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ABSTRACT. Recent studies based on low-temperature chronology and sedimentol-
ogy have proposed the existence of a proto-Tibetan Plateau (p-TP); however, the
timing and mechanisms of its formation and evolution remain ambiguous. High-Sr/Y
rocks are an important petrological indicator of thickening. Here, we compile geochemi-
cal data of Cretaceous rocks to interpret their petrogenesis and to constrain deep
geodynamic processes. Geochemical characteristics, in combination with zircon Hf
isotopic compositions, indicate that the high-Sr/Y rocks were derived from the partial
melting of thickened juvenile lower crust, with or without contamination by mantle
peridotite. Comparing geochronological and geochemical data, we observe a correla-
tion between magma migration and the composition of high-Sr/Y rocks. Based on
these observations, we propose a revised tectonomagmatic evolution model for central
Tibet, involving crustal thickening, retreating delamination, and breakoff. Our re-
search suggests that the rapid uplift of the p-TP was a consequence of the removal of
isostatic load during the Mesozoic.
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introduction
Based on studies of the eastern Hoh Xil basin in north Tibet (fig. 1B), Wang and

others (2008, 2014a) determined that the uplift of the Tibetan Plateau was progressive,
and the authors proposed the existence of a proto-Tibetan Plateau (p-TP) prior to
India–Asia collision. Previous numerical modeling and structural geology studies have
suggested that the elevation of central Tibet was already above 4 km during the
Cretaceous as a result of collision between the Lhasa and Qiangtang terranes (England
and Housemann, 1986; Murphy and others, 1997; Kapp and others, 2003, 2007).
Further evidence of this crustal uplift event is provided by the occurrence of molasse
deposits (Li and others, 2016a; Sun and Hu, 2017) and the rapid cooling rates
determined from granites (Guynn and others, 2006; Wang and others, 2007; Ren
and others, 2015; Zhao and others, 2017). However, the timing and mechanism of
formation of the p-TP remain ambiguous because of the limited study of coeval
magmatic rocks.

The Bangong–Nujiang suture zone (BNSZ) separates the Lhasa terrane to the
south from the Qiangtang terrane to the north (fig. 1), and represents remnants of the
Bangong–Nujiang Ocean. Large-scale Cretaceous magmatism has been identified on
the flanks of the BNSZ and is regarded as a key aspect to understanding the tectonic
evolution of central Tibet (fig. 2). The significant compositional diversity of this
magmatism has led to various geodynamic models being proposed, and these are still
debated (for example, Zhu and others, 2011, 2016; Wu and others, 2015a, 2015b; Xu
and others, 2017). For example, previous studies have demonstrated the presence of
two arcuate E–W trending zones of magmatic rocks that parallel the BNSZ. The Early
Cretaceous zone (125–110 Ma) is characterized by normal calc-alkaline magmatic
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Fig. 1. (A) Generalized map of the Tethyan realm and (B) simplified geological map of the Tibetan
Plateau showing the major blocks. Abbreviations: JSSZ � Jinsha Suture Zone; LSSZ � Longmuco-Shuanghu
Suture Zone; BNSZ � Bangong–Nujiang Suture Zone; IYZSZ � Indus–Yarlung Zangbo Suture Zone; NQ �
Northern Qiangtang terrane; SQ � Southern Qiangtang terrane; NL � Northern Lhasa terrane; CL �
Central Lhasa terrane; SL � Southern Lhasa terrane.

Fig. 2. Simplified geological map showing Mesozoic magmatic rocks within the Bangong–Nujiang
Suture Zone of central Tibet. Abbreviations: BNSZ � Bangong–Nujiang Suture Zone; SNMZ � Shiquan
River–Nam Tso Melange Zone; LMF � Luobadui–Milashan Fault; QT � Qiangtang terrane; NL � Northern
Lhasa terrane; CL � Central Lhasa terrane.
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rocks, whereas the Late Cretaceous zone (100–75 Ma) is characterized by rocks with
calc-alkaline high Sr/Y ratios and an adakitic affinity (for example, Yu and others,
2011; Wang and others, 2014b; Lei and others, 2015; Sun and others, 2015). Recent
research has demonstrated that Sr/Y ratios of magmatic rocks can be used to track
temporal variations in crustal thickness (for example, Zeng and others, 2011; Chap-
man and others, 2015; Chiaradia, 2015; Wu and others, 2016, 2018b). Recent studies in
the area have shown that some Early Cretaceous magmatic rocks have high Sr/Y ratios
(for example, Li and others, 2008, 2017a; Wu and others, 2015a, 2015b). Furthermore,
we have identified systematic spatial and temporal variations relating to the high-Sr/Y
magmatism during the Cretaceous. Hence, it is necessary to reconsider the existing
tectonic evolution model of central Tibet.

In this study, we have collated and reviewed the geochronological, geochemical,
and Hf isotopic data reported in the literature for high-Sr/Y rocks in central Tibet to
elucidate the mechanisms by which spatially and temporally related geodynamic
processes resulted in the evolution and expansion of the p-TP during the Cretaceous.

geological background and tectonic setting

The Tibetan Plateau, from north to south, consists of the Kunlun–Qaidam,
Songpan–Ganze–Hoh Xil, Qiangtang, Lhasa, and Himalaya terranes, with central
Tibet comprising mainly the Qiangtang and Lhasa terranes (Yin and Harrison, 2000).
Recent studies have established a close relationship between the BNSZ and the
Mesozoic tectonic evolution of central Tibet (for example, Yin and Harrison, 2000; Pan
and others, 2012). Studies of ophiolites, sedimentary strata, and subduction-related
magmatic rocks from within the BNSZ have suggested that the Bangong–Nujiang
Ocean existed before the Triassic (Zhu and others, 2011; Pan and others, 2012), with
oceanic subduction during the Jurassic (Du and others, 2011; Wu and others, 2016,
2018b; Zhu and others, 2016) and closure of the ocean during the earliest Cretaceous
(Xu and others, 1985; Dewey and others, 1988; Yin and Harrison, 2000; Leier and
others, 2007; Zhu and others, 2011).

In central Tibet, the continental collision between the Lhasa and Qiangtang
terranes was followed by the production of large volumes of magmatic rocks (fig. 2)
(Yin and Harrison, 2000; Kapp and others, 2007; Zhu and others, 2011, 2016). The
recent identification of bimodal volcanic suites and coeval A2-type granites (Qu and
others, 2006, 2012; Sui and others, 2013; Chen and others, 2014; Fan and others, 2015;
Hu and others, 2017; Wu and others, 2018a), which are generally formed during
post-collisional stages of orogenesis (Whalen and others, 1987; Eby, 1992), has led to
the proposition that the Cretaceous magmatic ‘flare-up’ event in central Tibet oc-
curred in a post-collision extensional environment (for example, Zhu and others,
2011, 2016; Wu and others, 2018a).

Numerous studies have examined the high-Sr/Y rocks, revealing that such rocks
are exposed mainly in the northern Lhasa terrane and formed over a period of �50
Myr (ca. 125–75 Ma) (fig. 3) (for example, Li and others, 2008; Zhang and others,
2014a; Wu and others, 2015a, 2015b; Hao and others, 2016). High-Sr/Y rocks typically
occur as porphyry intrusions (monzonite, diorite, granodiorite, and granite) or rare
eruptive rocks (andesite and dacite) in central Tibet. The mineral assemblages of these
rocks consist primarily of plagioclase, biotite, quartz, and amphibole. They are
dominantly medium- to high-K calc-alkaline intermediate–felsic rocks, but with high
Na/K ratios (fig. 4).

petrogenesis of cretaceous high-sr/y rocks
In this study, we have collected geochemical data (N � 301) from the literature for

rock samples characterized by high Sr contents (�300 ppm) and high Sr/Y ratios
(�20), typical of adakites (fig. 5; Defant and Drummond, 1990; Castillo, 2006). Data
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for coeval low-Sr/Y rocks were also collected for comparison. The origin of high Sr/Y
ratios in granitoid magmas is debated because these signatures can occur via several
different processes (Moyen, 2009 and references therein): (1) melting of a high-Sr/Y

Fig. 3. Spatial and temporal distribution of Cretaceous high-Sr/Y rocks and a molasse belt in central
Tibet. Abbreviations: QT � Qiangtang terrane; NL � Northern Lhasa terrane; CL � Central Lhasa terrane.
Sources of age data: Bai and others, 2009; Chang, ms, 2012; Guan and others, 2014; Fu and others, 2014,
2015; Hao and others, 2016; Hu and others, 2017; Jiang and others, 2011; Lei and others, 2015; Li and
others, 2008, 2011, 2013a, 2013b, 2014a, 2014b, 2015, 2016b, 2017a, 2017b; Liu and others, 2012, 2014, 2015;
Lv and others, 2011; Ma and Yue, 2010; Qin and others, 2015; Qu and others, 2006, 2012; She and others,
2009; Sui and others, 2013; Sun and others, 2015, 2017; Wang and others, 2013, 2014b; Wu and others, 2014,
2015a, 2015b, 2016; Zhang and others, 2014a,b, 2015; Zhao and others, 2008, and references therein.

Fig. 4. (A) Total alkali vs. silica diagram (Middlemost, 1994), (B) K2O vs. SiO2 diagram (Le Maitre and
others, 1989; Rickwood, 1989), and (C) K2O vs. Na2O diagram (Foley and others, 1987) for Cretaceous magmatic
rocks in central Tibet. Geochemical data sources for high-Sr/Y rocks: Bai and others, 2009; Chang, ms, 2012; Fu
and others, 2014; Guan and others, 2014; Hao and others, 2016; He and others, 2018; Hu and others, 2017; Jiang
and others, 2011; Lei and others, 2015; Li and others, 2008, 2013a, 2013b, 2014b, 2015, 2016b, 2017a, 2017b;
Liu and others, 2012, 2014, 2015, 2018; Lv and others, 2011; Ma and Yue, 2010; Qin and others, 2015; Qu and
others, 2006, 2012; She and others, 2009; Sui and others, 2013; Sun and others, 2015, 2017; Wang and others,
2014b; Wei and others, 2017; Wu and others, 2013, 2015a, 2015b; Yu and others, 2011; Zhang and others, 2014a,
2014b, 2015; Zhao and others, 2008, and references therein. Geochemical data sources for low-Sr/Y rocks: Ding
and others, 2012; Gao and others, 2011a, 2011b, 2016; Hu and others, 2017; Li and others, 2013b, 2017c; Liu and
others, 2018; Wang and others, 2012, 2018; Wei and others, 2017; Zhang and others, 2017.
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source; (2) deep melting of thickened mafic crust with abundant residual garnet; (3)
low-pressure fractional crystallization of amphibole; or (4) magma mixing between
felsic melt and the mantle.

Hafnium isotopic compositions of zircons from magmatic rocks have been used to
infer that the northern Lhasa terrane consists of juvenile crust that was recently accreted in
response to subduction of the Bangong–Nujiang oceanic crust during the Mesozoic (Zhu
and others, 2011; Hou and others, 2015). Furthermore, the Sr/Y and (La/Yb)N [where the
subscript N denotes that the ratios are normalized to the chondrite values of Sun
and McDonough (1989)] ratios of high-Sr/Y rocks have changed over time (fig. 6).
Based on these variations, we conclude that the juvenile crustal source of the
northern Lhasa terrane did not have high Sr/Y ratios. On the other hand, the
relatively high SiO2 contents and the general lack of mafic enclaves in these
high-Sr/Y rocks suggest that magma mixing did not contribute to their formation.

Previous studies have shown that fractional crystallization of amphibole and
garnet may produce granitoids with high Sr/Y ratios (Davidson and others, 2007;
Alonso-Perez and others, 2009; Smith, 2014). Amphibole preferentially incorporates
middle REEs, whereas heavy REEs are incorporated into garnet. As a result, fraction-
ation of amphibole and garnet will increase the (La/Yb)N ratio of evolved melts, and
garnet fractionation will simultaneously increase (Dy/Yb)N ratios (Macpherson and
others, 2006; Davidson and others, 2007). The high-Sr/Y rocks display increasing
(La/Yb)N and (Dy/Yb)N ratios with increasing SiO2, suggesting that fractionation of
amphibole was not a significant process for most of these rocks from central Tibet (figs.
7A–7C).

In contrast to the above, the geochemical and isotopic features of high-Sr/Y rocks
indicate that they were derived from deep melting of thickened mafic lower crust.
Co-variations in Sr/Y, (La/Yb)N, and (Dy/Yb)N ratios indicate that garnet was the
major residual mineral. This result indicates that during the emplacement of

Fig. 5. (A) Sr vs. Y diagram, (B) Sr/Y vs. Y diagram, and (C) (La/Yb)N vs. (Yb)N diagram (Defant and
Drummond, 1990) for Cretaceous magmatic rocks in central Tibet. Geochemical data sources are as in
figure 4.
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high-Sr/Y rocks, the depth of crust was �50 km (ca. 1.5 GPa; Sen and Dunn, 1994;
Rapp and Watson, 1995). Furthermore, as garnet is Na-depleted relative to plagioclase
(for example, Sen and Dunn, 1994), melting of mafic rocks at elevated pressures can
also produce Na-rich melts (Defant and Drummond, 1990; Sen and Dunn, 1994; Rapp
and Watson, 1995; Patiño Douce and Harris, 1998). High-Sr/Y rocks are also character-
ized by positive εHf(t) values (fig. 8), indicating a juvenile magma source. We therefore
suggest that the geochemical systematics of high-Sr/Y rocks reflect the partial melting
of juvenile mafic material at relatively high pressures.

It has been shown experimentally that mantle-rich element (for example, Mg, Cr,
and Ni) increase when melts interact with mantle peridotite (Rapp and others, 1999;
Gao and others, 2004). High-Sr/Y rocks from central Tibet are generally enriched in
MgO, Cr and Ni, indicative of a mantle signature (for example, Wang and others,
2014b; Lei and others, 2015; Sun and others, 2015). Most high-Sr/Y rocks plot in the
area of thickened lower crust-derived adakites (with or without delamination) in
figures 7D–7I. This rock group is considered to have been generated by interaction
between the mantle and melts derived from lower-crustal materials.

We conclude that Cretaceous high-Sr/Y rocks from central Tibet were derived
from the deep (�50 km) melting of thickened juvenile lower crust, with varying
degrees of contamination by mantle peridotite.

spatial and temporal variations in the geochemistry of high-sr/y rocks
Crustal thickness determines the pressure of magma sources and affects the

locations and probability of stagnation levels and differentiation, thereby influencing
the degree of mantle contamination when thickened lower-crustal materials are
delaminated into the mantle (for example, Haschke and Günther, 2003; Chung
and others, 2005; Mamani and others, 2010). Mantle-rich element contents can
thus be interpreted in terms of the timing and processes of high-Sr/Y melt
contamination by mantle peridotite during delamination. Therefore, knowledge of
the geochemistry and evolution of high-Sr/Y magmas provides an indirect but
useful framework for understanding the timing and processes of crustal thickening
and lithospheric delamination.

The compiled data on zircon U–Pb ages of Cretaceous high-Sr/Y rocks are plotted
on a geological map of Tibet in figure 3. Mantle-rich element abundances (Mg, Cr, and

Fig. 6. (A) Sr/Y vs. age diagram (B) and (La/Yb)N vs. age diagram for Cretaceous magmatic rocks in
central Tibet. The crustal thickness correlation is inferred after Chung and others (2009). Geochemical data
sources are as in figure 4.
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Ni) show significant temporal and spatial variations (fig. 9). Based on these data, the
following observations can be made: (1) high-Sr/Y magmas show diachronism, as
magmatism progressed from the north part of the high-Sr/Y magma domain toward
the south (fig. 3); (2) given that mantle-rich elements (Mg, Cr, and Ni) indicate mantle
contamination, two peaks occurr at 125 to 110 Ma and 105 to 75 Ma, respectively (fig.
9). Furthermore, we observe that a sudden increase in those elements occurred at ca.
105 Ma [high abnormal values of Cr were not considered (fig. 9C)]; (3) at ca. 85 Ma,
the high-Sr/Y magmatism ceased to migrate southwards; however, the younger rocks
(85–75 Ma) are also characterized by relatively high contents of Mg, Cr, Ni and are
found over the entire domain of high-Sr/Y magmatism; (4) we identify a coeval E–W
trending belt of molasse (100–75 Ma) that overlaps with the high-Sr/Y belt paralleling
the BNSZ in central Tibet (fig. 3).

The observed spatial and temporal variations in the geochemistry of Cretaceous
high-Sr/Y rocks show that the evolution of the thermal structure of the central Tibet
deep lithosphere warrants further investigation.

Fig. 7. Selected major and trace elements, and element ratios, plotted against SiO2 for Cretaceous
magmatic rocks in central Tibet. The differentiation trends of garnet and amphibole are from Davidson and
others (2007). The subducted oceanic crust-derived, delaminated lower crust-derived, and thickened lower
crust-derived adakite fields are after Wang and others (2006). Normalizing values are from Sun and
McDonough (1989). Geochemical data sources are as in figure 4.
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integrated tectonic model

Crustal Thickening and Formation of the p-TP Before ca. 106 Ma
Previous studies suggested that central Tibet was already elevated during the

Cretaceous (for example, Murphy and others, 1997; Kapp and others, 2007). The
presence of high-Sr/Y rocks further supports the existence of thickened crust (�50
km) in central Tibet at this time. However, the mechanism and timing of p-TP uplift
remain unknown. Tectonic shortening and magmatism are generally considered to be
key mechanisms of crustal thickening (Gill, 1981; Sheffels, 1990).

Recently, multiple stages of tectonic compression and magma underplating
during the evolution of the BNSZ have been proposed (for example, Kapp and others,
2005, 2007; Zhu and others, 2011, 2016; Wu and others, 2016). In the Late Jurassic, the
subducted oceanic crust resulted in underplating of mantle-derived basaltic magma
and tectonic shortening of the overlying continental crust (fig. 10A). The low-
temperature chronology and high-Sr/Y rocks provide direct petrological evidence for
Late Jurassic crust thickening prior to continental collision between the Lhasa and
Qiangtang terranes (Wang and others, 2007; Song and others, 2014; Hao and others,
2016; Wu and others, 2016; Zhao and others, 2017). During the Early Cretaceous,
tectonic compression in a syn-collisional setting and subsequent magma underplating
in a post-collisional extension setting led to further crustal thickening in central Tibet
(fig. 10B) (Murphy and others, 1997; Xiong and Liu, 1997; Haines and others, 2003;
Kapp and others, 2005, 2007; Volkmer and others, 2007). Accordingly, we suggest that
both tectonic compression and magmatism during the Mesozoic evolution of the
BNSZ had a significant impact on crustal thickening in central Tibet.

In summary, high-Sr/Y rocks indicate that multiple stages of crustal growth and
thickening occurred during the evolution of the BNSZ, resulting in the establishment
of the p-TP during the Cretaceous.

Fig. 8. Zircon εHf(t) values vs. age for Cretaceous high-Sr/Y rocks in central Tibet. Sources of hafnium
isotopic data: Hu and others, 2017; Li and others, 2015, 2016b; Liu and others, 2018; Sui and others, 2013;
Sun and others, 2015, 2017; Wang and others, 2014b.
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Retreating Delamination and Rapid Surface Uplift at 105 to 86 Ma
Thickened eclogitic lower crust has a density greater than that of the mantle.

Therefore, to maintain isostatic equilibrium, thick crustal roots beneath mountain
belts must be removed during orogen development. Recent research has demon-
strated that delamination of over-thickened crust is the most effective mechanism of
lithospheric thinning, due to its negative buoyancy (for example, Ueda and others,
2012; Krystopowicz and Currie, 2013; Li and others, 2016c). The detached crust
ultimately descends into the underlying asthenosphere, inducing mantle convection
(Houseman and others, 1981; Lustrino, 2005; Dilek and Altunkaynak, 2007; Krystopo-
wicz and Currie, 2013).

Thermo-mechanical numerical models have shown that two styles of delamination
can occur during orogen development: retreating and stationary delamination (Krysto-
powicz and Currie, 2013). In the retreating delamination model, the detaching slab
undergoes bending and rollback because of its negative buoyancy. The initial detach-
ment event would open a gap in the slab that fills with upwelling hot asthenosphere.
Such mantle flow would cause the retreat of the hinge, finally resulting in the
migration of surface uplift and magmatism across the orogen (fig. 3 in Krystopowicz
and Currie, 2013; Gray and Pysklywec, 2013). Delamination-related high-Sr/Y melts
generally contain significant proportions of mantle-rich elements because of

Fig. 9. (A) MgO content vs. age, (B) Mg# values vs. age, (C) Cr content vs. age, and (D) Ni content vs.
age diagrams for Cretaceous magmatic rocks in central Tibet. The solid lines indicate the sudden increased
contribution of a mantle component. The mantle upwelling during 125–110 Ma is from Zhu and others
(2011). Geochemical data sources are as in figure 4.
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Fig. 10. Integrated geodynamic evolution of central Tibet from Late Jurassic to Late Cretaceous. (A)
Oceanic subduction during Late Jurassic. (B) Crustal thickening during Early Cretaceous. (C) Retreating
delamination during 105–86 Ma. (D) Breakoff during 85–75 Ma. Abbreviations: SNMZ � Shiquan
River–Nam Tso Melange Zone; BNSZ � Bangong–Nujiang Suture Zone.
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interaction with mantle peridotite (for example, MgO, Mg#, Cr, and Ni) (Rapp and
others, 1999; Gao and others, 2004). Thus, the increase in the content of these
elements in central Tibet between 105 to 86 Ma, and related southward migration of
high-Sr/Y rocks, provide further support for the hypothesis that the region underwent
retreating delamination during that period. Furthermore, the presence of coeval
OIB-type mafic rocks and potassic rocks (Qu and others, 2006; Bai and others, 2009;
Chen and others, 2017; Liu and others, 2018), which could originate from upwelling
asthenosphere and thinning lithosphere (Turner and others, 1996; Ferrari, 2004),
provides petrological evidence for delamination (for example, Bonin, 1988, 1990;
England and Houseman, 1989). The occurrence of high-Sr/Y rocks (with high
contents of compatible elements) on the northern margin of the northern Lhasa
terrane, and young high-Sr/Y rocks on the southern margin of the northern and
central Lhasa terrane, indicates that the initial detachment event occurred first in the
north and then migrated southwards toward the central Lhasa terrane during a period
of retreating delamination from 105 to 86 Ma (fig. 10C).

Breakoff at 85 to 75 Ma
Our model of slab breakoff that followed delamination is as follows. Over time, the

length of the delaminated slab would have increased, resulting in greater negative
buoyancy. The slab length needed for breakoff decreases with decreasing mantle
lithosphere strength and increasing eclogite density; thus, when the slab strength was
finally exceeded, the slab broke, possibly through viscous necking (for example,
Duretz and others, 2011, 2012). Age data for central Tibet indicate that the southward
migration of high-Sr/Y magmatism ceased at ca. 85 Ma, and younger rocks (85–75 Ma)
are located over the entire region. Based on these observations, we propose that
breakoff occurred at ca. 85 Ma, opening a slab window and triggering the upwelling of
hot asthenospheric mantle. Such a window would promote the circulation of hot
asthenosphere and the melting of sinking delaminated lower crust.

Bird (1979) suggested that rapid surface uplift may be tied to delamination as the
dense lithosphere is replaced by lower-density asthenosphere. This wholesale uplift
model was used to interpret the rapid increase in surface height (1500–3000 m) of the
Tibetan Plateau during the Cenozoic as a result of isostatic rebound in response to
the removal of lithospheric mantle (England and Houseman, 1989). In central Tibet,
the widespread Late Cretaceous molasse deposits (Li and others, 2016a; Sun and Hu,
2017), combined with the timing of cooling inferred from apatite and zircon fission
track data (Rohrmann and others, 2012; Song and others, 2014; Ren and others,
2015), suggest that the p-TP also underwent significant rapid uplift-related mechanical
erosion and a cooling event coeval with delamination (fig. 10D).

In summary, the above mechanical and thermal consequences, including the
delamination-related magmatism, uplift-related erosion, and cooling event, suggest
that retreating delamination and subsequent breakoff beneath thickened crust pro-
vide the best explanation for the spatio-temporal distribution of Cretaceous high-Sr/Y
rocks in central Tibet.

conclusions

The distribution of Cretaceous high-Sr/Y rocks suggests that the crust beneath
central Tibet thickened in response to the evolution of the Bangong–Nujiang Ocean,
resulting in the development of the p-TP prior to the India–Asia collision. Spatial and
temporal variations in geochronological and geochemical data of high-Sr/Y magmas
can be explained by retreating delamination (105–86 Ma) and breakoff (85–75 Ma) of
thickened crust. Rapid surface uplift of the p-TP was accomplished by isostatic rebound
in response to these deep delamination processes during the Mesozoic.
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