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ABSTRACT. A modified form of the kinetic rate law for mineral dissolution and
precipitation is proposed that is invariant to a scale transformation of the mineral
formula unit. The scale factor appears in both the affinity factor determining the
extent of disequilibrium and in the prefactor term, which multiplies the affinity factor.
The form of the rate law is obtained by imposing invariance of the reactive transport
equations on scaling the mineral formula unit, a basic requirement of all kinetic rate
laws describing mineral reactions. This requirement is shown to be consistent with the
Horiuti-Temkin formulation of the overall reaction rate for stationary-state conditions.
The overall rate law is derived by summing a network of elementary reaction steps each
weighted by a stoichiometric number giving the rate of the ith intermediate step
relative to the overall reaction rate. However, it is noted that current formulations of
mineral kinetic rate laws are more empirically based and do not always satisfy the
requirement that the elementary reaction steps defining a reaction mechanism sum to
form the overall reaction. In addition, there appears to be confusion in the literature
between the Temkin average stoichiometric number and the scale factor related to the
mineral formula unit, which are shown to be two distinct quantities. Finally, it is noted
that in recent numerical simulations modeling sequestration of supercritical CO2 in
deep geologic formations, different chemical formulas for oligoclase have been used
related by a scale factor of five without taking into account the scale factor in the
kinetic rate law. This oversight could result in potentially significantly larger oligoclase
dissolution rates, and exaggerated CO2 mineralization through precipitation of dawso-
nite.

Key words: mineral kinetics, scale invariance, Temkin number, reaction mecha-
nism, elementary reaction, reaction intermediate, carbon sequestration, overall reac-
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introduction

The transition state theory (TST) based kinetic rate law has found wide applica-
tion for modeling water-rock interaction of minerals with an aqueous solution.
Aagaard and Helgeson (1982) in their seminal paper on the kinetic rate law for
minerals reacting with an aqueous solution based their formulation on TST combined
with the Horiuti-Temkin stoichiometric number (Horiuti, 1957; Temkin, 1963),
defined as the ratio of the reaction rate of an intermediate reaction step to the overall
reaction rate. The relationship between the reaction mechanism represented by a set
of elementary reactions and the overall reaction rate was originally presented by
Horiuti (1957) and then later extended by Temkin (1963) within the framework of
stationary-state reaction kinetics, providing a rigorous formulation of the kinematics of
overall reaction kinetics. The insight of Horiuti (1957) and Temkin (1963) was to
realize that the overall reaction rate for quasi-stationary state conditions, could be
related algebraically to the rates of forward and backward elementary reaction steps
which define the reaction mechanism.

However, controversy still appears to exist as to whether the Temkin average
stoichiometric number is a fundamental component of the kinetic rate law or whether
it merely serves as a fit parameter with no fundamental basis. Lasaga (1995, p. 31–32)
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stated that Temkin’s method was incorrect due to a simple mathematical error by
Boudart (1976) in identifying forward and backward rates of the overall reaction. He
further argued that incorporation of Temkin’s number was not fundamental to the
kinetic rate law (Lasaga, 1995). Gin and others (2008) attempted to evaluate the
validity of the Horiuti-Temkin approach but left the issue unresolved. So far the full
machinery of the Horiuti-Temkin formulation has not been implemented in the
geochemical literature to describe reactions with minerals. This is in part a result of
lack of understanding and confusion surrounding this approach, but also due to the
difficulty associated with identifying the mechanistic basis for the rate law. In what
follows it is demonstrated that the Horiuti-Temkin formulation of the stationary-state
overall rate law has a sound mathematical foundation and results in a formal method-
ology for deriving the overall reaction rate from a specified reaction mechanism
formulated in terms of elementary steps. This approach could offer important insight
into understanding mineral rate laws.

Aagaard and Helgeson (1982) first drew attention to the role of the Temkin
average stoichiometric number, and since then it has been found useful in fitting
experimental data in numerous studies of kinetic rate laws describing mineral reac-
tions. Murphy and Helgeson (1987, p. 3148) applied the TST rate law to dissolution of
pyroxene and noted that the Temkin number � depended on the formula unit used to
represent pyroxene. For the general pyroxene formula C(1)C(2)(SiO3)2, where C(1)
and C(2) refer to divalent cations (for example, Mg2�, Ca2�, Mn2�, Fe2�) on the M(1)
and M(2) pyroxene sites, it follows that � � 2; whereas for C(1)0.5C(2)0.5SiO3 it follows
that � � 1. Berger and others (1994) reported a value of � � 1 for quartz, and Gautier
and others (1994) a value of � � 3 for K-feldspar dissolution. Devidal and others
(1997) and Yang and Steefel (2008), found � � 2 for kaolinite dissolution and
precipitation. Anorthite purportedly has a Temkin number of unity according to
Oelkers and Schott (1995). Harouiya and others (2007) proposed a value for Temkin’s
constant of � � 5 for apatite [Ca5(PO4)3F]. They noted that this value was consistent
with five activated complexes related to breaking Ca–O bonds in the dissolution of one
formula unit as the rate limiting step. Criscenti and others (2005) presented an
eight-step detailed reaction mechanism with Temkin numbers equal to one for
removal of Al from a feldspar surface. It should be pointed out, however, that none of
these authors developed a rigorous set of elementary reaction steps that sum to give the
overall mineral reaction [An exception, discussed below, is provided by Icopini and
others (2005).], and therefore it is not clear whether the assigned Temkin number is
consistent with the Horiuti-Temkin formulation or is simply a fit parameter.

In this work a modified form of the mineral rate law is proposed that includes the
explicit dependence on a scale factor of the mineral formula unit and corresponding
overall reaction, both through the usual affinity factor and also in the rate prefactor.
This latter modification appears to have been overlooked in previous work. The
modified form of the rate law follows from the implications of scaling the mineral
formula unit on the form of the kinetic rate law and invariance of the reactive transport
equations under the scale transformation. Clearly, results obtained from solving
reactive transport equations should not depend on the mineral formula unit used in
the calculation, and any multiple of the formula unit should be equally valid. The
resulting form of the rate law is similar in form to that obtained from Temkin’s
formulation of the overall reaction rate with the scale factor replacing Temkin’s
stoichiometric number.

In what follows the consequences of the requirement of invariance of mass
conservation equations to scaling the mineral formula unit are explored and their
implications for the form of the kinetic rate law derived. The observation that the
results of solving reactive transport equations should not depend on the mineral
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formula unit used to represent mineral reactions has significant consequences on the
possible forms that the kinetic rate law can take. Next, following a review of the
Horiuti-Temkin formulation of the overall stationary-state kinetic rate law, it is demon-
strated that this formulation results in invariant mass conservation equations describ-
ing reactive transport provided that the Horiuti-Temkin stoichiometric number is also
appropriately scaled. Finally, several observations are made when applying a kinetic
rate law to model carbon sequestration and scaling the mineral formula unit as has
been presented in the literature.

scale invarience

To determine the transformation properties of the kinetic rate law under a scale
transformation of the mineral formula unit, the condition of invariance is imposed on
the reactive transport equations. Reaction of an aqueous solution with the mth mineral
�m is presumed to be described by the overall reaction

�
j � 1

Nc

� jm� j º �m, (1)

written in canonical form (Lichtner, 1985), involving Nc primary aqueous species
(components or basis species) �j, with stoichiometric reaction coefficients �jm. The
overall reaction rate is denoted by �m normalized to unit specific mineral surface area
�m. The sign convention with the rate positive for precipitation and negative for
dissolution is used throughout.

The overall reactions are unique only to within a scale factor of the mineral
formula unit. This scale factor cannot have any effect on the prediction of observable
quantities. Thus, for example, for kaolinite any of the formula units AlSiO5/2(OH)2,
Al2Si2O5(OH)4 or Al4Si4O10(OH)8 could be used without affecting the results. Scaling
the reaction given in equation (1) by some scale factor �m � 0 gives the equivalent
reaction

�
j

�	jm � j º �	m, (2)

with �	jm � �m�jm, and �	m � �m�m. The equilibrium constants for the scaled and
unscaled reactions are related by the equation

K	m � Km
�m. (3)

The mineral formula weight Wm scales according to W 	m � �mWm, as does the mineral
molar volume: �V 	m � �m �Vm. The number of formula units per unit cell Zm scales
inversely with Z	m � �m


1Zm. The mass density �m is invariant: �	m � �m. The mineral
volume fraction fraction �m is also an invariant, defined as the volume occupied by the
mineral divided by some reference volume (typically the bulk volume or representative
elemental volume (REV), the solid volume or pore volume). In contrast, the mineral
concentration defined as Cm � �Vm

� 1�m � Wm
� 1�m�m scales inversely with �m:C	m � �m


1Cm.
Finally, specific mineral surface area, defined relative to some reference volume, is
invariant: �	m � �m.

Under a transformation scaling the mineral formula unit, observables such as the
solute concentration and mineral volume fraction obtained from solving reactive
transport equations should not be affected and must remain invariant. Mineral
reaction rates, however, are affected by scaling the mineral formula unit. To determine
the transformation properties of the mineral kinetic rate law, the conservation
equations corresponding to unscaled and scaled mineral formulas are compared.
These equations for the jth aqueous primary species have the following respective
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forms corresponding to the unscaled and scaled mineral formula unit (Lichtner, 1985;
Lichtner, 1996; Lichtner, 1998; Steefel and others, 2005; Lichtner and Karra, 2014)





t
��j � � � �j � ��

m
�jm �m�m, (4a)

� ��
m

�	jm�	m�m, (4b)

where primes indicate that the quantity is evaluated relative to the scaled mineral
formula. In these equations � denotes the porosity of the porous medium, �j and �j
denote the total concentration and flux for the jth primary species or component,
respectively, and the sum on the right-hand side is over all minerals in the system of
interest.

For the mth mineral its volume fraction defined relative to an REV satisfies the
following mass transfer equations corresponding to unscaled and scaled mineral
formulas


�m


t
� �Vm�m�m, (5a)

� �V	m�	m�m. (5b)

These conservation equations apply to a general time-space description of reactive
transport as well as a batch reactor for closed and open systems.

In order for the aqueous concentrations and mineral volume fractions to be
independent of the mineral formula unit, the right-hand sides of equations (4) and (5)
must be identical. This requires the following relations to hold identically

� jm�m � �	jm�	jm, (6a)

and

�Vm�m � �V	m�	m. (6b)

Replacing the primed stoichiometric coefficients �	jm and molar volume �V 	m by their
corresponding unprimed quantities, these relations imply the transformation rule

�m�	m � �m. (7)

This is a very general result independent of the detailed form of the kinetic rate law.
To see the implications of this transformation rule, consider the overall mineral

kinetic rate law expressed in a somewhat simplified form sufficient for the purposes
here as

�m � �km�m�1 � KmQm�. (8)

In this equation km denotes the kinetic rate constant which is a function of temperature
and pressure, and �m represents a concentration-dependent prefactor that may be a
function of pH and other variables. The last factor in brackets refers to the affinity
factor with equilibrium constant Km corresponding to the overall mineral reaction as
written in equation (1), and activity product Qm defined by

Q m � �
j

��jmj�
�jm, (9)

with molality mj and activity coefficient �j for the jth primary species. Note that the
product KmQm appears in the affinity factor (rather than the more customary form
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Qm/Km, because the overall reaction is written with the mineral on the right-hand side
as in equation (1). The average Temkin stoichiometric number is not included in this
form of the rate law. This is considered in detail in the next section within the
framework of the Horiuti-Temkin formulation for the overall reaction rate.

Under a scale transformation the activity product Qm transforms according to

Q	m � �
j

��jmj�
�jm, (10a)

� �
j

�� jmj�
�m�jm, (10b)

� Qm
�m. (10c)

The prefactor is assumed to be independent of the scale transformation

�	m � �m, (11)

as is the rate constant

k	m � km. (12)

These assignments are justified in the Horiuti-Temkin formuation of the overall rate
where these quantities are derived from elementary reactions that define the reaction
rate mechanism, and are presumed to take place at the molecular scale and therefore
are not transformed. Hence, from equations (3), (7) and (10) the overall rate law
becomes

�	m � 

1
�m

km�m�1 � KmQm�, (13a)

� 

1
�m

km�m�1 � �K 	mQ 	m�1/�m�. (13b)

Thus, according to this result to obtain the same solution to the reactive transport
equations after scaling the mineral formula (and overall reaction), the rate constant km
must be divided by the scale factor �m and the saturation state KmQm raised to the
power �m


1. Note that for both the scaled and unscaled mineral formula, equilibrium
corresponds to

KmQm � K	mQ	m � 1. (14)

horiuti-temkin overall rate law
Mineral reactions are generally complex reactions made up of a number of

elementary steps. The elementary steps define the reaction mechanism in terms of
molecular interactions and are unique and must be implemented as written. An
expression for the reaction rate of the overall reaction in terms of rates of the
elementary steps can be obtained from the quasi-stationary state approximation. This
leads to a greatly simplified form of the rate law.

The general theory has been developed by Horiuti (1957), Hollingsworth (1957),
Temkin (1963), and others [see Boudart and Djéga-Mariadassou (1984)]. The main
requirement is to represent an overall reaction through a sequence of elementary steps
which yield back the overall reaction when each step is multiplied by an appropriate
stoichiometric number and summed. In general, multiple pathways may be involved in
formation of the same overall reaction; however, this theory is still under development
(Temkin, 2012). The usefulness of this approach lies in the ability to formulate the
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elementary steps which define the overall reaction. This in itself may be an enormous
task and success is not guaranteed. The resulting rate law for the overall reaction must
satisfy the constraints imposed by requiring invariance of the rate law under scaling of
the mineral formula unit. After first formulating the overall rate in terms of a sequence
of elementary steps, its transformation properties under scaling the mineral formula
unit are investigated and shown to comply with the transformation rules derived above.

Horiuti-Temkin Formalism
Stationary state and reaction intermediates.—It is assumed that each elementary step

involves a set of reactants and products that describes a single mineral �m reacting with
an aqueous solution. Species which occur in both the elementary steps and in the
overall reaction are denoted collectively by {�j}, referred to as terminal species. In
addition, species which occur only in the elementary steps but not in the overall
reaction, denoted by {�k}, are referred to as reaction intermediates. The overall
reaction is constructed by summing the elementary steps weighted by the Horiuti-
Temkin stoichiometric number. The species �k may represent catalysts, for example,
including species sorbed on the surface of the mineral. Each elementary step is
assumed to have the general form

�
j

� ji
m� j � �

k
xki

m �kº �mi�m, (15)

with stoichiometric coefficients �mi, �ji
m and xki

m corresponding to the ith step for reaction
of the mth mineral. The sum over j is over terminal species �j, and the sum over k is
over the reaction intermediates �k.

The corresponding overall reaction is formed by multiplying each step by the
Horiuti-Temkin stoichiometric number denoted by �mi and summing over all steps to
give

�
j

� jm � j � �m�m, (16)

where the stoichiometric coefficients for the overall reaction are given by

� jm � �
i

�mi � ji
m, (17)

and the stoichiometric coefficients vmi are given by

�
i

�mi�mi � �m, (18)

The coefficients �mi are chosen so that the reaction intermediates �k are absent from
the overall reaction

�
i

�mixki
m � 0. (19)

From the time-evolution equations corresponding to the elementary reaction steps, it
follows that the time rate of change for the total primary species concentrations and
minerals is given by





t
��j � � � �j � �j, (20a)





t
��k � � � �k � �k, (20b)
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�m


t
� �m, (20c)

with the reaction rates �j, �k, and �m defined respectively as

� j � ��
mi

� ji
m �m�mi, (21a)

�k � ��
mi

xki
m �m�mi, (21b)

�m � �Vm�m�
i

�mi �mi. (21c)

In terms of the overall reaction, equation (16), the reaction rates become

� j � ��
mi

� jm �m�m, (22a)

�k � 0, (22b)

�m � �Vm�m�m�m. (22c)

Comparing equations (22) and (21), making use of equations (17), (18) and (19),
leads to the condition

�
i

xki
m �mi � 0, (23)

for intermediate species implying stationary-state conditions. Comparing rate terms
for the jth primary species leads to

�
i

� ji
m ��mi�m � �mi� � 0. (24)

Requiring that the quantity in brackets vanish for each elementary step implies

�mi�m � �mi. (25)

Alternatively, introducing reaction progress variables �mi and �m corresponding to the
elementary steps and overall reaction, equations (15) and (16), respectively, equation
(25) is equivalent to

d�mi

d�m

d�m

dt
�

d�mi

dt
, (26)

with

�mi �
d�mi

d�m
. (27)

Elementary reactions may satisfy conditions of quasi-equilibrium or stationary-
state conditions. Note that there appears to be a contradiction if an intermediate step
is in equilibrium. Because then �mi � 0 for this step and from equation (25) this would
imply that the overall reaction rate must also vanish. But in fact, equilibrium of an
elementary step does not hold exactly. Forward and backward rates are only approxi-
mately equal, although much larger compared to the overall reaction rate (see fig. 1
and Appendix A).

The reaction rate for the ith elementary reaction step is based on the law of mass
action given by
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�mi � kmi
�Qmi

� � kmi

Qmi


 , (28)

with activity products Qmi
� defined as

Qmi
� � �

�ji
m � 0

aj
�ji

m �
xji

m � 0

ak
xki

m

, (29a)

Qmi

 � �

�ji
m 	 0

aj

�ji

m �
xji

m 	 0

ak

xki

m

, (29b)

with aj the activity of the jth terminal solute species, ak the activity of the kth reaction
intermediate, and forward and backward rate constants kmi

� , respectively.
By definition of an elementary reaction the ratio of the forward and backward rate

constants for the ith step is equal to the corresponding equilibrium constant

kmi �
kmi

�

kmi

 . (30)

Equilibrium holds when

KmiQmi � 1, (31)

where the activity product Qmi is defined by

Q mi �
Qmi

�

Qmi

 � �

j
aj

�ji
m �

k
ak

xki
m

, (32)

Fig. 1. Schematic diagram showing net reaction rates for three elementary steps and the overall
reaction rate �m designated by the vertical line. Step 2 with net rate �m2 is approximately in equilibrium, and
step 1, with net rate �m1, is the rate determining step. Stationary state conditions require that each net
elementary rate �mi divided by its Temkin stoichiometric number �mi equal the overall net reaction rate.
Figure adapted from Boudart and Djéga-Mariadassou (1984), who attribute it to Tamura (1978).

.
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where the product over the subscript j refers to terminal species appearing in the
overall reaction, and the product over k refers to reaction intermediates.

The equilibrium constant for the overall reaction is related to the equilibrium
constants of the elementary steps by the usual equation

Km � �
i

K mi

mi � �

i
�kmi

�

kmi

�
mi

. (33)

Likewise, the activity product of the overall reaction is equal to the product

Q m � �
i

Qmi

mi � �

j
aj

�jm, (34)

where the latter equality follows from equations (17) and (19).
Temkin identity.—An expression for the overall reaction rate can be computed

algebraically in terms of the rates of elementary intermediate reactions from the
mathematical identity first introduced by Temkin (1963) in generalizing the work of
Horiuti (1957)

��m1
� � �m1


 ��m2
� �m3

� · · ·�mNs

� � �m1

 ��m2

� � �m2

 ��m3

� �m4
� · · ·�mNs

�

(35)
� �m1


 �m2

 ��m3

� � �m3

 ��m4

� · · ·�mNs

�

� · · ·

� �m1

 �m2


 �m3

 · · ·�m,Ns � 1


 ��mNs

� � �mNs


 �

� �m1
� �m2

� �m3
� · · ·�mNs

� � �m1

 �m2


 �m3

 · · ·�mNs


 .

Substituting equation (25) for �mi
� � �mi


 � �mi�m into equation (35), this identity can
be written in the more concise form

�m�
i

�mi Dmi � �
i

�mi
� � �

i
�mi


 , (36)

where the quantity Dmi is defined by the product over elementary reaction steps as

Dmi � �m1

 �m2


 · · ·�m,i � 1

 �m,i � 1

� · · ·�mNs

� , (37)

in which the factor �mi corresponding to the ith step is omitted. This equation yields
the following expression for the overall reaction rate

�m �
1

�
i

�miDmi
��

i
�mi

� � �
i

�mi

�. (38)

Temkin’s identity, equation (35), is independent of a change of sign in the reaction
rates and permutation of elementary steps. For Ns � 2, 3, 4 the sum in the denominator
becomes

�
i

�miDmi � �m1�m2
� � �m2�m1


 , �N � 2), (39a)

� �m1�m2
� �m3

� � �m2�m1

 �m3

� � �m3�m1

 �m2


 , �N � 3), (39b)

� �m1�m2
� �m3

� �m4
� � �m2�m1


 �m3
� �m4

�

� �m3�m1

 �m2


 �m4
� � �m4�m1


 �m2

 �m3


 . �N � 4), (39c)
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For the case of reversible reactions where �mi

 � 0, the overall rate can be written in the

form

�m � �
1

�
i

�miDmi
��

i
�mi


��1 � �
i
��mi

�

�mi

��. (40)

If all intermediate steps are irreversible (for example �mi

 � 0 all i), the equation for

the overall rate simplifies to

�m �
1

�mi
�mi

� , �i � 1,. . .,Ns�. (41)

Temkin average stoichiometric number.—The third term in square brackets in equa-
tion (40), corresponding to the affinity factor, can be further manipulated to express it
in terms of the equilibrium constant and activity product of the overall reaction. It
follows from the definition of an elementary reaction that

�
i

�mi
�

�mi

 � �

i
eAmi/RT � e

1
RT�i

Ami , (42a)

� �
i

KmiQmi, (42b)

where Ami denotes the affinity of the ith elementary step associated with the mth
mineral, R denotes the gas constant and T is the temperature. The right-hand side can
be written in terms of the affinity of the overall reaction given by

Am � �
i

�miAmi, (43)

by introducing the Temkin average stoichiometric number �m defined as the weighted
arithmetic mean

�m �

�
i

�miAmi

�
i

Ami
�

Ami�
i

Ami
. (44)

Alternatively, in terms of the equilibrium constant Kmi and activity product Qmi for the
ith elementary step, the average stoichiometric number becomes

�m �

�
i

�mi ln KmiQmi

�
i	

ln KmiQmi
, (45)

which may also be expressed as

�
i

KmiQmi � �
i

�KmiQmi�

mi/
m. (46)

The average Temkin stoichiometric number is, in general, a function of temperature,
pressure and composition. Defining �mi � lnKmiQmi, computing the derivative of �m
with respect to �mi yields


�m


�mi
�

�mi�
i	

�mi	
�1 �

�m

�mi
� . (47)
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Therefore, �m is constant only if �mi � �m for all i, a highly restrictive condition.
Boudart (1976) refers to a “good” average stoichiometric number as one that for all
practical purposes is constant.

With equation (45) the following expression is obtained for the affinity factor in
terms of the overall reaction affinity Am, equilibrium constant Km and activity product
Qm

�
i
��mi

�

�mi

 � � e

1

mRT Am, (48a)

� �KmQm�1/
m. (48b)

Substituting this result into equation (40) the overall reaction rate can be written
equivalently as

�m � �
1

�m
��

i
�mi


 ��1 � e
1


mRT Am�, (49a)

� �
1

�m
��

i
�mi


 ��1 � �KmQm�1/
m�, (49b)

with the quantity �m defined by

�m � �
i

�mi�mi. (50)

The overall reaction rate consists of a prefactor that is a function of the rates of the
elementary steps times the affinity factor. The above expression for the overall reaction
rate explicitly exhibits the dependence of the rate on the Temkin stoichiometric
numbers, both in the prefactor involving the individual �mi through the quantity �m,
and in the affinity factor where the average Temkin number �m appears.

Rate determining step.—In the general case of multiple reaction steps with different
stoichiometric numbers, the average stoichiometric coefficient depends on the concen-
tration of the various species involved. However, for a single rate determining step ı̂,
with all other steps close to equilibrium (Ami 	 0, �mi

� 	 �mi

 , i � ı̂), it follows from

equation (45) that �m � �mı̂, and the formulation for the overall reaction rate greatly
simplifies. Equation (40) for the overall reaction rate becomes

�m � �
1

�mı̂�mı̂
��

i
�mi


 ��1 �
�mı̂

�

�mı̂

�, (51)

with

�mı̂
�

�mı̂

 � �KmQm�1/
mı̂, (52)

and

�
i

�miDmi 	 �mı̂Dmı̂, (53)

since �mi
� �� �mı̂

� , �i � ı̂ �. In this formulation of the overall reaction rate the depen-
dence of the rate on the Horiuti-Temkin stoichiometric number �mı̂ is explicitly singled
out. The form of the rate law given in equation (51) is slightly different from that
usually reported in the literature in that the Horiuti-Temkin stoichiometric num-
ber appears twice: once in the affinity factor corresponding to the conventional
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formulation [equation (52)], and also as an overall scale factor of the rate appearing in
the denominator in equation (51). Although Aagaard and Helgeson (1982) explicitly
included the factor �mı̂ appearing in the affinity term of the rate law, they absorbed it
into the rate constant km, rather than making explicit provision for it in the prefactor.
As becomes apparent below, it is advantageous to leave �mı̂ as a explicit factor in the
rate law.

Overall forward and backward reaction rates and equilibrium constant.—So far in the
development of the Horiuti-Temkin formulation of overall reaction rates there has
been no need to introduce explicit expressions for the forward and backward overall
rates. In this section these quantities are defined and a relation is derived for the
overall equilibrium constant and forward and backward rate constants. There appears
to be no need to define forward and backward reaction rates for the overall reaction,
unlike the case for elementary reactions for which they are well defined. Equation (49)
suffices to describe both forward and backward rates as it stands without dividing it into
separate terms. Nevertheless, expressions for the forward and backward reaction rates
�m

� of the overall reaction can be found by noting that two conditions must be satisfied.
First, by definition the net overall rate is equal to the difference in the forward and
backward reaction rates

�m � �m
� � �m


, (54a)

and, second, the ratio of the forward and backward rates is equal to the saturation state

�m
�

�m

 � �

i
��mi

�

�mi

�. (54b)

Solving these equations for �m
� gives

�m
� �

1
�m

�
i

�mi
� , (55)

as expected. Alternatively, the forward and backward rates can be expressed in terms of
the overall reaction rate and affinity factor as

�m
� � �

�KmQm�1/
m

1 � �KmQm�1/
m
�m, (56a)

�m

 � �

1
1 � �KmQm�1/
m

�m. (56b)

There does not generally exist a simple relation between the equilibrium constant for
the overall reaction and the forward and backward rate constants as exists for
elementary reactions [see equation (30)]. The affinity factor for the overall reaction
can be written as

�m
�

�m

 �

km
�Qm

�

km

Qm


 � �KmQm�1/
m, (57)

where Km and Qm are defined by equations (33) and (34), and where the forward and
backward rate constants km

� are defined as

km
� � �

i
kmi

� , (58)

and the activity products Qm
� as
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Q m
� � �

i
Qmi

� , (59)

with Qm
� given by equations (29a and 29b). From equation (57) it follows that

km
�

km

 � Km

1/
m
Qm




Qm
�Qm

1/
m, (60a)

� Km
1/
m�

j
aj

�jm �
k

ak

km, (60b)

where the exponents �jm and �km are defined by

� jm �
1

�m
� jm � �

i
� ji

m, (61a)

� �
i
��mi

�m
� 1�� ji

m, (61b)

for species which appear in the overall reaction, and

�km � � �
i

xki
m, (62)

for reaction intermediates. The condition for �jm � �km � 0 is that �mi � �m for all
elementary steps i as follows from equations (61b) and (19). In this case the forward
and backward rate constants are related to the equilibrium constant by [see also
Boudart and Djéga-Mariadassou (1984), Boudart (1976)]

Km � �km
�

km

�
m

. (63)

However, this simple relation does not hold in general. For the case that
�jm � 0, �km � 0, a more complicated relation results and, since the equilibrium
constant and forward and backward rate constants are, by definition, independent of
concentration and only depend on temperature and pressure, the average Temkin
stoichiometric number must be concentration dependent.

Examples
In the following, the Horiuti-Temkin formulation for the overall reaction rate is

applied to several examples: a three-component system, ozone destruction, quartz
dissolution and precipitation, a hypothetical reaction with solid AB(s) and oligomeriza-
tion of silica. In addition, in Appendix B a comparison is made with an overall rate
expression presented in Lasaga (1998) and Nagy and others (1991) for the reaction
A�B�Sº C�Dº P�Q, with solid S and aqueous species A, B, C, D, P, and Q.

Three-component system.—A simple example applying the above equations to the
three-component irreversible reactions A3B3C is shown in figure 2. Details are
presented in Appendix A. The example problem illustrates conditions necessary for
formation of a stationary state by comparison with an analytical solution. The overall
reaction rate for irreversible reactions is compared to the case with reversible elemen-
tary reactions. Two examples are shown assuming C A

0 � 1 and C B
0 � C C

0 � 0. The
first example with k1

� � 0.1 and k2
� � 0.05, results in a transient solution that does

not obey the stationary-state assumption over the time period considered. For the
second k1

� � 0.1 and k2
� � 1, so that k2

� �� k1
�. This results in a stationary-state for

which Temkin’s identity applies following a short induction time proportional to
�k1

��
1.
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Ozone destruction.—A simple example of the Temkin formalism for the overall
reaction rate is provided by the decomposition of ozone. The overall reaction has the
form

2O3 3 3O2, (64)

which represents a complex reaction with reaction rate confirmed by experiment of
the form
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Fig. 2. Plot of analytical solution for k1
� � 0.1, k2

� � 0.05 (top), and k1
� � 0.1, k2

� � 1 (bottom)
for the irreversible reactions given in equation (A-1). Concentrations correspond to CA (blue), CB (red) and
CC (cyan). The dashed green curve in the lower plot corresponds to CB 	 k1

�/k2
�CA.
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� � k
[O3]2

[O2]
, (65)

with concentrations [. . .]. The rate is second order in [O3] and inversely proportional
to the concentration of the product species [O2] with order 
1, and is clearly not an
elementary reaction. The irreversible reaction mechanism for ozone decomposition
involving free oxygen O as a reaction intermediate may be formulated according to:

O3 º O2 � O, (66a)

O � O3 3 2O2. (66b)

Summing the elementary reaction steps leads to the overall reaction given in equation
(64). The second reaction is considered to be much slower compared to the first and
defines the rate limiting step. The forward and backward elementary reaction rates are
given by

�1
� � k1

��O3�, (67a)

�1

 � k1


�O2��O�, (67b)

�2
� � k2

��O3��O�, (67c)

�2

 � 0, (67d)

where �1
� refers to the forward and backward rate of the reaction given in equation

(66a), and �2
� the corresponding rates for the reaction given in equation (66b). The

time rate of change of the individual species follows from

d
dt

�O3� � � ��1 � �2�, (68a)

d
dt

�O2� � ��1 � 2�2�, (68b)

d
dt

�O� � �1 � �2, (68c)

with �i � �i
� � �i


. Imposing stationary-state conditions implies that �1 	 �2,
requiring that the concentration of the intermediate species [O] satisfy d[O]/dt 	 0.
Solving for [O] leads to an expression for the concentration of [O] in terms of [O3]
and [O2]

�O� �
k1

��O3�

k2
��O3� � k1


�O2�
. (69)

The overall reaction rate then follows as

� �
�1

��2
�

�2
� � �1


, (70a)

�
k1

�k2
��O3�

2�O�

k2
��O3��O� � k1


�O2��O�
, (70b)

� k1
��O3��, (70c)
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where the factor � is defined as

� �

k2
�

k1



�O3�

�O2�

1 �
k2

�

k1



�O3�

�O2�

. (71)

For the case where the rate determining step is given by the irreversible reaction
[equation (66b)], it follows that k2

��O3� �� k1

�O2�, and the overall rate reduces to

equation (65) in agreement with experiment with k given by

k �
k1

�k2
�

k1

 . (72)

Of course, this result can be easily derived directly by making use of the stationary-state
assumption and rate limiting step without invoking the Temkin formalism for the
overall reaction rate [See, for example, Lasaga (1981)].1

Reaction of quartz.—It is instructive to apply the Temkin formulation for the overall
reaction rate to the dissolution and precipitation of quartz (Rimstidt and Barnes,
1980). Perhaps the simplest formulation consists of the elementary reactions

SiO2(aq) º SiO2
‡, (73a)

SiO2
‡ º SiO2(s), (73b)

with formation of the intermediate SiO2
‡. The corresponding reaction rates are

designated as �1 and �2. Summing with Horiuti-Temkin stoichiometric numbers �1 �
�2 � 1, gives the overall reaction

SiO2(aq) � SiO2(s). (74)

The forward and backward reaction rates are given by

�1
� � k1

�a SiO2(aq), (75a)

�1

 � k1


a SiO2
‡, (75b)

�2
� � k2

�a SiO2
‡, (75c)

�2

 � k2


, (75d)

with forward and backward rate constants k1,2
� . The resulting system of ordinary

differential equations possesses an analytical solution that is analyzed in detail in
Appendix A.

Assuming equilibrium of the first reaction �1 
 0, the overall reaction rate can be
expressed as

� � �
�2


�1



�2
� � �1


�1 �
�2

�

�2

�. (76)

1 It should be noted, however, that equation (15), Lasaga (1981, Chapter 1, p. 9), is incorrect due to the
factor of 2/3 multiplying k1k2/k
1 in that equation [compare with equation (72) above which uses a slightly
different notation: k1,2

� � k1,2, k1

 � k
1]. This error arises from canceling the first two terms on the

right-hand side of equation (12) in Lasaga (1981), after making the approximation k
1[O2]��k2[O3]. In
fact, by combining these two terms without any approximation, one half the third term is obtained.
Combining these terms then results in equation (72) above without the factor 2/3. Lasaga [1998, p. 12,
equation (1.17)] has corrected the error, however, the derivation remains incorrect.
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Equilibrium of the intermediate species implies

a SiO2
‡ �

k1
�

k1

a SiO2(aq). (77)

Thus

�2
�

�2

 �

k2
�

k2

a SiO2

‡, (78a)

�
k2

�k1
�

k2

k1


a SiO2(aq), (78b)

and the prefactor becomes

�2

�1




�2
� � �1


 �
k2


k1



k2
� � k1


. (79)

With these results the reaction rate � for the overall reaction can be written as

� � �k�1 � KQ�, (80)

with rate constant k given by

k �
k2


k1



k2
� � k1


, (81)

and equilibrium constant K for the overall reaction equal to

K �
k2

�k1
�

k2

k1


. (82)

The activity product Q is equal to the silica aqueous activity

Q � a SiO2(aq). (83)

Thus the traditional form of the rate law first developed by Rimstidt and Barnes (1980)
is obtained.

In place of equilibrium of the intermediate species a stationary state could have
been assumed resulting in the relation

k 1
�a SiO2 
 k 1


a SiO2
‡ � k 2

�a SiO2
‡ 
 k 2


, (84)

or solving for a SiO2
‡

a SiO2
‡ �

k1
�a SiO2(aq)�k2




k2
� � k2


 . (85)

This relation includes equilibrium as a special case. The overall rate is then given by the
more general expression

� � �
�1


�2



�2
� � �1


�1 �
�1

��2
�

�1

�2


�, (86)

which also leads to equation (80).
An alternative formulation is based on the elementary reactions
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X � SiO2�aq�º XSiO2
‡, (87a)

XSiO2
‡ º X � SiO2�s�, (87b)

involving sorption on the quartz surface with intermediate species corresponding to
the surface complex XSiO2

‡ and empty site X. Summing these reactions with �1 � �2 �
1, again results in equation (74). The corresponding forward and backward reaction
rates now become

�1
� � k 1

�SXa SiO2(aq), (88a)

�1

 � k 1


SXSiO2
‡, (88b)

�2
� � k 2

�SXSiO2
‡, (88c)

�2

 � k 2


SX, (88d)

with sorbed concentrations SX, SXSiO2
‡, and with forward and backward rate constants

k1,2
� . Equation (38) gives for the overall rate

� �
�2

��1
� � �2


�1



�2
� � �1


 . (89)

Assuming that the first elementary reaction in equilibrium (�1 
 0) yields the expres-
sion

� � �
�2


�1



�2
� � �1


�1 �
�2

�

�2

�. (90)

The intermediate species and empty site concentrations satisfy the relations

SX � SXSiO2
‡ � �, (91a)

with surface site concentration �, and

k1
�

k1

 �

SXSiO2
‡

SXa SiO2(aq)

. (91b)

Solving for SX and SSiO2
‡ yields the expressions

SX �
�

1 � Kexa SiO2(aq)

, (92a)

and

S SiO2
‡ �

�Kexa SiO2(aq)

1 � Kexa SiO2(aq)

, (92b)

with exchange equilibrium constant Kex given by

K ex �
k1

�

k1

. (93)

It follows that
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�2
�

�2

 �

k2
�SXSiO2

‡

k2

SX

, (94a)

�
k2

�k1
�

k2

k1


aSiO2(aq), (94b)

and with the prefactor given by

�2

�1




�2
� � �1


 �
k2


k1



k2
� � k1




�

1 � kexa SiO2(aq)

. (95)

Thus the reaction rate for the overall reaction can be written as

� � �
k�

1 � Kexa SiO2(aq)

�1 � KQ�, (96)

with rate constant k, equilibrium constant K, and activity product Q, given, respectively,
by equations (81), (82) and (83). This result differs from the preceding form of the
rate law given in equation (80) by the presence of the rate-limiting factor in the
denominator of the prefactor involving the aqueous silica concentration. With increas-
ing silica concentration, KQ �� 1, and the precipitation rate reaches the limiting
constant value: �3 kK�/Kex.

Reaction of a hypothetical mineral AB(s).—As an example of implementing the
Horiuti-Temkin formulation for the system A, B, AB(s), consider the overall reaction

A � B º AB�s�, (97)

describing dissolution and precipitation of solid AB(s). A two-step mechanism is
assumed given by

X � A º XA, (98a)

XA � B º AB�s� � X, (98b)

describing reaction of aqueous species A and B with solid AB(s) with formation of an
intermediate XA on the surface of the solid. In these reactions X denotes an empty
surface site and XA a surface complex. Summing these two elementary steps with �1 �
�2 � 1, leads to the overall reaction given in equation (97). The elementary forward
and backward reaction rates are given by

�1
� � k1

�SXaA, (99a)

�1

 � k1


SXA, (99b)

�2
� � k2

�SXAaB, (99c)

�2

 � k2


SX, (99d)

with surface concentrations SX and SXA, and aqueous activities �A and �B.
The empty site and surface complex concentrations satisfy the relation

SX � SXA � �, (100)

with site density �. Two different conditions may be imposed: equilibrium or a more
general stationary state. For example, equilibrium of the first step gives the relation

SXA � KexSXAaA, (101)
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with

K ex �
k1

�

k1

. (102)

The resulting concentrations for empty sites and surface complex XA are given,
respectively, by

SX �
�

1 � KexaA
, (103a)

SXA �
�KexaA

1 � KexaA
, (103b)

corresponding to a Langmuir-type sorption isotherm. The stationary state assumption
implies the equality �1 � �2, leading to the relation

k1
�SXaA � k1


SXA � k2
�SXAaB � k2


SX, (104)

or solving for SXA

SXA �
k1

�aA � k2



k2
�aB � k1


SX. (105)

This expression reduces to the equilibrium case for k1

 �� k2


aB, and k1
�aA �� k2


. For the
equilibriumcase the overall reaction has the form

� �
�1

��2
� � �1


�2



�2
� � �1


 , (106a)

�
k1

�k2
�aAaB � k1


k2



k2
�aB � k1


 SX, (106b)

� � � k2



1 � K12aB
�� �

1 � KexaA
��1 �

k1
�k2

�

k1

k2


aAaB�, (106c)

with

K12 �
k2

�

k1

. (107)

The first two terms on the right-hand side of equation (106c) refer to the rate
prefactor. The third term in brackets of equation (106c) consists of the affinity factor
1-KABQAB with activity product QAB given by

QAB � aAaB, (108)

with equilibrium constant KAB given in terms of elementary rate constants by

KAB �
k1

�k2
�

k1

k2


, (109)

corresponding to the overall reaction.
In the far from equilibrium limits KABQAB �� 1 or KABQAB �� 1 corresponding to

precipitation and dissolution, respectively, the overall rate becomes for KABQAB �� 1
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lim
KABQAB��1

��aA, aB� �
�k2


KAB

K12Kex
� �k1


, (110)

and for KABQAB �� 1

lim
KABQAB��1

��aA, aB� � �k2

. (111)

Oligomerization of silica.—Icopini and others (2005) proposed the following reac-
tion mechanism consisting of three elementary steps for a solution supersaturated with
respect to amorphous silica

2H4SiO4�aq� 3 H6S2O7�aq� � H2O, (112a)

H6S2O7�aq� � H4SiO4�aq� 3 H8S3O10�aq� � H2O, (112b)

H8S3O10�aq� � H4SiO4�aq� 3 H8S4O12�aq� � 2H2O. (112c)

Summing gives the overall reaction

4H4SiO4�aq� 3 H8S4O12�aq� � 4H2O. (113)

It should be noted, however, that amorphous silica itself does not appear in the overall
reaction or the reaction steps, although the reactions are proposed to represent
precipitation of amorphous silica. According to the Temkin identity applied to the
elementary steps given in equation (112), the overall reaction rate is given by

� �
�1

��2
��3

�

�2
��3

� , (114a)

� �1
� � k1

��H4SiO4�aq��
2. (114b)

yielding a second order rate law, where the forward reaction rates �1
� refer to the rates

of the elementary steps.
However, the first two reactions should be considered reversible according to

Icopini and others (2005) and written as

2H4SiO4�aq�º H6Si2O7�aq� � H2O, (115a)

H6Si2O7�aq� � 2H4SiO4�aq�º H8Si3O10�aq� � H2O, (115b)

H8Si3O10�aq� � 2H4SiO4�aq�º H8Si4O12�aq� � 2H2O. (115c)

In this case �1

 and �2


 are nonzero and the rate law becomes

� �
�1

��2
��3

�

�2
��3

� � �1

�3

� � �1

�2


. (116)

The forward and backward reaction rates of the elementary reaction steps are given by

�1
� � k1

��H2SiO4�aq��
2, (117a)

�1

 � k1


�H6Si2O7�aq��aH2O, (117b)

�2
� � k2

��H4SiO4�aq���H6Si2O7�aq��, (117c)
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�2

 � k2


�H8Si3O10�aq��aH2O, (117d)

�3
� � k3

��H4SiO4�aq���H8Si3O10�aq��, (117e)

�3

 � 0, (117f)

where aH2O denotes the activity of water and square brackets [· · ·] indicates concentra-
tion of the enclosed species. Substituting into equation (116) then yields the rate law
for the overall reaction

� �
k1

�k2
�k3

��H4SiO4�aq��
4�H6Si2O7�aq���H8Si3O10�aq��

k2
�k3

��H6Si2O7�aq���H8Si3O10�aq�� � k1

k3

��H6Si2O7�aq���H8Si3O10�aq��aH2O

� k1

k2


�H6Si2O7�aq���H8Si3O10�aq��aH2O
2

,

(118a)

�
k1

�k2
�k3

��H4SiO4�aq��
4

k2
�k3

��H4SiO4�aq��
2 � k1


k3
��H4SiO4�aq��aH2O � k1


k2

aH2O

2 , (118b)

�
k1

�k2
�k3

�

k1

k2




�H4SiO4�aq��
4

aH2O
2 �

1
k2

�k3
�

k1

k2




�H4SiO4�aq��
2

aH2O
2 �

k1

k3

�

k1

k2




�H4SiO4�aq��

aH2O
� 1�. (118c)

If the denominator of the quantity in large brackets can be approximated by one, then
the rate is fourth order in [H4SiO4(aq)] and order aH2O


2 as obtained by Icopini and
others (2005) [see their equation (4), p. 298]. This rate mechanism, however, does not
predict the observed linear dependence on pH of the overall reaction.

Scale Invarience
In this section the scale invariance of the Horiuti-Temkin formulation to a change

in the mineral formula unit is investigated. The transformation property of the
Horiuti-Temkin stoichiometric number follows directly from equations (43) and (44)
or (45). Noting that for an elementary reaction its affinity Ami is invariant under a scale
transformation,

A	mi � Ami, (119)

and the affinity of the overall reaction transforms according to

A	mi � �mAm, (120)

it follows from equation (43) that the coefficients �mi transform according to

�	mi � �m�mi. (121)

The average Temkin stoichiometric number transforms in the same manner as �mi

�	m � �m�m, (122)

according to equation (44). It thus follows that

A	m
�	m

�
Am

�m
. (123)

For the general form of the overall reaction rate given in equation (49) the scaled
rate law becomes
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�	m � �
1

�
i

�	mi Dmi
��

i
�mi


��1 � e
1


	mRT Am	�, (124a)

� �
1

�m�
i

�mi Dmi
��

i
�mi


��1 � e
1


mRT Am�, (124b)

where the second equality follows from equations (120), (121) and (122). Note that
the elementary reaction rates �mi


 in the prefactor are not scaled as they are presumed
to be fixed once and for all by the reaction mechanism.

The case for a system close to equilibrium must be treated separately, as the
average Temkin stoichiometric number is undefined according to equation (45). This
situation is considered in Appendix C.

Note that the saturation index SIm defined as

SIm � eAm/�
mRT� � �KmQm�1/
m, (125)

it is an invariant under scaling the mineral formula unit

SI	m � SIm, (126)

as follows from the scaling properties of the equilibrium constant and activity product
for the overall reaction.

The same scaling rules apply to the rate given by equation (51) to a single
elementary rate limiting step. Note that the rate constant km is not scaled since it is
considered an intrinsic property of the mineral and in the Horiuti-Temkin formula-
tion corresponds to a combination of rate constants derived from elementary reactions
which are not scaled. Thus with the mineral rate law given by equation (49), it is
necessary to scale the Temkin stoichiometric number by the same factor used to scale
the mineral formula unit to obtain identical results when solving the mass conservation
equations.

Consider a kinetic rate law with rate constant km and Temkin stoichiometric
number �m of the form

�m � 

km

�m
�1 � �KmQm�1/
m�. (127)

Applying a scale transformation �m to the overall reaction yields the transformed rate
�	m given by

�	m � 

km

�m�m
�1 � �KmQm�1/
m�. (128)

From the relations K	mQ	m � �KmQm��m and �	m � ��m, the transformed rate �	m can be
expressed

�	m � 

km

�	m
�1 � �K	mQ	m�1/
	m�, (129)

that has the same form as the unscaled rate law but with �	m replacing �m, and K	mQ	m
replacing KmQm. This result ensures that the solution to the reactive transport equa-
tions is independent of the choice of scale factor for the mineral formula unit.
However, if the Temkin stoichiometric number were arbitrarily set to unity, but a scale
factor �m � 1 is applied to the overall reaction, then incorrect results will be obtained.
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This could lead to significant errors and not to the intended problem formulation.
This issue is highlighted by the case of CO2 sequestration described below in which the
formula for oligoclase was scaled by a factor of five. The error leads to unwittingly
enhanced precipitation of dawsonite and overestimation of mineral trapping of CO2.
Although there is generally significant uncertainty in both the rate constant and
mineral surface area, especially in natural systems, it is nevertheless important to
provide a consistent treatment in order to understand the effect different parameters
can have on the result, for example, when performing a sensitivity analysis.

discussion
Mineral kinetic rate law.—A typical form of the kinetic rate law describing reaction

of mineral �m according to the overall reaction given in equation (1) can be
represented by the equation (modified after Steefel and Lasaga, 1994)

�m � 
sgn�1 � KmQm�km�maH�
nm 
1 � �KmQm��m
�m, (130)

with rate constant km, specific surface area �m, pH dependence exponent nm, equilib-
rium constant Km, activity product Qm, and empirical fit parameters �m and �m. The
function sgn(x) � x/|x| with sgn(0) � 0, denotes the sign function, and equation (130)
has been rewritten to use the same sign convention as above. The power �m is the
inverse of Temkin’s stoichiometric number �m � �m


1.
The parameters �m and �m are typically described as being positive numbers,

determined by experiment, and are usually, but not always, taken equal to unity. But as
has been demonstrated, depending on the formula unit used to represent the mineral
in question, it may not always be possible to take �m equal to unity even in the absence
of experimental rate data; rather, its value may be determined solely by the formula
unit used to represent the mineral. Furthermore, an additional prefactor involving �mi
or �m is missing from the rate law as written in equation (130) as appears in the
modified rate law, for example, equation (49) or equation (51).

CO2 sequestration.—Several thermodynamic databases are available for modeling
reactive transport in diverse geologic systems. In these databases mineral reactions may
be expressed in terms of different formula units from those used in determining
kinetic rate constants, leading to inconsistencies and possible erroneous results.

Solid solutions are a case in point. Their formula unit is sometimes scaled to give
whole numbers rather than fractional stoichiometric coefficients. For example, the
reaction of an oligoclase consisting of 20 percent anorthite and 80 percent albite with
the chemical formula Ca0.2Na0.8Al1.2Si2.8O8, and with molar volume 100.495 cm3/mol
and formula weight 265.42 g/mol, can be described by the hydrolysis reaction

0.2Ca2� � 0.8Na� � 1.2Al3� � 2.8SiO2�aq� � 4.8H� � 2.4H2O
(131a)

º Ca0.2Na0.8Al1.2Si2.8O8.

However, just as valid is the reaction

Ca2� � 4Na� � 6Al3� � 14SiO2�aq� � 24H� � 12H2Oº CaNa4Al6Si14O40,

(131b)

based on the formula unit CaNa4Al6Si14O40, with molar volume and formula weight
five times the values given above. The two reactions differ by a scale factor of five

5Ca0.2Na0.8Al1.2Si2.8O8 º CaNa4Al6Si14O40. (132)

Xu and others (2003, 2005), for example, list the chemical formula for oligoclase as
CaNa4Al6Si14O40, but set Temkin’s number equal to one and use the same rate
constant as used for the unscaled formula unit (set to the kinetic rate constant for
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K-feldspar). Thus the rate constant these authors use for oligoclase would appear to be
five times faster compared to simulations using the formula unit Ca0.2Na0.8Al1.2Si2.8O8,
an artifact that could account for the enhanced precipitation of dawsonite observed in
the simulations presented in Xu and others (2003, 2005).

More generally, for the reaction of oligoclase written in the form

xCa2� � �1 � x�Na� � �1 � x�Al3� � �3 � x�SiO2�aq� � 4�1 � x�H� � 2�1 � x�H2O

(133a)º CaxNa1
xAl1�xSi3
xO8,

with 0.1 � x � 0.3, the rate law applies in the form of equation (51) with some
particular value of the Temkin stoichiometric number �Ol. An alternative, equivalent,
reaction results from scaling the original reaction so that the coefficient of Ca2� is
unity yielding

Ca2� �
1 � x

x
Na� �

1 � x
x

Al3� �
3 � x

x
SiO2�aq� �

4
x
�1 � x�H� �

2
x
�1 � x�H2O

(133b)º CaNa�1
x�/xAl�1�x�/xSi�3
x�/xO8/x.

To obtain equivalent results it is necessary to take �	Ol � �Ol/x.
When a rate law is a rate law.—Finally, the question presents itself as to whether a

particular rate law is an empirical fit to data or whether it has more fundamental
origins. The Horiuti-Temkin approach rests on the ability to construct a sequence of
elementary reaction steps which under stationary-state conditions reproduce the
overall reaction. The elementary steps may contain intermediate species, for example,
representing catalysts that do not appear in the overall reaction, but nevertheless
greatly affect the overall rate. Whether such elementary steps can be identified for
mineral hydrolysis reactions remains an open question and topic of further research.
Any such proposed rate mechanism should be invariant under a scale transformation
of the mineral formula.

Oelkers (2001) has also remarked on scaling the mineral formula unit in develop-
ing a rate law for the reaction of multioxide silicate minerals of the general form
�

k
�Mk��kO�O, according to the overall hydrolysis reaction

�
k

�kMk
zk� � 2�OH� � �OH2Oº�

k
�Mk��kO�O, (134)

where the oxygen stoichiometric coefficient �O, determined by charge balance, is
given by

�O �
1
2�k zk�k, (135)

noting that the Temkin number can be different from unity depending on the
chemical formula used. Scaling the formula unit by the factor � results in the overall
reaction

��
k

�kMk
zk � � 2��OH� � ��OH2Oº�

k
�Mk���kO��O. (136)

conclusion
A modified form of the kinetic rate law for an overall mineral reaction was

obtained by demanding invariance of the rate law under scaling the mineral formula
unit. It was also demonstrated that the Horiuti-Temkin formulation of the overall
reaction rate as a sequence of elementary steps, is invariant to scaling the mineral
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formula provided that the Horiuti-Temkin stoichiometric coefficients are also scaled
by the same factor. The modified form of the rate law includes the mineral formula
scale factor both in the denominator of the rate prefactor and in the affinity term.
Finally, it was noted that failure to scale the Horiuti-Temkin stoichiometric numbers in
the mineral rate law can lead to significant errors when scaling the mineral formula
unit. Only for intrinsically fast reactions close to local equilibrium, where the reaction
rate becomes independent of the rate constant and is transport-controlled, is the scale
factor not important.

The success of Temkin’s identity in determining the kinetic rate law for an overall
reaction rests on the ability to identify the elementary steps making up the over-
all reaction. However, given a sequence of elementary steps, which reproduce the
overall reaction, this formulation provides a rigorous expression for the overall
reaction rate for stationary-state conditions. Whether the Horiuti-Temkin formulation
is of more than theoretical interest and proves useful for practical applications
describing mineral kinetics remains to be seen. However, in lieu of the rigorous
formulation of reaction rates as provided by the Horiuti-Temkin formulation, this
would seem to render many of the proposed rate laws little more than empirical fits
rather than providing a fundamental understanding of the reaction rate mechanism.
As demonstrated above, proper accounting for the Horiuti-Temkin stoichiometric
number in both the prefactor and the affinity factor, and its transformation property
on scaling the mineral formula unit, is a prerequisite to developing rigorous rate laws
that provide more accurate descriptions of such processes as chemical weathering,
carbon sequestration and migration of radioactive waste contaminants, among others.
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appendix a: three-component system
Irreversible reaction.—A simple example illustrating Temkin’s formulation of the

overall reaction is provided by the irreversible sequential reactions (for example, see:
Lasaga, 1981; Boudart and Djéga-Mariadassou, 1984)

AO¡
�1

�

B, (A-1a)

BO¡
�2

�

C, (A-1b)

with two elementary steps with reaction rates �1
� and �2

�. Species B is a reaction
intermediate that cancels out in the overall reaction

A3 C, (A-2)
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obtained by summing the two elementary steps with �1 � �2 � 1. The reaction rates
corresponding to the two elementary steps are given explicitly by

�1
� � k1

�CA, (A-3a)

�2
� � k2

�CB, (A-3b)

with forward rate constants k1
� and k2

� and solute concentrations Ci, (i � A; B; C). The
time evolution equations in a closed system are given by

ĊA � � �1
� � � k1

�CA, (A-4a)

ĊB � �1
� � �2

� � k1
�CA � k2CB, (A-4b)

ĊC � �2
� � k2

�CB, (A-4c)

where the dot denotes the time derivative d/dt. These equations have the analytical
solution (Lasaga, 1981; Boudart and Djéga-Mariadassou, 1984)

CA�t� � CA
0e
k1

�t, (A-5a)

CB�t� � CB
0e
k2

�t � CA
0

k1
�

k2
� � k1

� �e
k1t � e
k2
�t�, (A-5b)

C C�t� � CC
0 � CB

0�1 � e
k2
�t� � CA

0�1 � e
k1
�t �

k1
�

k2
� � k1

��e
k1
�t � e
k2

�t��, (A-5c)

with initial conditions CA
0,CB

0, and CC
0 . Taking CB

0 � 0,CB�t� reaches a maximum of
CB

max � �k1
�/k2

��k2
�/�k2

� � k1
�� at tmax � ln �k2

�/k1
��/�k2

� � k1
��. In the limit k2

�3  ,t 3 0.
For CB

0 � 0 the elementary reaction rates are given by

�1�t� � k1
�CA

0e
k1
�t, (A-6a)

�2�t� �
k1

�k2
�

k2
� � k1

�CA
0�e
k1

�t � e
k2
�t�. (A-6b)

Clearly, in general, the system does not represent a stationary state. In order for
this to be the case the stationary-state condition defined as

ĊB 	 0, (A-7)

must be satisfied. This implies �1
� 	 �2

�, resulting in the relation

CB�t� 	
k1

�

k2
�CA�t�, (A-8)

as follows from equation (A-4b). This relation holds for k2
� �� k1

� and t �� �k1
��
1,

providing an estimate of the time required for the system to reach a stationary state, as
can be seen directly from equation (A-5b) with CB

0 � 0. For k2
� �� k1

� and t �� �k1
��
1,

�2�t� becomes

�2�t� �
k1

�

1 �
k1

�

k2
�

CA
0e
k1

�t, (A-9a)
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� �1�t� � ��k1
��2

k2
� � · · ·�CA

0e
k1
�t3 �1�t�. (A-9b)

According to the Horiuti-Temkin formulation the overall reaction rate � under
stationary-state conditions follows from equation (38) with �1 � �2 � 1, which reduces to

� �
�1

��2
� � �1


�2



�2
� � �1


 , (A-10a)

� �1
� � k1

�CA, (A-10b)

since �1

 and �2


 are assumed to vanish. The affinity factor is not present in this expression
since it is assumed that the reactions are irreversible. Alternatively, the overall rate can be
obtained directly from the stationary-state condition � � �1

� � �2
�.

For stationary-state conditions equation (A-5c) for CC(t), assuming C C
0 � 0, greatly

simplifies to

CC�t� � C A
0�1 � e
k1

�t �. (A-11)

Results are shown in figure 2 for transient and stationary state conditions as discussed
in the text.

Reversible reaction.—Next the case in which the reactions for the elementary steps
are reversible is considered. The reaction rates for the two elementary steps are given
by

�1 � k1
�CA � k1


CB, (A-12a)

�2 � k2
�CB � k2


CC, (A-12b)

with forward and backward rate constants k1, 2
� . The time-evolution equations in matrix

form are given by

� ĊA

ĊB

ĊC

� � � � �1

�1 � �2

�2

� � � �k1
� k1


 0
k1

� � �k1

 � k2

�� k2



0 k2
� � k2



� � CA

CB

CC

�. (A-13)

An analytical solution to these equations is presented in Frost and Pearson (1961). To
obtain the stationary-state rate for the overall reaction A º C, species B must be
approximately constant leading to the quasi-stationary state condition

ĊB � �1 � �2 	 0. (A-14)

This gives for the concentration of intermediate species B

CB �
1

k1

 � k2

��k1
�CA � k2


CC�. (A-15)

Thus it follows that

ĊC � �2 � k2
�CB � k2


CC, (A-16a)

�
k1

�k2
�CA � k1


k2

CC

k1

 � k2

� . (A-16b)

Consequently, an overall reaction exists with the reaction rate

� � � �1 � �2, (A-17)
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and for the overall reaction

ĊC � � ĊA � �. (A-18)

Applying Temkin’s identity, the overall reaction rate � is given by

� �
�1

��2
� � �1


�2



�1�2
� � �2�1


 , (A-19a)

�
k1

�k2
�CACB � k1


k2

CBCC

k2
�CB � k1


CB
, (A-19b)

�
k1

�k2
�CA � k1


k2

CC

k2
� � k1


 , (A-19c)

setting �1 � �2 � 1, and canceling CB, in agreement with equation (A-16b). Factoring
out the backward rate term gives the alternative form

� � 

k1


k2

CC

k2
� � k1


�1 �
k1

�k2
�

k1

k2




CA

CC
�, (A-20)

with a prefactor multiplying the affinity term in brackets. The affinity term vanishes at
equilibrium of the overall reaction. Note that even for far from equilibrium conditions
where the affinity factor can be neglected, the prefactor is nevertheless a function of
both forward and backward rate constants. For the case that the backward rate
constants are small compared to the forward constants, equation (A-19c) reduces to
equation (A-10b). For the case in which species C represents a pure solid CC � 1.

Finally, the same form for the overall rate law is obtained as assuming that the
overall reaction rate can be treated as an elementary reaction which gives

� � 
kbCC�1 �
kf

kb

CA

CC
�, (A-21)

with forward and backward rate constants kf � k1

k2


/�ks
� � k1


� and kb � k1
�k2

�/�k1

k2


�.

appendix b: reversible reaction with a solid
Lasaga (1995, 1998) cited the work of Nagy and others (1991) to demonstrate that

the use of Temkin’s average stoichiometric number “. . . almost certainly is incorrect.”
as quoted from Lasaga (1995, p. 31). These authors considered the following reaction
mechanism involving two elementary steps with �1 � � 2 � 1

C � D º S � A � B, (B-1a)

P � Q º C � D, (B-1b)

describing reversible reaction of solid S with aqueous species A, B, C, D, P, and Q
[modified after Lasaga [1998, equation (2.59), p. 190] to conform to the sign
convention used here]. Lasaga (1998) only considered close to equilibrium condi-
tions; whereas Nagy and others (1991) analyzed the general case including far from
equilibrium conditions, but without the solid present. Because the solid has unit
activity its presence does not influence the results.

At issue is the form of the overall kinetic rate law for stationary-state conditions as
derived from the elementary steps defining the reaction mechanism. Summing the
elementary steps gives the overall reaction

P � Q º S � A � B, (B-2)
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The species C, D act as intermediate species which cancel out in the overall reaction,
and as a result they should not appear in the overall reaction rate expression. This
observation is contrary to equation (18) in Nagy and others (1991), in which the
product of the concentrations CCCD does appear. As a consequence this equation
would not appear to be correct.

Two approaches are used to derive an expression for the overall reaction rate: the
first is a direct approach based on the stationary-state assumption; and the second is
based on Temkin’s identity, equation (35). Both yield identical results which, however,
appear to differ from Nagy and others (1991), who derive a rather complicated
expression for the overall reaction rate [see equation (18) in Nagy and others, 1991].

According to the reaction mechanism given in equation (B-1), the time-evolution
equations for a closed system read

ĊA � ĊB � �1, (B-3a)

ĊC � ĊD � �2 � �1, (B-3b)

ĊP � ĊQ � � �2, (B-3c)

ĊS � �1, (B-3d)

where �i refers to the reaction rate for the ith elementary step. Stationary-state
conditions require that �1 	 �2, or ĊC 	 ĊD 	 0. This implies the relation

k1
�aCaD � k1


aAaB � k2
�aPaQ � k2


aCaD, (B-4)

or, solving for the product aCaD yields

aCaD �
k2

�aPaQ � k1

aAaB

k1
� � k2


 , (B-5)

where the forward and backward reaction rates are given by

�1
� � k1

�aCaD, (B-6a)

�1
� � k1

�aCaD, (B-6b)

�2
� � k2

�aPaQ, (B-6c)

�2

 � k2


aCaD, (B-6d)

where aj denotes the activity of the jth aqueous species, and the activity of the solid is
equal to unity. Equating � � �1 � �2, then yields for the overall rate �

� �
k1

�k2
�aAaB � k1


k2

aPaQ

k2
� � k1


 , (B-7)

or rewriting

� � � kaPaQ�1 � KQ�, (B-8)

where the rate constant k, equilibrium constant K and activity product Q for the overall
reaction rate are defined as

k �
k1


k2



k2
� � k1


, (B-9a)
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K �
k1

�k2
�

k1

k2


, (B-9b)

Q �
aAaB

aPaQ
. (B-9c)

The overall rate as follows from Temkin’s identity, equation (35), given by

� �
�1

��2
� � �1


�2



�2
� � �1


 , (B-10)

yields immediately equation (B-8), upon substituting equation (B-6) for �1, 2
� and

making use of equation (B-5). Neither result is consistent with equation (18) in
Nagy and others (1991). Perhaps somewhat surprising, the rate law for the overall
reaction is the same form one would get assuming that it behaves as an elementary
reaction.

appendix c: equilibrium conditions
Special considerations are needed as the system approaches equilibrium. In this

case the affinity vanishes and equation (45) for �m becomes indeterminate. However,
as demonstrated in Boudart and Djéga-Mariadassou (1984), it is still possible to define
�m in terms of the forward or backward rates at equilibrium, referred to as exchange
rates. The interested reader may consult Boudart and Djéga-Mariadassou (1984) for
further details. Here a brief derivation is given with emphasis on scaling the mineral
formula unit.

At equilibrium �mi � 0, and the forward and backward reaction rates are equal and
given by the exchange rate: �mi

° � �mi
� � �mi


 . It follows for the ith elementary step
that

�mi � � �mi

 �1 � eAmi/�RT ��, (C-1a)

3 �mi
°

Ami

RT
� · · ·, �Ami �� RT �. (C-1b)

The exchange reaction is defined as


�mi


�Ami/RT�
�

Ami

� 0 � �mi
° . (C-2)

Summing over all steps

�
i

�mi

�mi
° �

1
RT�

i
Ami �

A
�mRT

, (C-3a)

� �m�
i

�mi

�mi
° . (C-3b)

Thus

�m �
1

�
i

�mi

�mi
°

� A
�mRT� � �m

° � A
�mRT�, (C-4)

where the overall exchange rate �m
° is defined as
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�m
° �


�m


�A/�mRT�
�

1

�
i

�mi

�mi
°

. (C-5)

An expression for the average Temkin number is then obtained from its definition
given in equation (45)

�m �

�
i

�mi
2 /�mi

°

�
i

�mi /�mi
° . (C-6)

Scaling the mineral formula unit by the factor �m, it then follows according to equation
(C-6) that the average Temkin number defined at equilibrium also scales by the
factor �m

�m	 � �m�m, (C-7)

in agreement with the non-equilibrium case, recalling from equation (121) that
�	mi � �m�mi and noting that for an elementary reaction ��mi

° �	 � �mi
° .
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