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ABSTRACT. The present work aims to contribute to the Cenozoic tectonic setting of
the western part of the Makran Accretionary Wedge in SE Iran. We determine the
provenance of both deep marine turbiditic and deltaic-shelf Late Cretaceous-Miocene
sandstones, describe the sandstone modal framework and heavy minerals and report a
new geochronological and isotopic study including 2307 detrital zircons U-Pb ages and
204 in-situ Hf isotopic analyses. Modal sandstone framework compositions indicate
that a magmatic arc and recycled accreted sediments were the main sources of
Eocene-Oligocene and Miocene sandstones. Cr-spinel and heavy mineral assemblages
indicate ultramafic rocks, likely ophiolitic mantle, as a subsidiary source. Detrital
zircon U-Pb ages cluster in five main age groups: (1) Neoproterozoic grains suggesting
a continental crust provenance within the Central Iran blocks, (2) Jurassic grains with
Hf isotopic compositions of continental crust, suggesting a rifting related magmatic
provenance, (3) Late Cretaceous and (4) Eocene grains, with Hf isotopic compositions
typical of continental crust and non-depleted mantle, suggesting a continental mag-
matic arc provenance, and (5) Early Miocene grains. The new U-Pb age and Hf isotopic
ratios correspond to those obtained in the east Iranian Makran. They fit tectonic
reconstructions with Middle Jurassic intracontinental rift, Early Cretaceous to Eocene
subduction below Central Iran forming a continental arc to the north of Makran and
closure of the related oceanic in the Paleogene. Erosional products of the correspond-
ing magmatic arc are found in the Makran Basin. Our data disprove that provenance
characteristics of the Makran sedimentary rocks are consistent with derivation from
the Himalayan sources.

Key words: West Makran, provenance analysis, detrital zircon, Hf isotopes, tec-
tonic setting.

introduction
The Makran Accretionary Wedge extends � 900 km along strike between SE Iran

and SW Pakistan (fig. 1; White and Klitgord, 1976; White, 1982; Platt and others, 1985).
The wedge, from rear to toe, is about 350 km wide along the nearly N-S convergence
direction between Arabia and Eurasia (McCall and Kidd, 1982; DeMets and others,
2010) and grows both vertically and laterally by scraping sediments off the northwards
subducting Arabian lithosphere (Platt and others, 1985). Northward subduction of the
Arabian plate beneath the Central Iran and Afghan blocks started during the Creta-
ceous (for example McCall, 1997). The current subduction rate estimated by GPS
measurements is about 2 cm/yr (Vigny and others, 2006; Masson and others, 2007).
The accretionary wedge is divided into a 100 to 150 km wide active submarine wedge,
to the south and the 200 to 250 km wide northern, onshore wedge (fig. 1). These two
parts are separated by the coastal belt where onshore and offshore normal faults and
mud volcanoes are prominent (McCall, 1983; Von Rad and others, 2000; Ellouz-
Zimmermann and others, 2007b; Grando and McClay, 2007). The Paleogene sedi-
ments are supposedly supplied from the Himalaya via the Paleo-Indus River, while
reworking of the growing accretionary wedge supplied sediments to the Miocene and
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more recent Makran deposits (fig. 1; Critelli and others, 1990; Qayyum and others,
1997b; Qayyum and others, 2001; Grigsby and others, 2004; Ellouz-Zimmermann and
others, 2007a; Ellouz-Zimmermann and others, 2007b; Carter and others, 2010; Kassi
and others, 2013). However, Mohammadi (ms, 2015) argued that detrital zircon U-Pb
geochronology and provenance study of Late Cretaceous-Miocene sandstones of
Iranian onshore Makran are better attributed to a nearby complex of ophiolites and a
continental magmatic arc, to the north of the Makran Basin.

This work aims at further documenting the Late Mesozoic-Cenozoic sedimentary
framework of the West Makran Basin in Iran (fig. 1), by investigating the provenance of
siliciclastic sandstones. We combine fieldwork, modal framework grain compositions
and heavy mineral analysis to characterize the lithologies eroded in the source areas
and constrain the tectonic setting of the Makran Basin. More than two thousand U-Pb
ages of detrital zircon obtained by laser ablation ICP-MS are used to evaluate crystalliza-
tion ages of the source rocks. In-situ Hf isotope ratios of two hundred and four dated
zircon grains allow inferring the origin of magmas in the source region.

geological setting of studied sandstones
The eastern part of the onshore Iranian Makran has been divided into four major

east-west-oriented tectono-stratigraphic units separated by major thrust zones (Dolati,
ms, 2010; Burg and others, 2013). Of these four units, only the North Makran (to the
north) and the Coastal Makran (to the south) are present in Western Makran (fig. 2).
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Fig. 1. (A) Simplified tectonic map of the potential source terranes: Abbreviations: EIMB: East Iranian
Makran Basin; KB: Katawaz Basin; KD: Katawaz Delta; KSF: Khojak Submarine Fan; MAW: Makran
Accretionary Wedge; NMA: North Makran Arc; SFTB: Sulaiman Fold-and-Thrust Belt; SSBDC: Sanandaj-
Sirjan/Bajgan-Durkan Complexes; SSZ: Sistan Suture Zone; UDMA: Urmia-Dokhtar Magmatic Arc; Z-SHG:
Zahedan- Shah kuh Granite; Framed area � study area mapped in fig. 2. (B) Simplified tectonic map of the
South Tibet-Himalayan regions with potential sources discussed in the text.
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Fig. 2. Simplified geologic map of the West Makran Basin and Zagros. Stratigraphic ages according to
the 1:250,000 geological maps of Bandar Abbas, Minab, Taherui and 1:100,000 geological maps of
Jask-Gattan and Gabric (Samimi Namin and others, 1982; Samimi Namin and others, 1983; Fakhri, 1994;
Samadian and others, 1999; Samadian and Khan Nazer, 1999).
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North Makran
North Makran is widely exposed in the Fannuj and Minab quadrangle maps

(McCall, 1985a, 1985b, 1985c, 1985d). It is divided into two major subunits: (1) in the
north, ophiolitic mafic and ultramafic rocks with their upper crustal pillow lavas and
Cretaceous deep-marine radiolarites and turbidites; these rocks were eroded and
unconformably covered by Upper Cretaceous-Paleocene shallow water sediments, in
turn unconformably covered by Eocene turbidites (Hunziker, 2014; fig. 2), (2) a
tectonic imbricate (so-called colored mélange) consists of tectonic slices of subunit (1)
and remnant continental units with granitoids and shallow water Permian-Jurassic
carbonates (the Bajgan-Dur Kan zone of McCall and Kidd, 1982). The paleo-trench
and related accreted sediments are exposed in the East Makran (Dolati, ms, 2010) but
not exposed as a formal unit in the West Makran. Possibly some of the trench fill
sediments were tectonically included in the imbricate zone (fig. 1). Eocene turbiditic
shales, mudstones and sandstones with minor pelagic limestones are unconformable
on the Imbricate Zone. They are comparable in lithological content and fossil ages to
the proximal Eocene turbidites covering unconformably the North Makran Ophiolites
(McCall, 1985c). This imbricate zone is thrust southward onto sedimentary sequences
of the Makran Accretionary Wedge.

Coastal Makran
Coastal Makran, in Western Makran like further east, preserves a record of

Miocene shelf carbonate rich mudstone/sandstone to Pliocene continental conglom-
erates filling up the basin to above sea level. Sporadic occurrences of deep-sea Eocene
and Oligocene turbiditic sequences in anticlinal cores represent the underlying rocks.
The Lower Miocene consists of poorly cemented rhythmic sequences of shale and
carbonate-rich sandstones typifying a lower shelf environment. The Middle and Upper
Miocene are divided into (1) a lower, marl-dominated and (2) a calcareous sandstone-
dominated members. The marl-dominated member mainly consists of medium to very
thick bedded marlstones with minor fine to medium grained and thin to medium
bedded calcareous sandstones. Such shallowing upward para-sequences are typical for
upper shelf environment. (fig. 2; Samimi Namin and others, 1982; Samadian and
others, 1999; Samadian and Khan Nazer, 1999).

methods
The studied western part of the Iranian Makran (fig. 1) is covered by the Minab

and Taherui 1:250,000 geological maps (Samimi Namin and others, 1982; Samimi
Namin and others, 1983) and Jask-Gattan and Gabric 1:100,000 geological maps (fig. 2;
Samadian and others, 1999; Samadian and Khan Nazer, 1999). These maps and
associated reports, subdivide the turbiditic and shelf sequences into six, several
hundred meters thick lithostratigraphic units (Samimi Namin and others, 1982;
Samimi Namin and others, 1983; Samadian and others, 1999; Samadian and Khan
Nazer, 1999). Nine medium-grained turbiditic sandstones (with prefix 15AM in the
ETH collection) have been studied (fig. 2 and table S1; http://earth.geology.yale.edu/
%7eajs/SupplementaryData/2017/Mohammadi/TableS1.xlsx). Samples of hemipe-
lagic sediments were taken to avoid reworked nannofossils in stratigraphic determina-
tions. These nannofossil samples confirmed the published stratigraphy, with
sedimentation ages ranging from Late Cretaceous to Miocene. Mineral separation,
mineral identification techniques, and analytical methods are described in Appendix I.

results

Paleocurrent Indicators
Measured paleocurrent directions obtained from flute casts and asymmetric

ripples in Oligocene and Miocene turbiditic sequences were rotated to horizontal
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around the local strike direction of bedding and plotted in rose diagrams. They
indicate average paleoslope and flow direction from NW to SE (fig. 3). This direction
slightly differs from, but remains grossly consistent with paleocurrent measurements in
the eastern Iranian Makran (fig. 3).

Modal Sandstone Composition
West Makran sandstones are mainly classified as feldspathic litharenite and

litharenite (fig. 4A). Feldspar is dominantly plagioclase (�90%) with minor amounts
of K-feldspar; quartz grains are mostly mono-crystalline (80%) (fig. 4B and table S2,
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/
TableS2.xlsx). Rock fragments are mostly sedimentary and volcanic lithics, few are
metamorphic (figs. 4C and 4D). Andesite and volcanic glass are dominant among

N
21 measurements

West Makran East Makran

(literature data)
133 measurements

Fig. 3. Rose diagrams of paleocurrent measurements: 5 asymmetric ripple marks and 16 flute casts in
Western Makran. Literature data from Miocene strata paleocurrent of East Makran from Mohammadi and
others (2016c). Results restored to horizontal around the local strike of bedding. Arrows: average directions.
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the volcanic rock fragments. Sedimentary lithic fragments include limestone,
dolomite and siltstone. Metamorphic rock fragments generally consist of foliated
polycrystalline quartz and low-grade to medium-grade phyllites, and schists (figs.
4C and 4D). In Late Cretaceous sandstone (sample 15AM03) muscovite and biotite
are abundant and rock fragments are dominantly metamorphic lithic grains (� 45%;
table S2, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/
TableS2.xlsx).

Heavy Minerals
The heavy mineral spectrum indicates very variable compositions, which can be

subdivided into four main groups: (1) Most stable minerals (zircon, monazite, tourma-
line, rutile, anatase and brookite; ZTR � 7 – 57%) and apatite, which are likely derived
from continental crust sources. (2) Less stable minerals (garnet, epidotes, andalusite,
staurolite, kyanite, chloritoid) in variable amounts (2 – 63% of total grain count)
suggesting metamorphic rocks in the source area. (3) Cr-spinel (up to 27% of total
grain count) indicating contribution from exhumed ultramafic rocks. (4) Pyroxenes
(enstatite, diopside, ferrosilite and hedenbergite) from intermediate to basic mag-
matic rocks (fig. 5 and table S3, http://earth.geology.yale.edu/%7eajs/Supplementary
Data/2017/Mohammadi/TableS3.xlsx). Middle-Upper Eocene sandstone (sample 27)
generally yielded large amounts (up to 89% of total grain count) of pyroxenes. Middle
Miocene sandstone (sample 05) show large amounts (up to 45% of total grain count)
of garnet (fig. 5 and table S3, http://earth.geology.yale.edu/%7eajs/Supplementary-
Data/2017/Mohammadi/TableS3.xlsx).

Detrital Zircon Dating and Hf Isotope Ratio
LA-ICPMS U-Pb dating was performed on 2307 detrital zircons of eight Eocene-

Miocene sandstone samples (figs. 6, 7, 8 and table S4, http://earth.geology.yale.edu/
%7eajs/SupplementaryData/2017/Mohammadi/TableS4.xlsx). Euhedral to subhe-
dral shapes of these grains (80%), suggest short transport distances from source to
sink. Owing to the importance of the youngest crystallization age of zircons for
provenance studies, we dated rims only. Obtained ages range between 3.3 Ga and 18
Ma, with four main peaks around 165, 95, 89 and 48 Ma and a minor peak around 22
Ma. Due to their rarity, zircons older than 1100 Ma were not plotted in figures 6, 7 and
8. We also did not plot ages with discordance greater than 10 percent. Like in the East
Iranian Makran Basin zero to very short lag times (that is, Eocene zircons hosted in
sandstone of similar stratigraphic age) indicates syn-sedimentary magmatism in the
source area (fig. 9; Mohammadi and others, 2016c).

Depending on the texture (that is, inclusions and internal growth structure
imaged by backscattered-electron and cathodoluminescence) and size of the zircon
grains, in-situ Hf isotope ratios were measured on dated zircons. Measurements on 204
analytical spots yield ε-Hf(t) values from �16.5 to �19.9. Late Cretaceous zircon grains
show a large variation in ε-Hf(t), from �11.8 to �19.1 most of them being between
ε-Hf(t) � 0 and �13. Zircons with Eocene ages have ε-Hf(t) value between �14.5 and
�5.9, a large majority between 0 and �12 and few with negative values (fig. 10 and
table S5, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Moham-
madi/TableS5.xlsx). Compared to the Late Cretaceous zircons, Eocene zircons show
less positive ε-Hf(t) between the chondrite union reservoirs (CHUR) and depleted
mantle lines (fig. 10). Positive ε-Hf(t) values indicate depleted mantle signatures while
the negative ε-Hf(t) indicate magmatic zircons with continental-crust derived melts or
mixed depleted mantle derived melts with old crustal component signature (for
example Patchett, 1983; Yuan and others, 2008).
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discussion
Taken together the new U-Pb geochronology and in-situ Hf isotope data of detrital

zircons, heavy mineral and sandstone framework compositions of the Late Cretaceous-
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Miocene sandstones of West Makran and comparison with published data on the
eastern part of Iranian Makran (Mohammadi and others, 2016c) refine our understand-
ing of the tectonic setting and sources of the Makran turbiditic basin.

Sandstone Framework Analysis
The modal frameworks show that West Makran sandstones are largely composed

of volcanic lithic and sedimentary fragments with subordinate metamorphic lithics.
Such an association is consistent with main provenance from a magmatic arc (transi-
tional-dissected arc during the Eocene-Oligocene; figs. 4C and 4D) and recycled
orogenic terranes in the Miocene (figs. 4E and 4F). The only Late Cretaceous
sandstone (sample 15AM03) is dominated by metamorphic lithic grains, presumably
collecting detritus from the proximal Bajgan metamorphic belt (fig. 2). In ternary QFL
diagram, the framework compositions shift from the Q-L binary in Eocene-Oligocene
sandstones toward slightly quartz-richer compositions in Miocene sandstones (fig. 4A).
The recycled orogenic nature of the source area (accreted Late Cretaceous-Oligocene
sediments) is characterized by the slight increase in quartz amount in some Miocene
sandstones (figs. 4E and 4F). A similar modal framework composition and provenance
setting was reported for the Eocene to Miocene sandstones of the east Iranian Makran
(fig. 4; Mohammadi and others, 2016c).

Heavy Mineral Assemblage
Like the sandstone framework, the heavy mineral assemblages indicate that the

West Makran sandstones contain typical elements of a magmatic arcs system, ophiolites
(Cr-spinel and rare serpentinite) and metamorphic suites: (1) arc volcanism is clear
from the andesitic and volcanic glass lithic components along with pyroxenes and
feldspars. (2) Epidote and pyroxene may have been originated from exhumed
ophiolites, metamorphic rocks or mafic to intermediate intrusive rocks (fig. 5). The
amount of pyroxene is significantly high (89.2%), while the amount of Cr-spinel
decreases in Eocene sandstone (sample 15AM27). This implies that intermediate to
mafic magmatic-volcanic rocks became at least more eroded than the ultramafic
sources in Eocene times. Sample 15AM27 was taken from the local basin within an
imbricate zone (fig. 2). (3) Abundant metastable heavy minerals such as garnet,
staurolite, chloritoid, and metamorphic lithic grains represent metamorphic rocks as
subsidiary sources (Deer and others, 1992), which may have formed either within the
arc crust or in the accretionary wedge of the time. The heavy mineral spectrums of
the West Makran and eastern part of Iranian Makran are similar, except blue
amphibole (glaucophane) which is absent in the West Makran sequence (Mohammadi
and others, 2016c).

Detrital Zircons U-Pb Age and In-situ Hf Isotopes
U-Pb ages of West Makran detrital zircon are between ca. 3.3 Ga and ca. 31 Ma

(figs. 6, 7, 8, 9 and table 1). Four U-Pb age groups are identified.
The first group includes zircon grains dated from Archean (3.3 Ga) to earliest Jurassic

(200 Ma). Archean (3.3 Ga) is the oldest zircon age reported from Makran Basin. This
range in ages creates a broad heterogeneous spectrum in which Neoproterozoic-Cambrian
zircons (1000 – 460 Ma) are more abundant (table S4, http://earth.geology.yale.edu/
%7eajs/SupplementaryData/2017/Mohammadi/TableS4.xlsx). Detrital zircons of this
spectrum are distributed into two subgroups: 1) the rounded and anhedral zircon grains
without internal growth zoning are either fragments or old zircons reworked from
continental crystalline rocks or inherited magmatic zircons. Their origin is uncertain. The
location of possible igneous/metamorphic source is undefined, due to the likelihood of
repeated reworking through several tectonic cycles since the Archean. Restricting conjec-
ture to the closest continental block and southward paleocurrent directions points to the
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nearby Central Iranian Block whose basement is composed of metamorphic and igneous
rocks. Central Iran was deformed during the Late Precambrian and overprinted by
younger igneous events (Nadimi, 2007). Consistently, zircon U-Pb ages of magmatic,
metamorphic and siliciclastic rocks of this continental block span from 462 to 1870 Ma
with few Archean zircon cores; the major population peak stands between 525 to 547 Ma
(Ramezani and Tucker, 2003; Hassanzadeh and others, 2008). Detrital zircon ages of a
single Cenozoic sandstone from the northern part of Central Iran reveal a main peak at 50
Ma and a secondary peak at 450 Ma (Horton and others, 2008). The reported Neoprotero-
zoic-Ordovician detrital zircon ages are comparable to age spectra from the Central
Iranian craton. 2) The second subgroup consists of very fine zircon grains (� 50 �) with
euhedral and magmatic zoning. Due to their size, cores and rims were mixed during laser
ablation so that the last crystallization age is not ascertained.

The second zircon group is Jurassic, with the main peak at 165 Ma (figs. 6, 7, 8 and
table S4, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Moham-
madi/TableS4.xlsx). Considering the magmatic zoning, high Th/U ratios (0.8–8.9)
and euhedral shapes (� 60%), these zircons are attributed to igneous rocks. Jurassic
(160–166.6 Ma) granitoids are actually known in North Makran; petrology, geochemis-
try and Rb-Sr as well as Nd-Sm isotopes suggest that these granitoids originated during
extension/thinning and subsequent partial melting of a continental crust (Hunziker
and others, 2015). Indeed, the negative εNd(i) and high initial Sr isotopic ratios are
symptomatic of a significant crustal contribution to the melt. The rift setting is
supported by field observation of North Makran granites that reached near-surface
depths and intruded shelf limestones (Hunziker and others, 2015). Supportively also,
the granophyric and perthitic texture of these granites is a common feature of granite
intrusions in continental rifts (Coleman and others, 1992). This interpretation fits the
negative ε-Hf(t)values (�1.9 to �8.2) of the analyzed Middle Jurassic zircons in
Western Makran (fig. 10 and table S5, http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2017/Mohammadi/TableS5.xlsx).

The third group includes detrital zircons of Late Cretaceous age (115–66 Ma with
main peaks at 105 Ma, 95 Ma, 89 Ma, 75 Ma, and 66 Ma; figs. 6, 7, 8 and table S4,
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/
TableS4.xlsx). The euhedral shape and magmatic zoning of most grains (�70%), and
generally high Th and U contents with Th/U � 1, suggest proximal Upper Cretaceous
magmatic source. The large range in ε-Hf(t) values (�11.5 to �19.1, in majority
between 0 and �13; fig. 10 and table S5, http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2017/Mohammadi/TableS5.xlsx) represents positive and nega-
tive ε-Hf(t) values indicating non-depleted mantle and continental crust signatures as
can be expected for subduction-related magmatism in continental arcs (for example
Patchett, 1983; Yuan and others, 2008; Naing and others, 2014).

The fourth group contains zircons from 60 to 36 Ma with peak at 48 Ma (figs. 6, 7,
8 and table S4, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/
Mohammadi/TableS4.xlsx). Euhedral shapes (�85%) suggests a short distance be-
tween source and sink. The wide range in Th and U, and Th/U � 1, and internal
structures (magmatic zoning) of zircons, indicate a magmatic origin. The variable εHf
values (�14.5 and �5.9, a large majority between 0 and �12; fig. 10 and table S5,
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/
TableS5.xlsx), indicate non-depleted mantle signatures (positive ε-Hf(t) values) with
juvenile input from molten felsic rocks (negative ε-Hf(t) values) as expected in a
continental arc (for example Patchett, 1983; Blichert-Toft and Albarède, 1997; Ver-
voort and Blichert-Toft, 1999; Naing and others, 2014).

The Urmia-Dokhtar Magmatic Arc (UDMA, fig. 1) is a continental arc attributed
to subduction during convergence between the Arabian and Eurasian plates (Şengör
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and others, 1988). The andesites and basalts of this arc yield two age intervals: Late
Cretaceous (81–72 Ma) and Middle Eocene-Late Miocene (45–6 Ma; Chiu and others,
2013). The main Late Cretaceous (105 Ma, 95 Ma, 89 Ma, 66 Ma) and Eocene (48 Ma)
peaks measured on clastic zircons in west Makran sandstones are not known in UDMA.
Therefore, the Makran detritus is not derived from this arc. Instead, Makran sediments
represent a “lost” Late Cretaceous-Eocene North Makran Magmatic Arc produced by
northward subduction beneath Central Iranian Block of the North Makran oceanic
basin, now represented by the North Makran ophiolites, (McCall, 1995; Hunziker and
others, 2015).

The fifth zircon group is Early Miocene, with the main peak at 22 Ma (figs. 6, 7 and
table S4, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Moham-
madi/TableS4.xlsx). This group contains 19 out of 2300 detrital zircon grains. These
Miocene zircons have euhedral shapes, which suggests a magmatic source not far from
the deposition site. Their small size (� 40�) prevented performing Hf isotopic
analysis. Early Miocene Ar-Ar age (22–18 Ma) were measured on UDMA basalts and
rhyolites (Chiu and others, 2013), which may have been the source of these Miocene
clastic zircons.

Potential Source Areas
Previous hypotheses suggested that the Paleo-Indus delta-submarine fan in the

Katawaz Basin (fig. 1) supplied Himalayan sediments, which were transported further
westward into the “Khojak” submarine fan and the Makran Basin (Critelli and others,
1990; Qayyum and others, 1997a; Qayyum and others, 2001; Grigsby and others, 2004;
Ellouz-Zimmermann and others, 2007a; Ellouz-Zimmermann and others, 2007b; Carter
and others, 2010; Kassi and others, 2011; Kassi and others, 2013; Kassi and others,
2015). This interpretation does not fit the data which, for comparison, are summarized
in table 1.

The Late Eocene to Early Miocene sandstones of the Katawaz Basin contain
abundant sedimentary lithic grains (siltstone, fine grained sandstone) with subordi-
nate amounts of low-grade metamorphic clasts and few volcanic lithic fragments (figs.
4B, 4C, 4D and table 1; Qayyum and others, 1996). The recycled orogenic composition
of these sandstones (figs. 4C, 4E and 4F) contrasts with the abundance of volcanic
lithic grains, high ratio of volcanic lithic/metamorphic lithic and magmatic arc
provenance in West Makran sandstones. Moreover, the Eocene detrital zircon grains
(48 Ma) of West Makran are almost absent in Katawaz sandstone sequences (fig. 11 and
table 1). Therefore, sediments of the Katawaz Basin were not recycled into the studied
West Makran.

Similarly, a mixed orogenic provenance with a major contribution from the
Tethys Himalaya, Karakorum and subordinate contributions from the ophiolitic
Suture and Trans-Himalaya were suggested for the deposits in the Sulaiman fold-and-
thrust belt (Roddaz and others, 2011; fig. 1). Zircon and apatite are almost absent in
the Early Oligocene sandstones of the Sulaiman fold-and-thrust belt (Roddaz and
others, 2011), while zircon and apatite together constitute 25 to 48 percent of the total
heavy mineral assemblages in West Makran sandstones. The Sulaiman Paleocene-
Middle Miocene strata contain Neoproterozoic detrital zircon (�90%) and minor
amounts of zircons are younger than 100 Ma (�10%), whereas in the West Makran,
zircon grains younger than 100 Ma are dominant (fig. 11 and table 1). We conclude
that the West Makran and the Sulaiman fold-and-thrust belt had separate source
regions during the Oligocene.

Comparison of the new detrital zircon U-Pb ages and Hf isotopic compositions of
the West Makran with those from Himalayan regions [the Indus Suture molasses, the
Kailas Basin, the Karakoram and Kohistan-Ladakh Arc, the Trans-Himalaya (Gangdese)
batholith, fig. 1B] and other potential sources such as South Sistan Basin and
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Zahedan-Shah Kuh plutonic belt in SE Iran and Oman (Semail) ophiolite (fig. 1),
further challenges the Paleo-Indus delta-submarine fan hypothesis and strengthens the
concept of detritus source from a Mesozoic-Cenozoic North Makran continental arc
and ophiolitic rocks. To summarize, the Lesser and High Himalayas (fig. 1B) were not
exposed before the Early Miocene (for example DeCelles and others, 2000). There-
fore, the West Makran sediments cannot contain detritus from these regions. Detrital
zircon U-Pb age clusters from the Tethyan Himalayan sedimentary sequences and
Indus Suture molasses differ from ages in the West Makran strata (fig. 11 and table 1).
In particular, the Late Cretaceous (108 Ma and 89 Ma) main peak of West Makran
zircons is almost absent in Kailas sequences (fig. 11 and table 1). Zircon ages
distribution pattern and Hf isotopic composition in West Makran Basin is different
than both Karakoram batholith and Kohistan-Ladakh arc (figs. 10, 11 and table 1). The
Late Cretaceous (89 Ma) main peak of West Makran zircons is almost absent in the
Trans-Himalaya (Gangdese batholith; fig. 11 and table 1). In addition, Hf isotopic
values from the Trans-Himalaya are more positive than the Hf isotopic values recorded
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Fig. 11. Detrital and magmatic zircon U-Pb age probability plots of: West Makran strata, East Makran
and South Sistan Basins (Mohammadi and others, 2016b; Mohammadi and others, 2016c), Indus Suture
molasses (Henderson and others, 2010), Kailas Basin (DeCelles and others, 2011), Sulaiman Fold-and-
Thrust Belt (Zhuang and others, 2015), Katawaz Basin (Carter and others, 2010), Gangdese Batholith (Chu
and others, 2006; Wen and others, 2008; Ji and others, 2009), Karakoram Batholith and Kohistan-Ladakh
Arc (Honegger and others, 1982; Schärer and others, 1984; Parrish and Tirrul, 1989; Krol and others, 1996;
Weinberg and Dunlap, 2000; Fraser and others, 2001; Schaltegger and others, 2003; Phillips and others,
2004; Singh and others, 2007; Jain and Singh, 2008; Upadhyay and others, 2008; Ravikant and others, 2009),
Tethyan Himalayan strata, Lesser Himalayan strata and Higher Himalayan strata (for example Gehrels and
others, 2011).
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in the West Makran zircons. ε-Hf(t) values of Trans-Himalayan Cretaceous zircons are
also more positive than those of west Makran Cretaceous zircons. Such values define a
mantle signature in Trans Himalaya while ε-Hf(t) values of west Makran zircons define a
continental magmatic arc signature (fig. 10 and table 1). Hence, the West Makran
detritus were not supplied from the Himalayan belts.

Considering sources closer than the Himalayas, the Eocene-Oligocene sandstones
of the South Sistan Basin in Iran exhibit detrital zircon U-Pb ages similar to those in
West Makran but the ε-Hf(t) values of Late Cretaceous zircons are more positive than
the ε-Hf(t) values of West Makran contemporaneous zircons (figs. 10, 11 and table).
Zircon U-Pb ages of the Zahedan-Shah Kuh granitic belt in SE Iran (Mohammadi and
others, 2016a) and Oman ophiolites (Chen and Pallister, 1981; Tilton and others,
1981; Warren and others, 2005; Rioux and others, 2012) differ from West Makran
detrital zircons (table 1). Misfits of zircon U-Pb ages and Hf isotopic composition
exclude all of these areas as sources of Late Cretaceous-Miocene detritus of the West
Makran Basin.

Generally the detrital zircon shapes, ages and ε-Hf(t) values of West Makran
Eocene-Miocene sandstones are consistent with what is known in eastern Iranian
Makran (figs. 8, 9, 10, 11 and table 1; Mohammadi and others, 2016c). We therefore
argue that the source of these sediments was a magmatic arc to the north of the Makran
Basin during the Cretaceous-Eocene times. These observations fit tectonic reconstruc-
tions dating the beginning of the Makran subduction in the Late Cretaceous (Berbe-
rian and Berberian, 1981; McCall, 1997; Mohammadi, ms, 2015), giving rise to the
Makran Accretionary Wedge and to a magmatic arc further north.

The configuration of Tethys in the Mesozoic and Early Cenozoic involves a
continental sliver extending from the Sanandaj-Sirjan/Bajgan-Durkan Complexes
(SSBDC, fig. 1). This continental sliver stretched between two oceanic basins, the inner
(North Makran) ocean to the north and the outer (Neo-Tethys) ocean to the south
(Şengör and others, 1988; McCall, 1995). Remnants of Neo-Tethys are today’s Gulf of
Oman and Arabian Sea. The northern, inner oceanic basin is represented by the North
Makran ophiolites (Hunziker and others, 2015). The Mid-Jurassic detrital zircons
linked to rifting magmas support opening of the inner oceanic basin at that time. This
oceanic basin began subducting below the Central Iranian Block in the Early Creta-
ceous and closed in the Paleogene (Hunziker, 2014). Late Cretaceous-Eocene detrital
zircons dated in this work are attributed to the related North Makran Magmatic Arc
who may have been entirely subducted or buried beneath the UDMA and Jaz Murian
Basin (fig. 1).

conclusion
The present work assessed the provenance of detrital material of the West Makran

accretionary wedge including Late Cretaceous to Miocene turbiditic and deltaic-shelf
sandstones. Over 2300 detrital zircons yield a spectrum of U-Pb ages of protolith from
Archean to Miocene (3.3 Ga–18 Ma) with main peaks in Middle Jurassic (165 Ma),
Early to Late Cretaceous (105 Ma, 95 Ma, 89 Ma, 75 Ma and 66 Ma), Eocene (48 Ma)
and a minor peak in Miocene (22 Ma). The Middle Jurassic ε-Hf(t) values range from
�1.9 to �8.2. The Late Cretaceous-Eocene ε-Hf(t) values range between �11.5 and
�16.3. The combined Hf isotope data and U-Pb ages indicate that protolith rocks
belonged to a Middle Jurassic rift (opening of North Makran, inner ocean) and a Late
Cretaceous-Eocene continental magmatic arc (subducting of the inner ocean below
Central Iran). Sources within the Central Iran blocks delivered older zircons. Heavy
mineral assemblages and Cr-spinel imply ophiolites as subsidiary sediment source.
These ophiolites developed in the rift system to the north of the study area. These
results do not support the hypothesis that West Makran detritus was supplied from
Himalayan sources in a paleo-Indus submarine fan delta complex. Instead, like in the
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eastern Iranian Makran, Eocene-Oligocene detritus was transported southward into
the Makran Basin from a nearby complex of rift related magmatic rocks, continental
arc and ophiolites. Miocene detritus were recycled from accreted Eocene-Oligocene
sandstones with a possible addition from the Urmia-Dokhtar Magmatic Arc.
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APPENDIX I

Sandstone Thin Section

Modal framework grain analysis of sandstones was performed by applying the Gazzi-Dickinson method
on thin sections stained for feldspars and carbonates (Dickson, 1966; Norman, 1974). More than 300 detrital
grains were counted in each thin section for statistical reliability (Folk, 1980). The Zuffa method has been
used to count lithic fragments (Zuffa, 1985). Minerals larger than 0.063 mm within rock fragments were
counted as monomineralic grains. Results were converted to percentages for compositional comparison
(table SI2; Weltje and von Eynatten, 2004). Data are displayed in five standard complementary triangular
diagrams (QFL, QmFLt, LvhLsLm, QmPK and QpLvLsm; Dickinson, 1985; Folk, 1980).

Heavy Mineral Separation

Approximately 2 to 3 kg of fresh rock was collected of each sample for heavy mineral analysis. To obtain
transparent heavy mineral fractions (density � 2.9 g/cm3 and typically � 1% of bulk rock), sandstones were
crushed with the SelFrag apparatus batch equipment using high voltage (130–150 kV) pulse power
technology, which liberates morphologically intact minerals. From the � 2 mm sieved fraction, carbonate
was dissolved in warm (60–70 °C) 10% acetic acid. Heavy minerals were pulled out in separation funnels
(Mange and Maurer, 1992) from 0.063 mm to 0.4 mm sieve fractions using bromoform (density 2.88 g/cm3).
The bulk heavy mineral fractions were mounted in piperine (Martens, 1932) between a glass slab and a
cover. Identification and quantification were carried out under a petrographic microscope by applying the
mid-point ribbon and fleet counting methods. At least 200 grains were counted per sample (Mange and
Maurer, 1992; table S3, http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/
TableS3.xlsx).

Detrital Zircon Separation and Dating

Detrital zircons were extracted from approximately 2 to 3 kg of SelFrag-crushed sandstone, using
standard mineral separation techniques such as, dissolution of carbonate cement in cold hydrochloric acid,
and heavy liquid separation (methylene iodide, density 3.32 g/cm3). Handpicked zircons of three different
sizes (fine, medium and coarse) were mounted in epoxy blocks and polished down to core exposition. All
analyzed zircons were controlled and photographed with cathodoluminescence (CL) and backscattered-
electron imaging (Jackson and others, 2004) to determine internal structures and inclusions of grains prior
to isotopic analysis. The CL and BSE images were taken from a split screen on a CamScan CS44 scanning
electron microscope at ETH in Zurich.

The Laser ablation ICP-MS analyses were performed on an Elan 6100 DRC instrument coupled to an
in-house built 193 nm Excimer laser at the ETH Zurich. Helium gas (1.1 l/min) is used as carrier gas in the
ablation cell. The laser was run at a pulse rate of 10 Hz with an energy of 0.5 mJ/pulse and a spot size of 30
�m. The accuracy and reproducibility of each analytical run were monitored by periodic measurements of
the standard GJ-1, with 207Pb/206Pb age of 608.5 	 0.4 Ma (Jackson and others, 2004). Data reduction was
performed using the GLITTER software to calculate the relevant isotopic ratios, ages and errors (Van
Achterbergh and others, 2001). Concordia and frequency probability diagrams were performed using
ISOPLOT v.3.0 (Ludwig, 2003). A Concordant age is given by the overlapping of the error ellipse with the
Concordia age curve. In this study, only concordant ages are considered. The frequency U-Pb age
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distribution diagram or probability density plot described by (Ludwig, 2003) includes a histogram represent-
ing the number of individual zircon grains within a short age range and the probability curve depicts the
mean age peaks of the age populations in one sample (table S4, http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2017/Mohammadi/TableS4.xlsx).

In-Situ Hafnium Isotope Ratios

In-situ Hf isotope analysis was performed on a Nu plasma MC-ICP-MS (Nu instrument Ltd) attached to a
193 nm UV ArF Excimer laser, at ETH Zurich on the same zircon grains used for U-Pb dating. Ablation was
carried using He as a sweep gas with a flow rate of 0.8–1.11 l/min and combined with Ar (�0.7 l/min) using
a 40 �m spot size and a 5 Hz laser pulse repetition rate. The energy density used was 10–20 J cm22 and each
ablation was preceded by a 40 second background measurement, and ablated zircon was measured within
60 s. Lutetium and Yb were analyzed in order to correct for isobaric interferences on 176Hf using
173Yb/176Yb � 0.79618 and 175Lu/176Lu � 0.026549 (Chu and others, 2002). The 
Hf and 
Yb mass bias
coefficients were calculated using an exponential law from measured 179Hf/177Hf and 173Yb/171Yb respec-
tively and using natural abundance reference values (179Hf/177Hf � 0.7325; 173Yb/171Yb � 1.132685; (Chu
and others, 2002). The Lu mass bias fractionation was assumed to be the same as Yb. The accuracy and
precision of the data obtained was monitored through the systematic measurements of the well character-
ized Temora-2 (0.282686; Woodhead and Hergt, 2005), Mud Tank (0.282507; Woodhead and Hergt, 2005)
and Plešovice (0.282482; Sláma and others, 2008) reference natural zircon samples with known Hf isotopic
compositions. The standard reference materials were chosen in order to have a range in Yb/Hf ratios to test
the accuracy of the 176Yb correction following the protocols of Fisher and others (2014). Repeated standard
analysis yielded results for the analytical session: Temora-2 � 0.282683, n � 37; Plešovice � 0.282474, n � 17;
Mud Tank � 0.282494, n � 21, which are good agreement with the published (table SI5; Blichert-Toft and
Albarède, 1997).

The supplementary data tables:
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/TableS1.xlsx
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/TableS2.xlsx
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/TableS3.xlsx
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/TableS4.xlsx
http://earth.geology.yale.edu/%7eajs/SupplementaryData/2017/Mohammadi/TableS5.xlsx
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2010, Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of
sedimentation from the western Himalaya during the early phases of India–Eurasia collision: Tectonics,
v. 29, n. 6, https://doi.org/10.1029/2009TC002651

Heuberger, S., Schaltegger, U., Burg, J.-P., Villa, I. M., Frank, M., Dawood, H., Hussain, S., and Zanchi, A.,
2007, Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW
Pakistan: Evidence for subduction and continued convergence after India-Asia collision: Swiss Journal
of Geosciences, v. 100, n. 1, p. 85–107, https://doi.org/10.1007/s00015-007-1203-7

Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thöni, M., and Trommsdorff, V., 1982, Magmatism and
metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone): Earth and Planetary Science
Letters, v. 60, n. 2, p. 253–292, https://doi.org/10.1016/0012-821X(82)90007-3

Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D.,

961U-Pb geochronology, Hf isotopes and provenance analysis of Late Cretaceous-Miocene

https://doi.org/10.1016/0037-0738(90)90013-J
https://doi.org/10.1126/science.288.5465.497
https://doi.org/10.1126/science.288.5465.497
https://doi.org/10.1130/B30258.1
https://doi.org/10.1111/j.1365-246X.2009.04491.x
https://doi.org/10.1007/978-94-017-2809-6_15
https://doi.org/10.1007/978-94-017-2809-6_15
https://doi.org/10.1306/74D714F6-2B21-11D7-8648000102C1865D
https://doi.org/10.3929/ethz-a-006226348
https://doi.org/10.3929/ethz-a-006226348
https://doi.org/10.1007/978-3-540-69426-7_17
https://doi.org/10.1007/978-3-540-69426-7_17
https://doi.org/10.1007/978-3-540-69426-7_18
https://doi.org/10.1016/j.chemgeo.2013.10.019
https://doi.org/10.1130/0016-7606(2001)113<1443:CODMAM>2.0.CO;2
https://doi.org/10.1029/2011TC002868
https://doi.org/10.1016/j.sedgeo.2006.05.030
https://doi.org/10.1016/j.sedgeo.2006.05.030
https://doi.org/10.1016/S0016-7037(99)00343-9
https://doi.org/10.1016/S0016-7037(99)00343-9
https://doi.org/10.1016/j.tecto.2007.11.062
https://doi.org/10.1029/2009TC002651
https://doi.org/10.1007/s00015-007-1203-7
https://doi.org/10.1016/0012-821X(82)90007-3


Zamanzadeh, S. M., and Grove, M., 2008, Detrital zircon provenance of Neoproterozoic to Cenozoic
deposits in Iran: Implications for chronostratigraphy and collisional tectonics: Tectonophysics, v. 451,
n. 1–4, p. 97–122, https://doi.org/10.1016/j.tecto.2007.11.063

Hunziker, D., ms, 2014, Magmatic and metamorphic history of the North Makran Ophiolites and Blueschists
(SE Iran): Influence of Fe3�/Fe2� ratios in blueschist facies minerals on geothermobarometric
calculations: Zurich, Switzerland, Ph. D. thesis, ETH Zürich, Nr. 21778, https://doi.org/10.3929/ethz-
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