993; Manceda and Figueroa, 1995; Mescua and Giambiagi, 2012; Turienzo
and others, 2012; Branellec and others, 2016; Fuentes and others, 2016).

The Malargiie fold-thrust belt is developed over a Grenville-aged basement
corresponding to the Chilenia terrane, which was accreted to Western Gondwana in
the Middle Devonian (Ramos, 2009). After the collision, the emplacement of a new
magmatic arc associated with synorogenic deposits marks the beginning of a new
tectonic cycle during the final assembly of Gondwana in Carboniferous time (Cingo-
lani and Ramos, 2017). This phase of orogenic building was followed by a Late Permian
to Early Triassic orogenic collapse, which favored the eruption of rhyolitic intraplate
volcanic rocks known as the Choiyoi Group (Ramos and Folguera, 2009). The oldest
rocks that crop out in the Malargtie fold-thrust belt include Upper Permian to Lower
Triassic igneous rocks of the Choiyoi Group (fig. 3) (Sato and others, 2015), which
form the basement of a retroarc extensional basin developed between Late Triassic
and Early Cretaceous times, known as the Neuquén basin (fig. 3) (Uliana and others,
1989; Legarreta and Gulisano, 1989). The Neuquén basin opened in the Late Triassic
as a series of unconnected depocenters controlled by mechanical subsidence, which
were filled with marine, nonmarine and volcanic deposits grouped within the Precuy-
ano cycle (fig. 3) (Carbone and others, 2011; Bechis and others, 2014). In the Early
Jurassic, these depocenters started to connect, being gradually filled by marine and
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Fig. 3. Stratigraphic chart for the western and eastern sectors of the Malargtie fold-thrust belt (~36°S)
modified from Orts and others (2012). Maximum depositional ages are given in italics for sedimentary
successions that form part of the foreland basin, and are based on Balgord and Carrapa (2016), Horton and
others (2016), Fennell and others (2017), and data from this work. Ar/Ar ages are given in bold for volcanic
rocks, based on Dhyr and others (2013b) and Litvak and others (2015).
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nonmarine deposits during a series of transgressive-regressive cycles that lasted until
Early Cretaceous times (Legarreta and Uliana, 1991, 1996). These marine transgres-
sions and regressions were controlled by regional thermal subsidence and eustatic sea
level fluctuations, and are recorded in the study area by the Cuyo, Lotena, Mendoza
and Bajada del Agrio Groups (fig. 3) (Gulisano and Gutiérrez Pliemling, 1994; Vergani
and others, 1995). These sequences are unconformably overlain by the nonmarine
foreland basin deposits of the Neuquén Group and equivalent Diamante Formation
(fig. 3), related to the initial shortening in the Malargte fold-thrust belt in Late
Cretaceous time (Orts and others, 2012; Mescua and others, 2013; Balgord and
Carrapa, 2016; Fennell and others, 2017).

A 25 to 30 Myr hiatus detected in the western sector of the Malargtie fold-thrust
belt represents the transition between postrift thermal subsidence and initial flexural
loading, related to the beginning of a crustal shortening event (fig. 3). The foreland
basin deposits of the Neuquén Group can be up to 1.5 to 2 km thick in the central
sector, thinning out against the San Rafael block to the east and the Late Cretaceous
topographic front to the west, which was likely located along the international border
between Chile and Argentina (fig. 2) (Mescua and others, 2013; Munoz and others,
2018). An initial west-directed paleoflow of sediments coming from the cratonic area
was later reversed towards the east, due to the approximation of the thrust belt
(Balgord and Carrapa, 2016). Foredeep and wedge top depozones, including both
piggyback and thrust top basins, were defined based on the recognition of syncontrac-
tional growth strata and differences in detrital zircon age patterns, although a
migration of the thrust front and forebulge cannot be resolved with the present data
(Orts and others, 2012; Fennell and others, 2017; Munoz and others, 2018).

The onset of volcanism in the arc in the study area occurred in latest Cretaceous
time, after an eastward migration of the locus of magmatic activity during the Late
Cretaceous contractional phase (Ramos and Folguera, 2005; Spagnuolo and others,
2012a; Fennell and others, 2017; Mufioz and others, 2018) (figs. 3 and 4). Recent field
observations in the western Principal Cordillera at 35°S identified a 2200 m thick
volcaniclastic succession composed of andesites, volcanic breccias and tuffs with
interbedded sandstones and conglomerates, whose thickness varies due to normal
faulting (Munoz and others, 2018). These rocks correspond to the Plan de los Yeuques
Formation (Gonzalez and Vergara, 1962), whose age has been constrained by a series
of Ar/Ar and U-Pb dates between 80 and 65 Ma, implying that it was deposited within
an extensional intra-arc basin during latest Cretaceous time (fig. 4) (Munoz and
others, 2018; Mosolf and others, 2018). Additionally, a series of subvolcanic bodies and
lava domes constrained between 69 and 67 Ma by Ar/Ar dating intruded the Neuquén
Group in the retroarc area, along the present Rio Grande valley (figs. 3 and 4)
(Spagnuolo and others, 2012a), while their pyroclastic facies became interbedded with
the shallow marine deposits of the Loncoche and Roca Formations of the lower
Malargtie Group (fig. 3) (Barrio, 1990; Aguirre Urreta and others, 2011; Parras and
Griffin, 2013; Balgord and Carrapa, 2016).

Towards the beginning of the Paleogene, volcanic rocks continued their emplace-
ment to the south of the study area (fig. 4) (Llambias and Rapela, 1989; Kay and
others, 2006; Llambias and Aragén, 2011), while shallow marine sedimentation in the
retroarc area was replaced by distal fluvial deposition represented by the Pircala and
Coihueco Formations, constituting the upper Malargiie Group (fig. 3) (Parras and
others, 1998; Balgord and Carrapa, 2016; Horton and others, 2016). This event
marked the beginning of a stage of reduced sediment accumulation in the retroarc
region (Horton and Fuentes, 2016) and a hiatus in magmatic arc activity (figs. 3 and 4)
(Gana and Wall, 1997; Balgord, 2017; Mufioz and others, 2018). However, a recent
seismic survey performed in the present foreland zone has detected the presence of
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Fig. 4. Map showing the location of outcrops and radiometric ages of volcanic rocks emplaced between
the Late Cretaceous and the Miocene contractional phases in the study area (main anticlines and rivers are
given as a reference). Upper Cretaceous to Paleocene volcanic rocks based on Llambias and Aragén (2011),
Spagnuolo and others (2012), Munoz and others (2018), Mosolf and others (2018), and data from this work
(indicated as a maximum depositional age in the green box). Middle Eocene to lower Miocene volcanic
rocks based on Lopez-Escobar and Vergara (1997) for the Longitudinal Depression Volcanic Belt; Jordan
and others (2001) and Shockey and others (2012) for the Cura Mallin basin; Charrier and others (1996),
SERNAGEOMIN (2003) and Mosolf and others (2018) for the Abanico basin; Llambias and Rapela (1989)
for Provincia Volcanica Neuquino Mendocina (PVNM). Upper Oligocene to lower Miocene volcanic rocks
are based on Silvestro and Atencio (2009) and Dhyr and others (2013a) for the Palaoco area; Kay and
Copeland (2006) and Dhyr and others (2013b) for the Huantraico and La Matancilla areas.

thick sequences corresponding to the Pircala and Coihueco Formations deposited
over an erosive surface at the top of Roca Formation, representing a regional
unconformity at the latitudes of the study area (fig. 3) (Onnis and others, 2018).
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An Eocene contractional event has been suggested as being responsible for the
uplift of the Upper Cretaceous to lower Paleogene volcanic arc in the western Principal
Cordillera (Charrier and others, 2007, 2015; Munoz and others, 2018; Mosolf and
others, 2018) and, more speculatively, for the growth of a series of anticlines located in
the eastern Principal Cordillera (Groeber, 1946, 1947; Cobbold and Rossello, 2003;
Sagripanti and others, 2012; Alvarez Cerimedo and others, 2013). Moreover, after a ca.
15 Myr hiatus in volcanic activity (Gana and Wall, 1997; Balgord, 2017; Munoz and
others, 2018), volcano-sedimentary sequences of the Abanico Formation were depos-
ited unconformably on top of the Mesozoic units in the western Principal Cordillera
between the Middle Eocene and the early Miocene (figs. 1B and 4) (Wyss and others,
1994; Charrier and others, 1996, 2002; Piquer and others, 2010; Mescua and others,
2013; Munoz and others, 2018; Mosolf and others, 2018). Although the Abanico
Formation has been interpreted as deposited in a basin developed under extensional
conditions (Charrier and others, 1996, 2002; Godoy and others, 1999), recent propos-
als suggested that the deposition of its upper members took place during a transpres-
sive crustal shortening event (Mosolf and others, 2018). Due to the ambiguity about
the deformational setting, Horton and Fuentes (2016) interpreted this period as
dominated by a neutral tectonic regime, which concluded at ca. 40 Ma, followed by a
~20 Myr hiatus in foreland sedimentation.

Despite the apparent ~40 to 20 Ma hiatus in the foreland basin record (Horton
and Fuentes, 2016), volcanic sequences of the Abanico Formation continued their
deposition in the western Principal Cordillera until the early Miocene (fig. 4) (Char-
rier and others, 1996, 2002; Godoy and others, 1999; Kay and others, 2005; Piquer and
others, 2010; Mosolf and others, 2018). Although the Abanico Formation is not
recorded in Argentina at the latitudes of the study area, similar deposits can be found
along the international border between 36° and 39°S in the Cura Mallin basin (figs. 1B
and 4) (Niemeyer and Munoz, 1983; Munoz and Niemeyer, 1984; Suarez and Em-
paran, 1995; Jordan and others, 2001). The age of the Cura Mallin basin strata are
constrained between 25 and 19 Ma by Ar/Ar dating (fig. 4) (Jordan and others, 2001;
Burns and others, 2006; Flynn and others, 2008; Shockey and others, 2012), while
important thickness variations due to high-angle normal faulting are observed in
seismic records (Jordan and others, 2001; Utgé and others, 2009; Radic, 2010; Folguera
and others, 2010; Rojas Vera and others, 2010). The volcanic rocks in both the Cura
Mallin and Abanico basins correlate with the Longitudinal Depression Volcanic Beltin
the Central Depression, which is temporally constrained between 36 and 20 Ma by K-Ar
ages (figs. 1B and 4) (Lopez-Escobar and Vergara, 1997).

Important magmatic activity is also recorded in the Neuquén and Mendoza
retroarc between the late Oligocene and early Miocene, where thick volcaniclastic
deposits of this age can be found in the Palaoco, Matancilla and Huantraico areas (figs.
1B and 4). Although these volcanic deposits have been characterized geochronologi-
cally and geochemically (Kay and Copeland, 2006; Dhyr and others, 2013a, 2013b),
their tectonic setting and stratigraphic relations remain unclear. The only evidence
pointing towards syn-extensional emplacement can be found in the Palaoco area (fig.
4), where Alvarez Cerimedo and others (2013) described progressive unconformities
in volcano-sedimentary strata of the Palaoco Formation. The Palaoco Formation
corresponds to a stratified thick sequence of basalts, conglomerates, sandstones and
andesitic to basaltic breccias with Ar/Ar ages ranging between 24 and 18 Ma, which sits
on top of deformed deposits of the Malargtie Group (figs. 3 and 4) (Groeber, 1946,
1947; Silvestro and Atencio, 2009; Galarza and others, 2009; Sagripanti and others,
2012; Orts and others, 2012; Alvarez Cerimedo and others, 2013; Dhyr and others,
2013a). This volcanism extends to the south in the Matancilla and Huantraico areas
(Gonzalez Diaz, 1979; Ramos and Barbieri, 1988), where mafic volcanic rocks with ages
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between 26 and 17 Ma are common (fig. 3) (Cobbold and Rossello, 2003; Kay and
Copeland, 2006; Dhyr and others, 2013b).

The last shortening phase in the Malargte fold-thrust belt began at ~20 Ma,
evidenced by a shift in exhumation and accumulation compatible with magmatic-arc
and thrust-belt sources, as revealed by detrital zircon U-Pb ages obtained from the
Neogene foreland basin (Horton and Fuentes, 2016). The base of this 2 to 3 km thick
foreland basin is defined by a regional unconformity, which marks a prominent
change in the depositional environment from distal fluvial and lacustrine in the
Paleogene, towards proximal fluvial and alluvial in the Neogene (Horton and others,
2016). Surface and subsurface analyses detected growth strata associated with growing
structures within this foreland basin, composed by the early to middle Miocene
conglomerates and sandstones of the Agua de la Piedra Formation and the late
Miocene cobble to boulder conglomerates of the Loma Fiera and Tristeza Formations
(fig. 3) (Silvestro and others, 2005; Silvestro and Atencio, 2009; Sagripanti and others,
2011, 2012; Alvarez Cerimedo and others, 2013; Horton and others, 2016).

The shift towards a contractional regime was coeval with an eastward migration of
the magmatic arc during the Miocene (Kay and others, 2006; Folguera and Ramos,
2011), whose deposits in the study area, grouped within the Huincan eruptive cycle
(fig. 3), can be found intruding and unconformably covering Neogene structures
(Nullo and others, 2002, 2005; Spagnuolo and others, 2012b; Turienzo and others,
2012; Ramos and others, 2014b; Litvak and others, 2015). Finally, between the
Pliocene and the Quaternary, a mafic intraplate volcanic event took place in the
retroarc area while a series of silicic and ignimbritic flows were erupted along
the international boundary between Chile and Argentina (fig. 3) (Ramos and others,
2014b).

METHODOLOGY

The southern sector of the Malargtie fold-thrust belt is characterized by the
presence of Mesozoic rocks in a central position, which currently crop out in the cores
of several thick-skinned, N-S trending anticlines (fig. 5). Cenozoic rocks crop outin the
western and eastern sectors, which are dominantly composed of thick piles of volcanic
rocks and synorogenic deposits (fig. 5).

In this paper, we describe extensional basins that are recognized by some or all of
the following criteria: 1) normal faulting at a wide range of scales; 2) syn-extensional
deposits that present wedge shaped stratal patterns thickening against fault planes; 3)
the presence of progressive unconformities in syn-extensional deposits, with dips
decreasing up section and diverging towards the fault plane; 4) vertical volcanic dikes
and tension fractures trending parallel to normal faults; 5) volcanic rocks with
intraplate chemical signatures and mantelic sources, indicative of crustal thinning.
Conversely, periods of contraction are supported by some or all of the following
observable features: 1) reverse faulting and folding of strata at various scales; 2)
syncontractional deposits thinning against anticline hinges and thickening towards
syncline axis; 3) the presence of progressive unconformities within syncontractional
deposits, with dips decreasing up section and converging towards the growing struc-
ture; 4) angular unconformities, often associated with onlap and offlap basal relations;
5) volcanic rocks with calc-alkaline signatures and evidence of crustal contamination
due to crustal thickening.

Therefore, in order to reconstruct the intervals between the main contractional
phases responsible for the present configuration of the Malargiie fold-thrust belt, the
volcaniclastic sequences deposited between the Late Cretaceous and Miocene syncon-
tractional strata were inspected. The study of these volcaniclastic sequences was
approached through the analysis of a structural transect developed between the
western and eastern sectors of the Malargtie fold-thrust belt (fig. 5). Both sectors were
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Fig 5. Geological map of the study area showing the location of the structural transect, the analyzed
areas mentioned in the text and the seismic sections from Alvarez Cerimedo and others (2013) across the
Palaoco anticline and Onnis and others (2018) in the Llancanelo Lake basin. Geology and structure are
modified from SERNAGEOMIN (2003), Nullo and others (2005), Silvestro and others (2005), Giambiagi
and others (2009), Silvestro and Atencio (2009), Orts and others (2012), Alvarez Cerimedo and others
(2013), Naipauer and others (2015), Tapia and others (2015) and data from this work.

inspected with the aim of identifying syntectonic strata which, constrained by previous
geochronological analyses (Silvestro and Atencio, 2009) and a new U-Pb age presented
herein, allow us to propose a new tectonic evolution model for the Malargtie fold-
thrust belt.

Field Work

Field work took place along a structural transect at ~36°S, focusing in two areas
located in the western and eastern sectors of the Malargiie fold-thrust belt, represented
by the Mallines and Palaoco anticlines respectively (fig. 5). The stratigraphy of the
Palaoco anticline was assessed through the compilation of the stratigraphic sections of
Silvestro and Atencio (2009), while the stratigraphy of the Mallines anticline was
determined via field observations of stratigraphic relationships between different
units, and their correlation with better known neighboring areas (Nullo and others,
2005; Naipauer and others, 2015). Mapping along the Mallines anticline allowed the
identification of previously unrecognized volcaniclastic deposits informally called the
Los Angeles unit, which was characterized in several stratigraphic sections shown in
Iannelli and others (2018). The stratigraphic sections in both areas provided the
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framework for our structural analyses, which consisted in the identification of struc-
tures, unconformities and syntectonic strata. The identification of growth geometries
was made through systematic measurement of strata attitude and thicknesses both in
the Palaoco Formation and in the Los Angeles unit.

Detrital Zircon U-Pb Geochronology

In order to obtain the maximum depositional age of the Los Angeles unit, analysis
of the U-Pb age of detrital zircons was performed on a sample of coarse-grained
sandstone interbedded in this volcaniclastic succession. The rock samples were disag-
gregated using Electro Pulse Disaggregator (EPD) followed by traditional magnetic
and heavy liquid techniques at ZirChron LLC. A Detrital zircon non-magnetic fraction
was randomly handpicked in alcohol under a binocular microscope and mounted in a
l-inch diameter epoxy puck and polished using standard laboratory procedures.

After cathodoluminiscence and Scanning Electron Microscopy (SEM) imaging,
the first 150 LA-ICP-MS U-Pb analyses were conducted at Washington State University
using a New Wave Nd:YAG UV 213-nm laser coupled to a ThermoFinnigan Element 2
single collector, double-focusing, magnetic sector ICP-MS. Operating procedures and
parameters are similar to those described in detail in Chang and others (2006) and
Gaschnig and others (2010). A second session of analyses, obtaining a total of 120 new
LA-ICP-MS U-Pb ages, was performed at the University of California Santa Cruz,
following the methodology described in Dumitru and others (2015).

Uranium-lead ages were calculated using Isoplot (Ludwig, 2003), and the age
probability plots used in this study were constructed using the *°°Pb/?**U age for
young (<1.0 Ga) zircons and the *°Pb/?°’Pb age for older (>1.0 Ga) grains. In old
grains, ages with >30 percent discordance or >5 percent reverse discordance were
considered unreliable and were not used. Also, analyses with error greater than 10
percent were rejected. Sample coordinates, SEM and CL images, detailed analytical
methods, concordia plots and U-Pb (LA-ICP-MS) age measurements of zircon grains
are available in the Appendix.

Structural Cross Section

In order to integrate the new structural observations in the Palaoco and Mallines
anticlines, a structural cross section connecting both sectors was constructed across the
Malargtie fold-thrust belt at ~36°S (fig. 5). This section was built using the Midland
Valley’s software 2D-Move and integrating structural and geological data both from
field observations and previous studies (Gulisano and Gutiérrez Pliemling, 1994;
Giambiagi and others, 2009; Balgord and Carrapa, 2016). For its construction, the
section was divided in two sub-sections: the western one, based on our mapping and
structural measurements, encompasses the El Seguro, Mallines, Romanza and Bardas
Blancas anticlines (fig. 5); the eastern one, based on sections 9 and 12 of Giambiagi
and others (2009), connects the frontal limb of the Bardas Blancas anticline with the
Palaoco and Rincén Amarillo anticlines (fig. 5). Due to the lack of deep geophysical
constraints, the basal decollement was estimated at a depth of 10 km dipping 2°W,
following previous structural sections performed in the area (Giambiagi and others.,
2009, 2012; Orts and others, 2012; Mescua and others, 2014).

RESULTS

Eastern Sector of the Malargiie Fold-Thrust Belt: Palaoco Anticline

Part of the Cenozoic stratigraphy of the eastern sector of the Malargtie fold-thrust
belt is currently exposed in the core of the Palaoco anticline, where deformed
nonmarine deposits of the Malargtie Group of Eocene age are unconformably overlain
by the Oligo-Miocene volcaniclastic deposits of the Palaoco Formation (fig. 6). Upper
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corresponds to the trace of the stratigraphic section.

Miocene andesitic and basaltic breccias of the Loma Fiera Formation rest with angular
unconformity over the Palaoco Formation, and the whole sequence is capped by the
upper Miocene basalts of the Huincan eruptive cycle (fig 6). While the lower
unconformity accounts for a ca. 20 to 15 Myr hiatus recorded along the entire eastern
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sector of the Malargte fold-thrust belt, the second unconformity is localized, bracket-
ing a 10 to 5 Myr hiatus identified only in the core of the Palaoco anticline (fig. 6).
Although the ages of these formations are based on Ar/Ar datings performed by
Silvestro and Atencio (2009), it must be noted that we follow Groeber (1946, 1947)’s
initial proposal for the stratigraphy of this area. In this sense, we assigned the basalts,
volcanic breccias, tuffaceous sandstones and conglomerates between the Malargtie
Group and the Loma Fiera Formation to the Palaoco Formation, instead of the
Cerrillos and Ranquil Co denomination used by Silvestro and Atencio (2009) (fig. 6).
Therefore, the upper Miocene basalts referred as Palaoco Formation by Silvestro and
Atencio (2009) are reassigned to the Huincan eruptive cycle, following Nullo and
others (2005) mapping in the study area (fig. 6).

During field work we analyzed the eastern limb of the Palaoco anticline (fig. 6A),
where we identified progressive unconformities in the Palaoco Formation, which we
interpret are contained within a half-graben bounded by a west dipping, N-S oriented
fault located in subsurface east of the anticline’s core (fig. 6C). A systematic variation
of the dip of the Palaoco Formation is observed along this profile, ranging from 60°E
in the base to 35°E towards the top, where the Loma Fiera Formation is found resting
on an angular unconformity (fig. 6C). The Loma Fiera Formation also exhibits slight
dip variations between 22°E and 10°E and is covered by the basalts of the Huincan
eruptive cycle (fig. 6C).

A minor E-W striking normal fault was identified dissecting the eastern limb of the
Palaoco anticline (fig. 6A), where the Palaoco Formation contains thickness and dip
changes below the angular unconformity with the Loma Fiera Formation, which could
be indicating the presence of growth strata associated with the development of this
structure (fig. 7A).

In the northern sector of the Palaoco anticline (fig. 6A), growth strata in the
Palaoco Formation were found associated with an east dipping, N-S striking normal
fault (fig. 7B). Both thickness and dip vary, forming a fan where beds dip 30°W near
the base and become subhorizontal towards the top. The Loma Fiera Formation and
basalts of the Huincan eruptive cycle are found resting unconformably over the
Palaoco Formation and the normal fault that controlled its deposition (fig. 7B).

East of the anticline’s core (fig. 6A), its back limb is segmented by a series of N-S
normal faults with variable dip orientation controlling thickness variations of the
Palaoco Formation (fig. 7C). The timing of activity of these faults is constrained by
strata of the Loma Fiera Formation that overlie the Palaoco Formation in angular
unconformity (fig. 7C).

Western Sector of the Malarguie Fold-Thrust Belt: Mallines Anticline

The western sector of the Malargtie fold-thrust belt is located along the international
border of Chile and Argentina, where the contact between the Mesozoic sedimentary
rocks of the Neuquén basin and the overlying volcanic units is exposed (fig. 5). With the
objective of analyzing the nature of this stratigraphic contact, field work was performed in
the Mallines anticline (fig. 5), a west-verging structure that exposes the Lower to Middle
Jurassic marine deposits of the Cuyo Group in its core, with dips of 71°W in its frontal limb
(fig. 8A). These deposits are in turn overlain by the Upper Jurassic to Lower Cretaceous
marine and nonmarine deposits of the Mendoza Group and the nonmarine foreland
basin deposits of the Upper Cretaceous Neuquén Group (fig. 8A).

Along the Los Angeles Creek and near the international border, the deposits of
the Neuquén Group of the frontal limb of the Mallines anticline are unconformably
overlain by a sequence of stratified volcano-sedimentary rocks (fig. 8A). This 800
meter-thick volcano-sedimentary sequence, informally referred to as the Los Angeles
unit, is also found unconformably overlying the deformed marine deposits of the
Mendoza Group in the headwaters of the El Seguro Creek, which are in turn displaced
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Fig. 7. Normal faults controlling the deposition of the Palaoco Formation in the Palaoco anticline
(photo locations indicated in fig. 6A). (A) Progressive unconformities and thickness changes in the Palaoco
Formation associated with a minor E-W striking extensional structure, overlain in angular unconformity by
the Loma Fiera Formation. (B) Growth strata of the Palaoco Formation controlled by a N-S striking normal
fault identified beneath the unconformity with the Loma Fiera Formation. (C) The Palaoco anticline’s
back-limb is dissected by a series of N-S striking normal faults affecting thickness of the Palaoco Formation.
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Fig. 8. (A) Detailed geological map showing identified geological units, unconformities, structures,
location of the sample A-2 and strata contours of the Los Angeles unit. (B) Stratigraphic sections of the Los
Angeles unit, a volcaniclastic succession composed of basaltic and andesitic lava flows interbedded with
volcanic breccias, conglomerates and sandstones intruded by subvertical basaltic dikes. Location of the
sample A-2 is indicated in stratigraphic section 2. Taken and modified from Iannelli and others (2018). (C)
Volcano-sedimentary sequences of the Los Angeles unit unconformably overlying the Neuquén Group
deposits in the frontal limb of the Los Mallines anticline. Orange dashed lines correspond to the trace of the
4 stratigraphic sections and the star to the location of sample A-2.

over Neuquén Group deposits by a high angle reverse fault forming the El Seguro
anticline (fig. 8A).

The Los Angeles unit is composed of andesitic and basaltic lavas, volcanic breccias,
stratified sandstones and massive conglomerates, which are in turn intruded by
subvertical basaltic dikes (fig. 8B). These deposits show dip and thickness variations
along strike, displaying two internal sets of strata containing progressive unconformi-
ties within the succession, converging into an E-W striking normal fault (fig. 8C). The
southern set contains basal strata dipping 35°NW and its overlying strata dipping
11°NW, while it thickens towards the north (fig. 9A). The northern set of strata is
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Fig. 9. Normal faults affecting the deposits of the Los Angeles unit west of the Mallines anticline (photo
locations indicated in fig. 8A). (A) The deposits of the Los Angeles unit show dip and thickness variations
along strike controlled by a series of E-W striking normal faults. (B) Medium-scale normal faults affecting
deposits of the Los Angeles unit. (C) Lava flows, volcanic breccias, sandstones and conglomerates presenting
evidence of syn-extensional deposition controlled by normal faulting. (D) and (E) Syn-extensional sedimen-
tary deposits of the Los Angeles unit controlled by small-scale faulting, hammer for scale.
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dissected by a series of E-W striking normal faults, displaying 45°SW dips at the base
varying to 17°SW at the top, while it thickens towards the south (fig. 9A). A series of
E-W striking normal faults have also been identified affecting the Los Angeles unit over
a wide range of scales, controlling thickness and dip of both volcanic and sedimentary
rocks (fig. 9).

U-Pb Detrital Zircon Ages of the Los Angeles Unit

While the syn-extensional deposition of the Los Angeles unit and the control
exerted by the normal faults are evident, the timing of this extensional episode
remains poorly constrained. Nullo and others (2002, 2005) mapped these outcrops as
lower Miocene volcanic rocks of the Huincan eruptive cycle, but this determination
was based on map relations and outcrop patterns, with no geochronological analysis to
support their interpretations. Motivated by the implications of this undocumented
syn-extensional unit, it becomes necessary to obtain a temporal constraint for these
rocks. Therefore, a sample of coarse-grained sandstone (A-2, location in fig. 8) was
obtained from the Los Angeles unit to constrain its age by U-Pb detrital zircon
geochronology.

A total of 270 detrital zircons were analyzed from sample A-2, which shows a
multimodal distribution of U-Pb ages, including zircon populations with ages between
ca. 67 and 1972 Ma (fig. 10). The frequency histogram shows peaks in the age
distribution at ca. 67 (66-71 Ma, 3%), 96 (91-103 Ma, 4%), 182 (174-192 Ma, 7%),
250 (242-263 Ma, 11%), 274 (266-277 Ma, 6%), 300 (294-305 Ma, 6%), 360 (349-368
Ma, 9%), 382 (373—400 Ma, 7%), 459 (453—467 Ma, 4%) and 1100 Ma (1069-1136 Ma,
2%), with isolated ages observed between them (fig. 10A). This heterogeneity of ages is
also reflected in zircon morphology, characterized by euhedral and bipyramidal forms
of volcanic origin, while some present rounded to subrounded edges (fig. 10B). In
particular, all the youngest grains are pristine and elongated with a length-to-width
ratio of 6 (fig. 10B). The age of the youngest peak was calculated from a coherent
group of 6 zircons using the Tuff-Zirc algorithm (Ludwig, 2003), obtaining a mean age
at67.1 +2.4/—0.9 Ma (fig. 10C).

Structural Cross Section Across the Malargiie Fold-Thrust Belt at ~36°S

The structural cross section built across the Malargtie fold-thrust belt is 126.65
kilometers long. A restored length of 139.28 kilometers was calculated using the
flexural slip algorithm (Kane and others, 1997; Egan and others, 1997). This yeilds a
minimum shortening of 12.72 kilometers, representing a 9.13 percent of the initial
length (fig. 11).

Beginning in the western sector of the Malargtie fold-thrust belt, the west dipping
reverse fault that displaces the Mendoza Group over the Neuquén Group in the El
Seguro creek also corresponds to the eastern limit of the syn-extensional Los Angeles
unit outcrops (figs. 11 and 12A). Therefore, this limit could be interpreted as a
tectonically inverted normal fault responsible for the generation of the El Seguro
anticline, evidenced by its high angle and a hanging-wall bypass thrust deforming the
incompetent Mesozoic strata observed in the headwaters of the El Seguro Creek (figs.
11 and 12A) (Hayward and Graham, 1989; McClay and Buchanan, 1992). This fault
also spatially coincides at depth with a west-dipping normal fault that controlled the
border of a Late Triassic to Early Jurassic depocenter (figs. 11 and 12A), both presently
exposed in the western limb of the Dedos-Silla anticline, located 10 kilometers to the
north along the same structural trend (fig. 5) (Villar and others, 2014; Branellec and
others, 2016). This anticline, also known as the Las Lenas high, exposes a Late Triassic
to Early Jurassic horst in its core, which is bounded to the east by another tectonically
inverted east-dipping normal fault (Villar and others, 2014; Branellec and others,
2016). The inversion of this fault is responsible for the Mallines anticline’s uplift along
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Fig. 10. (A) Frequency histogram and relative probability plots of U-Pb (LA-ICP-MS) ages of detrital zircons
from a sample of the Los Angeles unit (A-2, location in fig. 8). (B) SEM images show that, although morphology
of zircons 1s heterogeneous, all the youngest grains that compose the 67 Ma peak are pristine and have a
length-to-width ratio of 6 (see zircon of ~69 Ma). (C) A maximum depositional age of 67.1 +2.4/—0.9 Ma was
calculated from a coherent group of 6 zircons using the Tuff-Zirc algorithm (Ludwig, 2003).

our structural transect, indicated by its steeply dipping frontal limb and harpoon
geometry (figs. 11 and 12B) (McClay and Buchanan, 1992). To the east, the Romanza
anticline corresponds to a long wavelength anticline whose uplift mechanisms are
unclear, although its northern continuation through the La Valenciana anticline
indicates that it is likely controlled by deep-seated basement thrusting (figs. 5 and 11)
(Branellec and others, 2016).

The oldest rocks along the structural transect crop out in the center of the section,
where a series of basement blocks are uplifted through low angle thrust faults,
constituting the Bardas Blancas anticline (figs. 5 and 11). This area acted as a structural
high during the generation of the Late Triassic to Early Jurassic depocenters (Manceda
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Fig. 11. Structural section built across the study area, connecting the western and eastern sectors of the
Malargtie fold-thrust belt (location in fig. 5). The oldest rocks along the structural transect crop out in
the center of the section, where a series of basement blocks are uplifted through low angle reverse faults. The
youngest rocks crop out both in the western and eastern sectors of the belt, where tectonic inversion
mechanisms are predominant due to the presence of inherited extensional structures.

and Figueroa, 1995), leaving no extensional structures available to be inverted (fig.
11). This arrangement has led previous authors to propose that this anticline is formed
entirely by major basement thrusts and backthrusts, in absence of tectonic inversion
mechanisms (fig. 11) (Manceda and others, 1992; Kozlowski and others, 1993; Manceda
and Figueroa, 1995; Dimieri, 1997; Dicarlo and Cristallini, 2007).

In the eastern sector of the Malargiie fold-thrust belt, the section crosses the
Palaoco anticline, a thick-skinned structure formed by the tectonic inversion of a series
of Late Triassic to Early Jurassic half-grabens, and terminates in the Rincén Amarillo
anticline, a west-verging thick-skinned anticline with little surface expression (fig. 11).
Since this area is covered almost entirely by late Cenozoic volcanic and sedimentary

Fig. 12. Structural diagrams and field photos of tectonically inverted structures in the western sector of
the Malargtie fold-thrust belt (see figs. 5 and 8 for location and fig. 11 for position along the structural
section and diagram color references). (A) Tectonic inversion generating the El Seguro anticline is
evidenced by the high angle reverse fault displacing the Upper Mendoza Group over the Neuquén Group
and the hanging-wall bypass thrust affecting this structure internally. (B) The west-vergent Mallines anticline
presents harpoon geometry and a high-dipping frontal limb, both as a result of the tectonic inversion in
depth of a Late Triassic-Early Jurassic normal fault.
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rocks, the direct observation of structures in the field is difficult (fig. 5). Therefore, the
structure of this area is based on Giambiagi and others (2009)’s interpretation of
seismic and borehole information. However, normal faults were observed in the
eastern limb of the Palaoco anticline during field observations (figs. 6 and 7), which we
interpret to be associated in subsurface with a west dipping master fault marking the
eastern border of a late Oligocene to early Miocene half-graben (fig. 11).

A general analysis of the present structure shows that a series of thick-skinned
anticlines form part of a basement high in the central sector of the Malargie
fold-thrust belt, while in the western and eastern sectors the structural basement is
depressed. As a consequence, while tectonic inversion mechanisms were responsible
for the uplift of the western and eastern sectors of the Malargte fold-thrust belt, the
generation of new thrusts uplifted the central sector (fig. 11).

DISCUSSION

Maximum Depositional Age and Provenance of the Los Angeles Unit

Geochronologlcal data presented in this work reveal that the youngest peak of
U-Pb detrital zircon ages in the Los Angeles unit is 67 Ma (fig. 10A). SEM images show
that the zircons composing the 67 Ma peak are pristine and present an elongated
morphology (fig. 10B), suggesting a primary syn-depositional volcanic origin (Corfu
and others, 2003). This age is consistent with 3 Ar-Ar ages and 11 U-Pb crystallization
ages obtained in volcaniclastic rocks of very similar characteristics located 50 to 75 km
to the north in the western Principal Cordillera (fig. 4) (Mosolf and others, 2018;
Muiioz and others, 2018). Therefore, we interpret that the Los Angeles unit was
deposited in latest Cretaceous times.

The multimodal distribution of detrital zircon ages in the sample A-2 of the Los
Angeles unit reveals that the source area was composed mainly of Mesozoic and
Paleozoic rocks, with a minor contribution from Precambrian rocks (fig. 10A). This
pattern is indicative of exhumation and contribution from western Andean sources
(see Naipauer and Ramos, 2016 for a discussion regarding source regions in the
Neuquén basin), showing no significant changes in source areas compared to the
Upper Cretaceous deposits of the Neuquén Group (Tunik and others, 2010; Di Giulio
and others, 2012) or the equivalent Diamante Formation (Balgord and Carrapa, 2016)
(fig. 13). The cratonic sources in the sample A-2 are subordinate and can be
interpreted as the recycling from older sedimentary units (fig. 13). However, given the
unconformity on the base of the Los Angeles unit and the missing thickness of the
Neuquén Group along the headwaters of the El Seguro Creek (figs. 8 and 12A),
recycling of material representing the western Andean sources emerges as another
possibility (fig. 13).

A comparison with the relative probability plot of the sample 15EAB12 obtained
from the Diamante Formation located 15 km to the east of the Los Angeles unit (fig.
14A) (Balgord and Carrapa, 2016) shows a great resemblance to the age pattern of
sample A-2, with the exception of the 67 Ma peak (fig. 13). These ~67 Ma volcanic
zircons have also been detected in tuffs, pyroclastic rocks and dikes interbedded in the
Plan de los Yeuques Formation located 50 to 75 km to the north (Mosolf and others,
2018; Munoz and others, 2018) and in shallow marine deposits of the Malargiie Group
located in the retroarc area (fig. 14B) (Aguirre Urreta and others, 2011; Balgord and
Carrapa, 2016). This suggests that the volcanic arc was active during latest Cretaceous
time and that the Los Angeles unit was receiving volcanic 1nput from it.

Although a younger age for the Los Angeles unit remains as a possibility, it is
unlikely, since it would imply the absence of syndepositional volcanism and the recycling
of a latest Cretaceous unit. In this scenario, the Los Angeles unit could be an equivalent of
the Abanico Formation located in the western Principal Cordillera, or correspond to the
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Fig. 13. A comparison of the relative probability plots of U-Pb ages (<500 Ma) of detrital zircons shows
the similarity of zircon signatures between the Los Angeles unit and the Diamante Formation, an equivalent
to the Neuquén Group (Balgord and Carrapa, 2016). These data could suggest that both units were
receiving sediments from the same western Andean sources, or that the recycling of the Neuquén Group
could have been the main source of detrital zircons of sample A-2, with the exception of the 67 Ma peak. The
source of this peak would be the coeval magmatic arc and, therefore, 67 Ma is interpreted as the most
probable age of sedimentation of sample A-2. The subdivision between Andean sources and cratonic sources
1s based on Naipauer and Ramos (2016).

Huincéan eruptive cycle, as originally mapped by Nullo and others (2002, 2005). However,
the presence of normal faults affecting the deposits of the Los Angeles unit would
undermine its correspondence with the Huincan eruptive cycle, emplaced under a
contractional regime. The only remaining possibility would be that the Los Angeles unit is
an equivalent of the Abanico Formation but without syndepositional zircons, although this
would contrast with what has been reported for this formation (Mosolf and others, 2018)
and coeval sedimentary units in the retroarc area (Horton and others, 2016). Moreover,
this possibility implies recycling of the lower Malargiie Group, not reported in the vicinity
of the Mallines anticline (figs. 5 and 8). However, if this still were the case, the normal
faults documented in this study would constitute the first direct evidences of normal
faulting in the Abanico Formation at these latitudes.

Cretaceous Tectonic Setting

The opening of the Southern Atlantic Ocean in the Cretaceous had a huge impact
in the South American continent, where a series of intracontinental rifts developed,
reaching almost as far as the western Pacific margin (fig. 1A). The Salta Group basin is
one of the best studied basins of this age, presenting a long-lasting synrift phase
bracketed between 128 and 80 Ma (for a recent review, see Gianni and others, 2015
and references therein). However, the final stages of the synrift phase were coeval to
the early rise of the Andes at these latitudes, followed by a latest Cretaceous to
Paleocene extensional reactivation in the Salta Rift northeastern arm (Lomas de
Olmedo sub-basin) (Cominguez and Ramos, 1995). This late extensional event oc-
curred during an important eastward expansion of the orogenic wedge (Bascunan and
others, 2015), suggesting a causal relation between both events. This apparent paradox
was addressed by Gianni and others (2015), who suggested a synorogenic foreland
rifting reactivation due to the favorable NE trend of the Lomas de Olmedo sub-basin
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and the influence of the NE-directed compressional stress field between the latest
Cretaceous and the Paleocene. Other examples in the South American continent are
constituted by the San Jorge Gulf and Taubaté basins (fig. 1A), whose parallel
orientations respect to Andean far-field stresses resulted in the reactivation of pre-
existing normal faults and basement fabrics, respectively (Gianni and others, 2015).
Therefore, the early to mid Cretaceous and the latest Cretaceous to Paleocene
extensional events in southern South America seem to be linked to different geody-
namic scenarios. While the first extensional stage was related to the opening of the
southern Atlantic Ocean, the second one appears to be a consequence of the
interaction between Andean far-field compressional stresses and similarly oriented
heterogeneities in the crust.

Studies of the past decades have demonstrated that Upper Cretaceous nonmarine
deposits constitute the earliest synorogenic sediments of the Andean foreland basin in the
study area (fig. 14A) (Tunik and others, 2010; Di Giulio and others, 2012; Orts and others,
2012; Balgord and Carrapa, 2016; Fennell and others, 2017). In particular, a 25 to 30 Myr
unconformity between the Bajada del Agrio Group and the Diamante Formation has been
reported in the western sector of the Malargtie fold-thrust belt, possibly representing the
passage of the forebulge through this area during initial flexural loading, related to crustal
shortening and uplift to the west (fig. 3) (Balgord and Carrapa, 2016). The absence of the
Bajada del Agrio Group between the Neuquén and Mendoza Groups in the El Seguro
anticline supports this interpretation, indicating that the hiatus could be even longer (figs.
8 and 11A). Although a magmatic lull has been proposed due to the lack of zircons
between 100 and 70 Ma preserved in foreland strata (Fennell and others, 2017; Balgord,
2017), plutonic rocks have been reported during this stage between the Coastal Cordillera
and the westernmost Principal Cordillera (figs. 14A and 14C) (Ramos and Folguera, 2005;
Charrier and others, 2007; Munoz and others, 2018). Moreover, recent studies have
reported detrital zircons of this age in proximal nonmarine foreland strata of the
Brownish-Red Clastic Unit (BRCU) in the western Principal Cordillera (Munoz and
others, 2018), indicating the activity of a magmatic arc during foreland basin deposition
(fig. 14). This contractional tectonic regime has been linked to the accelerated westward
drift of South America after its separation from the rest of Gondwana due to the opening
of the southern Atlantic Ocean (Fennell and others, 2017; Horton, 2018). However,
synorogenic deposition ended in the foreland at ca. 80 Ma, representing the end of the
Late Cretaceous contractional stage and associated flexural accommodation (fig. 14)
(Munoz and others, 2018).

The magmatic arc arrived at the core of the Principal Cordillera at 80 Ma (Munoz
and others, 2018), representing an eastern migration of the magmatic loci during the
Late Cretaceous contractional stage and reaching the western sector of the Malargiie
fold-thrust belt at ~67 Ma (fig. 14). During the analysis of the western sector of the
Malargtie fold-thrust belt, we identified growth strata associated with normal fault
activity in the uppermost Cretaceous volcaniclastic Los Angeles unit, suggesting an
extensional subsidence mechanism controlling its deposition (figs. 14B and 14C).
Given that syn-extensional deposition of the Los Angeles unit postdates both the opening
of the southern Atlantic Ocean and the termination of the Late Cretaceous contractional
stage, its interpretation as an intraplate or synorogenic rift basin linked to either processes
is discarded. Moreover, the extensional reactivation of inherited heterogeneities during
contractional tectonic regimes is unlikely in this area, given the prevalence of N-trending
pre-Andean structures, which are orthogonal to the regional stress field during Andean
growth (Vergani and others, 1995; Bechis and others, 2014).

However, evidence for extension during this period is not restricted to the western
sector of the Malargiie fold-thrust belt. To the north, Munoz and others (2018)
described a 300 meter offset across a normal fault associated with thickness variations
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and minor normal faulting in the volcaniclastic sequences of the coeval Plan de los
Yeuques Formation (figs. 14B and 14C). Moreover, cropping out in the Central
Depression to the northwest, pyroclastic deposits with intercalations of lavas and
nonmarine sediments of the uppermost Cretaceous Lo Valle Formation have also been
inferred as deposited during extensional conditions (figs. 14B and 14C) (Charrier and
others, 2007). Llambias and Aragén (2011) described intrusive facies cutting syncline
flanks and anticline cores 100 km to the south (Naunauco Group), suggesting that
magmatic activity in this area was favored by a post-orogenic relaxation stage during
latest Cretaceous time (fig. 14B). All these volcanic and volcaniclastic sequences are
aligned along the present Andean axis, separated 50 to 100 km from the latest
Cretaceous magmatic arc that was proposed by Spagnuolo and others (2012a) to the
east, based in the position of the Rio Grande volcanic rocks (fig. 14B). Thus, it would
appear that a broad magmatic arc existed in the study area during latest Cretaceous
times, associated with a volcaniclastic intra-arc extensional basin represented by the
Los Angeles unit and the Plan de los Yeuques Formation (fig. 14B).

On a more regional scale, thickness variations in shallow marine deposits (Gonzilez,
1989; Radic and others, 2005, 2009) support an extensional event that occurred during
latest Cretaceous times. These deposits crop out along South America’s western coast
between 33° and 37°S and are considered Maastrichtian in age and Pacific Ocean derived
based on their fossil content (fig. 14B) (Salazar and others, 2010; Buatois and Encinas,
2011). A U-Pb maximum depositional age of 71.9 0.9 Ma obtained in the Quiriquina
Formation confirms previous biostratigraphic data (Encinas and others, 2014) and allows
their correlation with the marine deposits of the Roca and Loncoche Formations over the
retroarc region (figs. 14B and 14C) (Barrio, 1990; Parras and Griffin, 2013). This eastern
marine incursion, constrained to the Campanian-Danian by its fossil biota and confirmed
by its U-Pb detrital zircon age signature (Aguirre Urreta and others, 2011; Balgord and
Carrapa, 2016), reached the wedge top area of the Late Cretaceous foreland basin through
a series of pathways (14B) (Tunik, 2003; Aguirre Urreta and others, 2011; Orts and others,
2012; Parras and Griffin, 2013; Balgord and Carrapa, 2016) surpassing the position of the
Late Cretaceous orogenic front (fig. 14A) (Fennell and others, 2017). This Atlantic marine
ingression has been traditionally related to a regional tilting of the basin as a consequence
of successive thrust loading during the Late Cretaceous deformational phase (Barrio,
1990; Aguirre Urreta and others, 2011). Although this interpretation has been recently
challenged by models showing that dynamic subsidence could explain this sudden marine
ingression (Gianni and others, 2018a), evidence for extensional tectonism during these
times must be also taken into account.

Tectonic Evolution of the Malargiie Fold-Thrust Belt

The description of syn-extensional growth strata along the structural transect adds
some complexity to the tectonic evolution of the Malargtie fold-thrust belt, indicating
an alternation of contractional and extensional deformation events during the growth
of the Southern Central Andes between 35° and 37°S (fig. 15).

The initial uplift of the Malarguie fold-thrust belt took place in Late Cretaceous
time (ca. 100 Ma), associated with the passage from an extensional retroarc stage (fig.
15A) to a contractional regime (fig. 15B). This passage is reflected by the presence of
growing structures between ca. 100 and 80 Ma and a change in the accumulation
dynamics towards flexural subsidence within a foreland basin (fig. 15B) (Manceda and
Figueroa, 1995; Horton and Fuentes, 2016; Balgord and Carrapa, 2016; Fennell and
others, 2017; Munoz and others, 2018). Based on the analysis of synorogenic strata of
the Neuquén Group associated with the growth of structures located in the western
sector of the Malargiie fold-thrust belt (Fennell and others, 2017), the El Seguro,
Mallines, Romanza and Bardas Blancas anticlines would have also been uplifted at that
time (figs. 14A and 15B). Moreover, the observation of an angular unconformity
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Fig. 15. Schematic tectonic evolution of the Malargtie fold-thrust belt along the analyzed structural
section, taking into account active volcanism, sedimentation and deformation through time.

between the Lower Cretaceous deposits of the Mendoza Group and the latest Creta-
ceous volcaniclastic deposits of the Los Angeles unit in the El Seguro Creek supports
an important non depositional or erosive event during Late Cretaceous times in the
western sector (fig. 12A). While the location of the Late Cretaceous orogenic front in
the study area has yet to be accurately determined, some evidence indicates that
contractional deformation could have reached the eastern sector of the belt, repre-
sented by the Palaoco anticline in the analyzed section (figs. 14A and 15B) (Boll and
others, 2014; Folguera and others, 2015a; Fennell and others, 2017).

Later, we interpret that an extensional event interrupted the development of the
belt in latest Cretaceous times (ca. 80—-65 Ma) (fig. 15C). The presence of volcanic arc
rocks both in the present arc and retroarc areas at 36°S suggests two separate magmatic
fronts associated with the opening of an extensional intra-arc basin in the western
sector of the belt, where the volcaniclastic Los Angeles unit was deposited (figs. 14B
and 15C). At the same time, the Atlantic Ocean transgressed into the retroarc area,
advancing through narrow mountain corridors into the previous deformational front
area (figs. 14B and 15C).

The Paleogene constitutes the least studied period of the geological record in the
study area, mostly due to poor geochronological constraints and the lack of hydrocar-
bon interest in Paleocene to Oligocene sequences. However, the recent identification
of the Plan de los Yeuques Formation along with the ca. 15 Myr angular unconformity
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separating it from the overlying Abanico Formation could record an episode of mild
contractional deformation in the western Principal Cordillera between Paleocene and
middle Eocene time (Charrier and others, 2007, 2015; Munoz and others, 2018).
Furthermore, an erosive surface with toplap reflections between the Roca and Pircala
Formations has been detected in a seismic section performed in the Llancanelo Lake
basin (see fig. 5 for location), suggesting that the hiatus identified in the arc area could
be representing an unconformity of regional significance (fig. 3) (Onnis and others,
2018). Wells along this section reported up to 1200 meters of sediments assigned to the
Pircala and Coihueco Formations, demonstrating an important depocenter located in
the subsurface east of the Palaoco anticline (fig. 15D) (Onnis and others, 2018). The
presence of this depocenter had already been hinted by Alvarez Cerimedo and others
(2013), who present a series of seismic sections showing a ~2 km thick Paleogene
record that thins onto the crest of the Palaoco anticline (see fig. 5 for location). This
geometry would suggest that the Palaoco anticline constituted a growing structure
during the Paleogene (fig. 15D).

Paleogene growth of the Palaoco anticline is supported by the description of an
angular unconformity between the Malargtie Group and the Palaoco Formation (Alvarez
Cerimedo and others, 2013), also reported in other anticlines of the Malargtie fold-thrust
belt (Sagripanti and others, 2012; Orts and others, 2012). This notion coincides with
Groeber (1946, 1947)’s initial proposal of a contractional event occurred during the
Eocene in the eastern Principal Cordillera, which had already been confirmed by Cobbold
and Rossello (2003), who interpreted the Paleogene as a period of transpression with a
component of rightlateral slip, based on structural, stratigraphical and geochronological
evidence collected in the retroarc area. This transpressive crustal shortening event is also
recorded in the upper members of the Abanico Formation in the arc area, where
well-dated growth strata and a system of dextral-reverse faults active during the late Eocene
have been recently recognized (fig. 15D) (Mosolf and others, 2018).

An analysis of the foreland basin deposits carried out by Horton and others (2016)
reported slow accumulation rates followed by a sustained 20 Myr period of nondeposi-
tion during the Paleogene, which they argue are incompatible with significant topo-
graphic loading, leading to their proposal of a neutral tectonic regime (Horton and
Fuentes, 2016). However, sedimentation rates would become considerably higher if
the 1200 m thick deposits of the Pircala and Coihueco Formations in the Llancanelo
Lake basin and the volcaniclastic rocks of the Palaoco Formation were taken into
account, marking the end of this slow accumulation stage at ca. 25 Ma (fig. 3).
Although more evidence and better time constraints are needed, recent proposals of
Eocene deformation affecting the Southern Central Andes both to the north and
south of the study area (Gianni and others, 2017; Lossada and others, 2017; Fosdick
and others, 2017; Rodriguez and others, 2018) indicate this contractional event should
be better assessed in the Malargtie fold-thrust belt.

Although the deposition of volcaniclastic strata of the Abanico Formation began
in the middle Eocene (Charrier and others, 1996; Mosolf and others, 2018), regional
evidence of syn-extensional accumulation is only recorded during late Oligocene and
earliest Miocene times (fig. 15E) (Charrier and others, 2002; Kay and others, 2005;
Piquer and others, 2010), synchronous with syn-extensional deposition within the Cura
Mallin basin to the south (figs. 1B and 4) (Jordan and others, 2001; Burns and others,
2006; Utgé and others, 2009; Radic, 2010; Folguera and others, 2010; Rojas Vera and
others, 2010). Extension is also recorded in the retroarc area between the late
Oligocene and the earliest Miocene, evidenced by the presence of growth strata in the
Palaoco Formation controlled by normal faulting, exposed in the Palaoco anticline
(fig. 15E). These volcaniclastic sequences, along with the upper Oligocene to lower
Miocene volcaniclastic rocks described in the La Matancilla and Huantraico areas to
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the south (fig. 4), would represent the second extensional interruption to the growth
of the Malarguie fold-thrust belt (fig. 15E). In this sense, these volcaniclastic rocks
would constitute the infill of a retroarc extensional basin between 36° and 38°S (Kay
and Copeland, 2006; Dhyr and others, 2013a, 2013b), sharing similar mechanics of
deposition and geochemical signatures with a series of basins and volcanic eruptions of
the same age, indicative of regional crustal thinning in the Southern Central Andes
between the late Oligocene and the earliest Miocene (fig. 1B) (see Fennell and others,
2018 for a recent review).

Finally, the early Miocene marks the beginning of the last deformational phase in
the Malargtie fold-thrust belt, recorded by the inversion of previous extensional basins,
the reactivation of Late Cretaceous and Eocene thrusts and the generation of new ones
along the belt, such as the hanging-wall bypass thrust observed in the El Seguro
anticline (fig. 15F). The shift between extensional and contractional deformation is
evidenced by the synorogenic deposition of sediments within the Rio Grande basin
and the presence of an angular unconformity between the Palaoco and the Loma Fiera
Formations in the Palaoco anticline (fig. 15F). Moreover, the localized ~8 Myr hiatus
identified in the Palaoco anticline indicates that deformation had already reached the
eastern sector of the Malargtie fold-thrust belt in middle Miocene times (fig. 15F).
Although deformation in the Malargtie fold-thrust belt was accompanied by the
emplacement of the volcanic rocks of the Huincan eruptive cycle during the Miocene
eastern magmatic arc migration (Ramos and others, 2014b; Litvak and others, 2015),
out-of-sequence thrusting and emplacement of plutonic rocks during the late Miocene
in the arc area would indicate both ongoing magmatism and shortening in the western
sector of the Malargtie fold-thrust belt towards the end of this contractional stage (fig.
15F) (Tapia and others, 2015).

Hiatus in the Stratigraphic Record of the Malargiie Fold-Thrust Belt

A series of enigmatic regional hiatus have been recorded in the stratigraphic
record of the Malargtie fold-thrust belt (fig. 3), although there is no unique interpreta-
tion behind their occurrence. In the case of the 25 to 30 Myr hiatus identified in the
western sector of the Malargtie fold-thrust belt, the passage of a foreland bulge due to
the advance of the Late Cretaceous thrust front is among the most common interpreta-
tions (Di Giulio and others, 2012; Balgord and Carrapa, 2016). However, evidence for
large topographic loads to the west is meager, and this unconformity is also recorded
in structures among the eastern sector of the belt (Ramos and Folguera, 2005; Boll and
others, 2014; Fennell and others, 2017). Furthermore, eastward migration of the
different depozones that characterize flexural and contiguous foreland basins (DeCelles
and Giles, 1996) are not supported by current ages and descriptions of the foreland
basin infill (fig. 14A) (Tunik and others, 2010; Di Giulio and others, 2012; Balgord and
Carrapa, 2016; Fennell and others, 2017).

A second enigmatic hiatus that occurred during the Paleogene has been detected
since the early work’s of Groeber (1946, 1947), even though it has been recently
temporally constrained between 40 and 20 Ma (Horton and others, 2016; Horton and
Fuentes, 2016). These authors argue against the assignation of this late Eocene to earliest
Miocene stratigraphic hiatus to the passage of a forebulge, given the lack of evidence for
late Paleogene shortening. Moreover, since extensional basins would by definition act to
reduce any topographic loading, the synchronicity of this hiatus with extensional deforma-
tion reported in the Andes at these latitudes would definitely rule out the foreland bulge
passage interpretation. An alternative hypothesis to this hiatus is given by Horton and
Fuentes (2016), who propose it might be the product of diminished plate coupling during
a neutral tectonic regime, resulting in no thrust loading and slow, limited flexural
subsidence in the foreland at these latitudes (Horton, 2018).
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Fig. 16. (A) Proposed shifts between extension and shortening in the study area show good correlation
with changes in subduction parameters, with the first extensional event coinciding with a drop in the
absolute velocity of South America, and the second with a sudden rise on relative convergence velocity (both
curves are taken and modified from Maloney and others, 2013). (B) Plate reconstructions taken and
modified from Miiller and others (2016) using a hotspot reference frame for the last 70 Myrs, which is
paired with a True Polar Wander-corrected paleomagnetic model for older times allowing for a 35 Myr long
transition period between 105 and 70 Ma. These paleoreconstructions show that after an almost orthogonal
subduction during Late Cretaceous times, the oblique subduction of the Farallon-Aluk mid-ocean ridge
occurred beneath the study area (marked with a white star) during latest Cretaceous times. This event
marked the beginning of oblique subduction along the Southern Central Andes, which became orthogonal
again towards the end of the Paleogene, situation that has remained unaltered until present. Noteworthy,
both extensional stages coincide with these major obliquity changes along the margin. Abbreviations: A,
Aluk Plate; ANT, Antarctic Plate; C, Cocos Plate; CA, Caribbean Plate; CAT, Catequil Plate; CHZ, Chasca
Plate; FAR, Farallon Plate; NAZ, Nazca Plate; SAM, South American Plate.

In the present, the Andean forebulge has been interpreted to be located in the La
Pampa High, 300 km east of the San Rafael block frontal thrust, based on geophysical
and geomorphological analyses (Chase and others, 2009; Niviere and others, 2013).
However, their interpretation has been challenged by Folguera and others (2015b),
who show that the La Pampa High corresponds to a block uplift reactivated towards the
end of the Miocene, and that the geometry, thickness and facial distribution of
Neogene basins far east of the Andean orogenic front must be related to dynamic
forces rather than flexural. Therefore, it seems that the configuration in and around of
the Malargtie fold-thrust belt, where extensional faults and inherited basement fabrics
would potentially reactivate due to tectonic loading, may preclude the formation of
foreland bulges, since foreland crust would have likely behaved as a broken beam,
inhibiting the migration of flexural waves.

Possible Causes of Extensional Events

Current data presented in our tectonic evolution model indicate that after a long
extensional regime, a strongly convergent retroarc system was established in the study
area in Late Cretaceous times (fig. 16A) (Orts and others, 2012; Mescua and others,
2013; Horton and Fuentes, 2016; Balgord and Carrapa, 2016; Fennell and others, 2017;
Munoz and others, 2018). Afterwards, the deformational history of the belt fluctuated,
including three contractional stages (~100-80 Ma, ~65-25 Ma and ~20-0 Ma) and
two extensional events (~80-65 Ma and ~25-20 Ma) (fig. 16A). However, when
attempting to link these extensional episodes with models of extension along conver-
gent margins, numerous hypotheses arise.
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A widely cited model for extensional deformation is the extensional collapse and
lithospheric foundering as a consequence of thick crustal roots (Coney and Harms,
1984; Dewey, 1988; Kay and others, 1994; Giovanni and others, 2010; Giambiagi and
others, 2016). However, due to the lack of paleoelevation estimations and geochemical
indicators of crustal thickening in our study area, we cannot either support or rule out
this process. Nevertheless, the low shortening estimates (typically 25-10 km) of the
Malargtie fold-thrust belt obtained in this and in previous studies (Giambiagi and
others, 2012; Orts and others, 2012; Rojas Vera and others, 2014; Mescua and others,
2014; Fuentes and others, 2016) would suggest that crust never reached threshold
values necessary to generate the orogenic collapse. Therefore, extension associated
with delamination and gravitational spreading seems unlikely.

A slab shallowing event has been proposed between Late Cretaceous and earliest
Paleocene times, based on the spatio-temporal evolution of the magmatic arc and the
onset of Andean orogenic building in the study area (fig. 16A) (Ramos and Folguera,
2005; Folguera and Ramos, 2011; Spagnuolo and others, 2012a; Fennell and others,
2017; Gianni and others, 2018a). Although kinematic linkages to flat-slab subduction
have also been proposed as a potential extensional mechanism (McNulty and Farber,
2002), no evidence of active thrusting and a great amount of volcanic rocks deposited
within a broad volcanic arc between 80 and 65 Ma suggest that a shallow subduction
angle during the latest Cretaceous-Paleocene below the study area was unlikely, or that
aslab tear was formed at 35°30’S, as proposed by Gianni and others (2018a). However,
a closer look into the geodynamic context reveals that the subduction of the
Farallon-Aluk mid-ocean ridge beneath the study area coincides with the latest
Cretaceous extensional stage (fig. 16B) (Cande and Leslie, 1986; Somoza and Ghidella,
2012; Maloney and others, 2013; Muller and others, 2016).

An analysis of Muller and others (2016)’s global plate reconstruction model
through the free-access GPlates software (www.gplates.org) shows that a southward
migration of this triple junction was coeval with reported extensional deformation
along South America’s western margin, starting in northern Chile during the Late
Cretaceous and reaching central Patagonia in Eocene times, where it opened a series
of slab windows beneath the retroarc area (fig. 16B) (Ramos and Kay, 1992; Mpodozis
and Allmendinger, 1993; Arévalo and others, 1994; Espinoza and others, 2005; Aragon
and others, 2011; Gianni and others, 2018b). Moreover, recent geochemical analyses
performed in the Los Angeles unit show that after an initial arclike signature, a more
alkaline-tendency is observed towards the younger volcanic levels, suggesting a more
enriched mantle source and the subduction of anhydrous oceanic crust, which is compat-
ible with the passage of a mid-ocean ridge (Iannelli and others, 2018). Although the
subduction of mid-ocean ridges is not a very popular extensional mechanism, weakening
of the upper-plate’s lithosphere in response to the presence of hot mantle at depth
constitutes another process capable of generating a shift towards an extensional regime
causing local to regional collapse (Garrett and Storey, 1987; Thorkelson, 1996; Bradley
and others, 2003; Lagabrielle and others, 2004, 2007; Scalabrino and others, 2009;
Breitsprecher and Thorkelson, 2009; Georgieva and others, 2016).

Another potential cause of upper plate extension in the Southern Central Andes
is a change in subduction parameters, such as upper plate absolute velocity and relative
convergence velocity (Heuret and Lallemand, 2005; Lallemand and others, 2005; Sobolev
and Babeyko, 2005; Schellart, 2008; Schellart and Moresi, 2013; Horton, 2018). While a
good correspondence has been observed between the onset of contractional deformation
in the study area and the westward accelerated displacement of the South American plate
(Fennell and others, 2017; Horton, 2018), the latest Cretaceous extensional phase coin-
cides with a decrease in South America’s absolute westward velocity (fig. 16A) (Maloney
and others, 2013; Miller and others, 2016; Munoz and others, 2018). Afterwards, the
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westward motion of South America stabilized and convergence velocity seems to have
played a major role, since coincidences have been recognized between high average
convergence rates and both Eocene and Miocene phases of deformation (fig. 16A)
(Pardo-Casas and Molnar, 1987; Lossada and others, 2017).

However, the sudden increase towards fast convergence rates during the Paleo-
gene to Neogene transition overlaps with the second extensional interruption in the
study area, showing an inconsistency with models linking high rates of convergence to
strong compressional coupling (fig. 16A). The regional event of crustal thinning and
widespread volcanism recorded during the late Oligocene and the earliest Miocene
has been related to another possible cause of extensional deformation in convergent
margins: steepening and rollback of the subducted slab (Munoz and others, 2000;
Ramos and Folguera, 2009; Folguera and Ramos, 2011; Encinas and others, 2016;
Horton, 2018). It has been recently suggested through numerical modeling that after
the slow subduction rates recorded during most of the Paleogene (fig. 16A), the
influence exerted by the slab pull force over the subducting plate resulted in an abrupt
increase in the convergence rate, steepening of the slab and the retreat of the trench
hinge away from the upper plate between late Oligocene and earliest Miocene times,
resulting in the formation of a series of intra-arc basins and in an influx of hot material
beneath the continental plate (Fennell and others, 2018).

Although none of the aforementioned models can be discarded, the most
plausible explanation for the latest Cretaceous extensional event would involve a
decrease in the absolute trenchward motion of the South American plate during a shift
towards oblique subduction after the proposed Late Cretaceous slab shallowing event
(fig. 16). This would have led to the generation of tensile stresses, increasing magmatic
production and crustal thinning, allowing both Atlantic and Pacific derived marine
transgressions (fig. 16). Afterwards, a period of slow and oblique subduction took
place, associated with sparse evidence of transpressive crustal shortening and slow
accumulation rates in the foreland basin (fig. 16). This period came to an end after a
sudden change towards almost orthogonal subduction and faster convergence rates
associated with the beginning of the second extensional event, which we agree with
previous proposals was due to rollback of the subducted slab, explaining overall
magmatism, extension and high convergence rates between late Oligocene and
earliest Miocene time (fig. 16).

Comparison to Other Cordilleran Orogenic Systems

Considering all the preceding evidence, extensional deformation in the study area
does not seem to respond to processes related to the activity of the fold-thrust belt, in
contrast to what has been proposed for better known Cordilleran orogenic systems such as
the Puna-Altiplano plateau (DeCelles and others, 2009), the northern Peruvian Andes
(Giovanni and others, 2010) or the North American Cordillera (DeCelles, 2004).

In the Puna-Altiplano plateau of southern Peru, Bolivia, northern Chile and
northwestern Argentina (Allmendinger, 1986), extension is evidenced by the presence
of normal and strike-slip faults affecting Quaternary sediments (Sébrier and others,
1985; Schoenbohm and Strecker, 2009; Zhou and others, 2013), as well as by the stress
state inferred from analyses of fault kinematics (Allmendinger and others, 1989;
Cladouhos and others, 1994; Marrett and others, 1994; Giambiagi and others, 2016)
and the age and geochemistry of mafic intraplate volcanism (Kay and others, 1994).
The current interpretation is that crustal thinning would have been dominated by
extensional collapse and lithospheric foundering due to the presence of extremely
thick crust (DeCelles and others, 2009, and references therein), while extension in the
Southern Central Andes (35°-37°S) seems to correlate better with changes in the plate
kinematic framework.
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An exceptional example of active extension within convergent orogenic systems is
represented by the Cordillera Blanca in northern Peru, located above the modern
Peruvian flat slab (Dalmayrac and Molnar, 1981; Schwartz, 1988; Sébrier and others,
1988). Here, a ca. 200 kilometer long active detachment fault has accommodated a
minimum of 12 to 15km dip-slip displacement orthogonal to E-W regional compres-
sion (McNulty and Farber, 2002; Giovanni and others, 2010). Focused extension along
this fault has resulted in the opening of a ca. 10 kilometer thick supradetatchment basin in
the Peruvian Andes hinterland (Giovanni and others, 2010), where Quaternary fault
scarps and seismicity provide evidence of active normal faulting (Sébrier and others, 1988;
Mercier and others, 1992). However, active shortening in the frontal Sub-Andean thrust
belt has led to the proposal of compressive forces acting on the eastern flank of the Andes,
while gravitational forces affected the highest parts of the orogen as the result of
overthickenned crust (Dalmayrac and Molnar, 1981; Suarez and others, 1983; Giovanni
and others, 2010). Conversely, this contrasting scenario has not been observed in the
Southern Central Andes between 35° and 37°S along their geological history, where
shortening and extension seem to occur alternately, not synchronously.

A closer analogue can be found in the North American Cordillera, where an
alternation between contractional and extensional stages has been identified in the
hinterland of the Cretaceous Sevier-Laramide orogenic belt (Wells, 1997; Wells and
others, 2012). Numerous evidence such as stratigraphic omissions, ductile shear zones
with low-angle normal displacement and rapid cooling ages suggest that an extensional
event affected the internal zone of the orogen between the Late Cretaceous and the
Paleocene, which was responsible for the unroofing of several metamorphic core
complexes in western USA (for example, Wells and others, 1990; Applegate and
others, 1992; Wells, 1997). However, the absence of syn-extensional sedimentation
would imply that extension, although widespread, had little surface expression (Hodges
and Walker, 1992). Moreover, evidence of active shortening in the frontal Sevier thrust
belt coeval to extensional deformation in the hinterland would indicate that the Late
Cretaceous-Paleocene was a stage of synconvergent extension (Hodges and Walker,
1992; Wells and others, 2012; Long and others, 2015). The prevailing interpretation is
that isostatic adjustment and thermal weakening following a regional lithosphere
delamination event was responsible for the Late Cretaceous to Paleocene extension in
the hinterland of the Sevier-Laramide orogenic system (DeCelles, 2004; Wells and
others, 2012; Long and others, 2015). This is in marked contrast with our results, which
suggest that extensional events in the Southern Central Andes (35°-37°S) must be
associated with major velocity and obliquity changes rather than to localized extension
within a continuous contractional setting.

CONCLUSIONS

The geological history of the Malargiie fold-thrust belt is characterized by an
alternation of three shortening and two extensional episodes since its initial uplift in
Late Cretaceous times. In this work, evidences of both extensional episodes have been
described and temporally constrained along the belt. In the western sector, dating of
detrital zircons obtained from a syn-extensional volcaniclastic sequence yielded a
maximum depositional age of 67.1+2.4/-0.9 Ma. In the eastern sector, the age of
growth strata indicates normal faulting and associated deposition of volcaniclastic
strata in late Oligocene to earliest Miocene times.

A structural section along the Malargte fold-thrust belt at 36°S constructed to
integrate the new structural observations suggests a link between inherited extensional
structures and the present structural style. Structural inversion dominated in both the
western and eastern sectors, which had previously been affected by normal faulting. In
the central section, the absence of extensional faults encouraged the generation of new
thrusts. These new data show that two extensional stages occurred during the intervals
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developed between the main contractional phases in the Southern Central Andes (35°-
37°S). In particular, the first extensional event occurred immediately after its initial uplift,
reflecting an interruption in orogenesis during latest Cretaceous times (ca. 80—65 Ma).
This stage, not previously recognized, is characterized by the opening of an intra-arc basin
associated with a broad magmatic arc. Additional evidence of regional crustal thinning
corresponds to the opening of a series of marine-filled extensional forearc basins and a
marine transgression in the retroarc area. Afterwards, localized shortening associated with
slow accumulation rates occurred in the retroarc area during most of the Paleogene.
Finally, syn-extensional accumulation within a series of intra-arc and retroarc volcaniclastic
basins occurred between late Oligocene and earliest Miocene times (ca. 25-20 Ma),
indicating a shift towards an extensional regime.

While the first extensional episode is potentially linked to a decrease in the
absolute motion of the South American plate and an increase in subduction obliquity
due to the passage of a mid-ocean ridge, we infer that the second extensional stage was
driven by steepening and rollback of the subducted slab associated with high conver-
gence rates, in accordance with previous proposals. This history and its comparison
with better known Cordilleran orogenic systems would indicate that extensional
deformation in the Southern Central Andes (35°-37°S) is controlled by geodynamic
events rather than by intrinsic processes within the orogenic wedge.
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APPENDIX

ANALYTICAL METHODS

After cathodoluminiscence and SEM imaging (figs. A1A and Al1B), the first 150 LA-ICP-MS U-Pb analyses
were conducted at Washington State University using a New Wave Nd:YAG UV 213-nm laser coupled to a
ThermoFinnigan Element 2 single collector, double-focusing, magnetic sector ICP-MS. Operating procedures
and parameters are similar to those described in detail in Chang and others (2006) and Gaschnig and others
(2010). A second session of analyses was performed at the University of California Santa Cruz, following the
methodology described in Dumitru and others (2015), obtaining a total of 120 new LA-ICP-MS U-Pb ages (table
Al). Laser spot size, fluence and repetition rate were 30 microns, 7 J/Cm2 and 10 Hz, respectively. He and Ar
carrier gases delivered the sample aerosol to the plasma. Each analysis consists of a short blank analysis followed
by 250 sweeps through masses 202, 204, 206, 207, 208, 232, 235, and 238, taking approximately 30 seconds.
Unknowns were run in blocks of 10 analyses bracketed by standards. Time-independent fractionation was
corrected by normalizing U/Pb and Pb/Pb ratios of the unknowns to the zircon standards (Chang and others,
2006; Dumitru and others, 2015). U and Th concentration were monitored by comparing to 91500 zircon
standard. Two zircon standards were used: Plesovice (Slama and others, 2008) and FC-1 (Paces and Miller, 1993).
Uranium-lead ages were calculated using Isoplot (Ludwig, 2003).

The age probability plots (Ludwig, 2003) used in this study were constructed using the **°Pb/***U age
for young (<1.0 Ga) zircons and the 2°°Ph/?*’Ph age for older (>1.0 Ga) grains. In old grains, ages with
>30% discordance or >5% reverse discordance are considered unreliable and were not used. Also analyses
with error greater than 10% were rejected. Concordia plot is shown in figure A1C, where only the
concordant analyses used in the frequency histogram and relative probability plots are plotted.
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Fig. Al. (A) Cathodoluminescense images of the first 150 analyzed zircons. (B) SEM images of the 120
analyzed zircons during the second session. (C) Concordia plot of U-Pb ages from sample A-2.
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