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JURASSIC OPHIOLITE FORMATION AND EMPLACEMENT AS
BACKSTOP TO A SUBDUCTION-ACCRETION COMPLEX IN
NORTHEAST TURKEY, THE REFAHIYE OPHIOLITE, AND RELATION
TO THE BALKAN OPHIOLITES
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ABSTRACT. The eastern Mediterranean region within the Tethyan realm shows a
high concentration of ophiolites with contrasting times of formation and emplacement
along the belt: In the Balkans, the ophiolites formed during the early to medial
Jurassic, and were obducted during the late Jurassic, whereas in Turkey and farther
east, structurally intact Jurassic ophiolites are rare and Jurassic ophiolite obduction is
unknown. Here we report a structurally intact, large ophiolite body of early Jurassic age
from NE Turkey, the Refahiye ophiolite, located close to the suture zone between the
Eastern Pontides and the Menderes-Taurus block. The Refahiye ophiolite forms an
outcrop belt, 175 km long and 20 km wide, and is tectonically bound by the late
Cretaceous ophiolitic mélange to the south, and by the North Anatolian Transform
Fault against the Triassic low-grade metamorphic rocks to the north. Early to medial
Jurassic very low- to low-grade metamorphic rocks, interpreted as intraoceanic subduc-
tion-accretion complexes, occur either beneath the ophiolite or as thrust slices within
it. The ophiolite body within the studied section is made up of mantle peridotite
(clinopyroxene-bearing harzburgite and minor dunite) crosscut by up to 20 cm thick
veins of clinopyroxenite and later dikes/pods/stocks of gabbro ranging in size from
2 m to several hundreds of meters. The gabbro is represented by two distinct types: (i)
cumulate gabbro, and (ii) non-cumulate gabbro with locally well-developed igneous
foliation. Within the non-cumulate gabbro or enclosing peridotite, there are up to 5 m
and 50 cm-thick veins of trondhjemite and pegmatitic gabbro, respectively. LA-ICP-MS
dating on zircons from two trondhjemite samples yielded weighted mean ages of
~184 * 4 Ma and 178 = 4 Ma (20), respectively, suggesting formation during early
Jurassic time. Formation in a suprasubduction-zone forearc setting is inferred from (i)
wide-ranging pyroxene and spinel compositions in the peridotites as documented in
most suprasubduction-zone ophiolites, (ii) arc tholeiitic signature of the non-cumulate
gabbros, and (iii) association of the ophiolite with the coeval subduction-accretion
complexes. Emplacement of a trapped forearc ophiolite above its own subduction-
accretion complex as a backstop is proposed based on a series of field relationships
such as (i) intimate association of the unsubducted suprasubduction-zone ophiolite
with coeval accretionary complexes, (ii) absence of unambiguous relationship to the
southern Atlantic-type continental margin, and (iii) absence of any stratigraphic
indications for the ophiolite obduction in the southern Atlantic-type continental
margin during Jurassic time. This is a clear difference from the Jurassic ophiolites in
the Balkans that were obducted over the Atlantic-type continental margin. This
difference in mode of emplacement is most probably related to the greater distance of
the intra-oceanic subduction zone to the Atlantic-type continental margin than it was in
the Balkans, which is commensurate with the greater width of the Tethys in the east
during Jurassic time.
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INTRODUCTION

Ophiolites have long been recognized as fragments of oceanic crust and upper
mantle on or in continental crust that, if not transported over large distances from
their original site of incorporation into the continent, delineate accretionary belts or
suture zones between formerly separate continents (Coleman, 1971; Dewey and Bird,
1971; Dewey, 1976, 2003; Moores, 1982; Shervais, 2001; Wakabayashi and Dilek, 2003).
The central problems of ophiolite studies have been the obduction of ophiolites,
particularly large, intact pieces of oceanic crust and mantle over less dense continental
crust or into/onto accretionary complexes, and its episodic nature. Itis argued that the
ophiolite obduction is related to plate acceleration brought about by plate reorganiza-
tion (for example, Agard and others, 2007). Mainly two distinct modes of ophiolite
emplacement are differentiated (compare Moores, 1982; Wakabayashi and Dilek,
2000, 2003; Sengor and Natal’in, 2004): (i) obduction of large ophiolite nappes over
the Atlantic-type continental margins, and (ii) emplacement to or onto Pacific-type
continental margins. During the emplacement onto Atlantic-type continental margins,
ophiolite is thrust over the passive margin by exploiting the downbending of the
margin, as the subduction zone converges onto the margin, as documented in most
Tethyan ophiolites (for example, Sengor, 1990; Okay and others, 2001; Robertson,
2006; Robertson and others, 2009). The emplacement to or onto Pacific-type continen-
tal margins can occur in several different ways such as (i) forming backstops to
accretionary complexes, (ii) wedging into subduction-accretion complexes of ophirags
(smaller fragments of oceanic lithosphere, see Dewey, 2003; Sengér and Natal’in,
2004) or large sheets of ophiolites, or (iii) backthrusting of ophirags or even more
complete ophiolite nappes onto arc units of Pacific-type continental margins. In
forming backstops to accretionary complexes, large sheets of oceanic lithosphere structurally
overlies subduction-accretion complex as in the Coast Range ophiolite in California
(Stern and Bloomer, 1992; Wakabayashi and Dilek, 2000, 2003; Shervais, 2001;
Wakabayashi and others, 2010), the Border Range ophiolite in Alaska (Kusky and
others, 2007), and Sangilen, North Sayan and West Sayan ophiolites of the Altaids
(Sengor and Natal’in, 2004). Accretion of oceanic material beneath ophiolite in the
subduction zone leads to gradual elevation until buoyancy exhumes high pressure
metamorphic rocks. In wedging into the subduction-accretion complexes, the ophirags or
large sheets of ophiolites were either scraped off subducting plates or derived from the
overlying forearc ophiolite, as happened in the Franciscan complex (Coleman, 2000;
Sengor and Natal’in, 2004; Wakabayashi, 2013). In the backthrusting of ophirags or even
more complete ophiolite nappes onto arc units of Pacific-type continental margins, rears of the
accretionary wedges are backthrusted onto forearc basins due to anomalous stress
conditions built across the accretionary wedge and overlying suprasubduction-zone
ophiolite during ongoing subduction or collision (for example, Bergougnan, 1975, ms
1986; Hamilton, 1979; Karrig and others, 1980; Sengor and Yilmaz, 1981; Westbrook,
1982; Silver and Reed, 1988). Overall, timing of ophiolite genesis and its mode of
emplacement provide important constraints on intra-oceanic subduction processes,
and growth of orogenic belts, respectively.

The eastern Mediterranean region within the Tethysides is characterized by a
amount of ophiolites and ophirags (Seng6r and Yilmaz, 1981; Sengor, 1990; Sengor
and Natal’in, 1996; Okay and others, 2001; Robertson, 2002, 2006, 2012; Robertson
and others, 2009). The structurally intact large ophiolite bodies display contrasting
spreading ages and timing of emplacement (fig. 1): From west to east, ages of the
ophiolites are early to medial Jurassic in the Eo-Hellenic nappes in the Balkans (for
example, Bernoulli and Laubscher, 1972; Lanphere and others, 1975; Roddick and
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Fig. 1. Main tectonic blocks in the Eastern Mediterranean region (modified after Sengér and Yilmaz,
1981; Okay and Tiystiz, 1999). Dotted domain stands for the Eastern Anatolian accretionary complex. IAES:
Izmir-Ankara-Erzincan suture; ITS: Inner Tauride suture; SAS: South Azerbaijan suture; BZS: Bitlis-Zagros
suture. The exact boundary cannot be determined due to extensive young volcanic cover. The black
domains show the main ophiolites together with radiometric ages. Stars stand for the locations of Jurassic
ophirags in the Cretaceous ophiolitic mélanges (Dilek and Thy, 2006; Celik and others, 2011, 2013;
Gonciioglu and others, 2012).

others, 1979; Spray and others, 1984; Jacobshagen, 1986; Hatzipanagiotou and Pe-
Piper, 1995; Dimo-Lahitte and others, 2001; Koepke and others, 2002; Liati and others,
2004), late Cretaceous in Turkey, Cyprus and Syria (for example, Harris and others,
1994; Dilek and Whitney, 1997; Dilek and others, 1999; Parlak and Delaloye, 1999;
Onen and Hall, 2000; Onen, 2003; Celik and others, 2006; Chan and others, 2007;
Dilek and Thy, 2009; Parlak and others, 2013a), early to medial Jurassic in the Lesser
Caucasus (Galoyan and others, 2009; Rolland and others, 2009a, 2010; Hassig and
others, 2013). Evidence for the Jurassic oceanic spreading in Turkey comes exclusively
from the Jurassic ophirags or blocks of ophiolite-related metamorphic rocks within the
Cretaceous ophiolitic mélanges (Dilek and Thy, 2006; Celik and others, 2011, 2013;
Gonclioglu and others, 2012). Emplacements of the ophiolites over Atlantic-type
continental margins occurred during late Jurassic in the Balkans, late Cretaceous in
Turkey, Syria, and the Lesser Caucasus (Sengor, 1990; Sengor and Natal’in, 1996; Okay
and others, 2001; Robertson, 2004; Robertson and others, 2009; Sosson and others,
2010). Causes of the rarity of the structurally intact large Jurassic ophiolites and the
absence of Jurassic obduction over the Atlantic-type margins in Turkey and farther east
in clear contrast to the Balkans have so far been unclear.

The present paper presents one possible solution to this long-standing problem of
not having any Jurassic obduction in Turkey, in which we present field geological,
geochemical and geochronological data on a large ophiolite body, the Refahiye
ophiolite, from the Eastern Pontides (northeast Turkey), and discuss these data in the
context of ophiolite formation and emplacement in the Eastern Mediterranean
region. Our data together with the critical assessment of the literature clearly show that
(i) the Refahiye ophiolite formed during the early Jurassic in a suprasubduction-zone
forearc setting, and (ii) was emplaced over its own subduction-accretion complex at
the Pacific-type continental margin of the Eastern Pontides.
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Fig. 2. Regional stratigraphic columnar sections of the Eastern Pontides and Menderes-Taurus block.
Geological time scale is from Ogg and others (2008).

GEOLOGICAL SETTING

The Eastern Mediterranean Alpides are made up of a number of continental
blocks separated by sutures (fig. 1) (Sengoér and Yilmaz, 1981; Sengor and Natal’in,
1996; Okay and Tuysuz, 1999; Moix and others, 2008). The Izmir-Ankara-Erzincan
suture (IAES) in northern Turkey separates the continental blocks of the composite
Pontides (Rhodope-Strandja, Istanbul Zone, Eastern Pontides) in the north and the
Menderes-Taurus block and the Kirsehir Massif in the south. The Eastern Pontides and
Menderes-Taurus block display striking differences in their pre-Paleocene stratigraphy
(fig. 2). The IAES represents the trace of an oceanic domain dating back to Devonian
times, and was consumed by northward subduction under the Pontides from late
Paleozoic to end-Mesozoic with continental collision during Paleocene—early Eocene
(Ustadbmer and Robertson, 2010; Topuz and others, 2011, 2013a).

The pre-Jurassic basement of the Eastern Pontides consists of (i) a Carboniferous
domain with high-temperature/low-pressure metamorphic rocks, high-K I-type gran-
ites, and sedimentary rocks (fig. 2) (Sengor and Yilmaz, 1981; Okay and Leven, 1996;
Topuz and others, 2004a, 2007, 2010; Dokuz, 2011; Kaygusuz and others, 2012;
Ustaémer and others, 2013), and (ii) Permo-Triassic low-grade oceanic accretionary
complexes, commonly known as the Karakaya complex (Sengor and others, 1980;
Okay, 1984; Topuz and others, 2004b, 2013b). Both are unconformably overlain by a
Lower to Middle Jurassic transgressive volcanoclastic series including local ammonnitico-
rosso horizons with local coeval gabbro, diorite and I-type granite (for example, Gortr
and others, 1983; Yilmaz and Boztug, 1986; Konak and others, 2001; Sen, 2007;



1058  G. Topuz and others—jJurassic ophiolite formation and emplacement as backstop

Kandemir and Yilmaz, 2009; Gen¢ and Tuystuz, 2010; Dokuz and others, 2010;
Ustaémer and Robertson, 2010; Ustadmer and others, 2013), grading conformably
into late Jurassic to early Cretaceous platform carbonates with sporadic early Creta-
ceous magmatism (Pelin, 1977; Boztug and Harlayan, 2008; Koch and others, 2008).
There is a local unconformity between the Lower and Upper Cretaceous rocks (Gorur
and others, 1993). During the late Cretaceous, voluminous submarine arc magmatism
on the entire Pontides resumed (Seng6r and Yilmaz, 1981; Okay and Sahinturk, 1997).
An outstanding feature of the Eastern Pontides is that an early Cretaceous ophiolitic
mélange is overthrust onto forearc units up to distances =100 km from the IAES (fig.
3A) (Bergougnan, 1975, ms 1986; Sengor and Yilmaz, 1981; Okay and Sahintiirk,
1997). An early Cretaceous age is assigned to the ophiolitic mélange, because ages of
the limestone blocks in the mélange range up to the Albian. This ophiolitic mélange is
locally unconformably overlain by Maastrichtian reefal limestone in the Maden area
(fig. 1), placing a lowest age constraint on the overthrust (Okay and Sahintiirk, 1997).
The northward overthrust of the ophiolitic mélange was ascribed to retrocharriage at
the contact between the arc and accretionary wedge by Sengor and Yilmaz (1981), and
was probably concurrent with the Cenomanian uplift in the Eastern Pontides, because
it represents the only compression period during Cretaceous time (Sengor and Yilmaz,
1981; Okay and Sahintiirk, 1997).

The Menderes-Taurus block' forms the easternmost extension of the Apulia, and
has a possibly Archaean (Kroner and Sengoér, 1990) to Late Proterozoic to Early
Cambrian crystalline basement overlain by Paleozoic and Mesozoic sedimentary succes-
sions with some Triassic igneous activity (fig. 2) (Sengor and others, 1984; Ozgﬁl and
Tursucu, 1984; Koralay and others, 2001; Candan and others, 2011; Akal and others,
2012). From Triassic to Late Cretaceous time, the Menderes-Taurus block was charac-
terized mostly by the deposition of neritic limestones concordantly overlain by Turo-
nian to Campanian pelagic equivalents in the north and central parts. Before the
medial Campanian, large ophiolite nappes together with underlying ophiolitic mé-
langes were obducted over the leading edge of the Menderes-Taurus block (fig. 3)
(Ricou and others, 1975; Sengor and Yilmaz, 1981; C)zgﬁl and Tursucu, 1984; Okay and
Sahinturk, 1997; Rice and others, 2006, 2009; Robertson and others, 2009), deducted
from (i) the “Campanian” age of the uppermost part of the Munzur limestone
sequence, (ii) intrusion of the ophiolite and the underlying limestone by syenite as old
as ~67 to 70 Ma (Parlak and others, 2013a), and (iii) change from neritic carbonate
deposition to a pelagic one most likely because of the isostatic effects of the ophiolite
obduction.

The IAE suture between the composite Pontides and Menderes-Taurus block is
marked by large tracts of ophiolite, low-grade metamorphic rocks and late Cretaceous
ophiolitic mélanges (figs. 1 and 3). From the regional geological constraints described
above, it is apparent that there are temporally and spatially distinct ophiolites and
ophiolitic mélanges: (i) An early Cretaceous ophiolitic mélange overthrust onto the
forearc units of the Eastern Pontides, (ii) ophiolite with underlying ophiolitic mélange
obducted onto the northern edge of the Menderes-Taurus block, represented by
Munzur limestone, and (iii) large ophiolite tracts in tectonic contact with low-grade

! Originally Sengér and Yilmaz (1981) incorporated the Taurus mountains—including the Munzurs,
the Malatya metamorphics and the Potiirge and Bitlis massifs—the Menderes massif and the Kirsehir massif
into a single Anatolide-Tauride continental fragment forming a direct easterly continuation of the Apulian
platform. In 1982, Sengor and others recognized that the Kirsehir massif was separated from the rest by a
suture zone, called the Inner Tauride suture. Since then the easternmost end of the Apulian platform has
been called the Menderes-Taurus block to underline that the Kirsehir, a part of Ketin’s (1966) Anatolides, is
no longer a part of the palacotectonic units including the Taurus mountains and the Menderes massif.
However, some authors continued to use the now-incorrect term Anatolide-Tauride block.
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Fig. 3. (A) Geological map of the Refahiye ophiolite (modified after Akbas and others, 2011). NAF
stands for the North Anatolian Fault, (B) Cross-section across A-A’ line.

(for example, greenschist to blueschist-facies) metamorphic rocks, and late Cretaceous
ophiolitic mélanges (Topuz and others, 2013a).

THE REFAHIYE OPHIOLITE AND ASSOCIATED METAMORPHIC ROCKS
The Refahiye ophiolite, cropping out in an area ~175 km long and up to 20 km
wide, is located in the Eastern Pontides close to the IAE suture (fig. 3A) (Yilmaz, 1985;
Yilmaz and Yilmaz, 2004; Rice and others, 2006, and 2009; Sarifakioglu and others,
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2009; Parlak and others, 2013b). To the south, the ophiolite body is tectonically
underlain by the late Cretaceous ophiolitic mélange, consisting of blocks of basalt,
radiolarian chert, pelagic and neritic limestone, shale, serpentinized peridotite, blue-
schist, amphibolite and mica schist. The NW-SE trending North Anatolian fault (NAF)
here with a lateral offset of ~60 to 85 km (Sengoér and others, 2005) bisects the
Refahiye ophiolite: In the western part of the ophiolite, the NAF bound the Refahiye
ophiolite against the Agvanis massif which is made up of late Triassic greenschist- to
albite-epidote-amphibolite-facies metabasite, marble, phyllite, and subordinate serpen-
tinite and metachert (Okay, 1984; Topuz and others, 2013b). To the east of the NAF,
early Cretaceous ophiolitic mélange tectonically rests over the northern part of the
Refahiye ophiolite. The ophiolite is tectonically associated with the low-grade metamor-
phic rocks of early to medial Jurassic age, cropping out at five isolated localities such as
Cayirli, Uziimli, Kurtlutepe, Refahiye and Kizildag from east to west (ﬁgs 3A and 3B).
The metamorphic rocks either tectonically underlie the ophiolite as in the Cayirl,
Uziimlii, and Kizildag areas, or are interleaved with it as in the Kurtlutepe and Refahiye
areas, and do not have any direct contact relationship with the southern late Creta-
ceous ophiolitic mélange. The contacts with the interleaved metamorphics are repre-
sented mainly by low-angle faults apart from the easternmost contact of the Kurtlutepe
domain. Both the ophiolite and metamorphic rocks are unconformably overlain by
medial Eocene and younger clastic sedimentary rocks, placing a minimum age
constraint for the tectonic interleaving. Based on the age of the oldest unconformably
overlying sedimentary rocks, a late Cretaceous spreading age is generally assumed for
the Refahiye ophiolite in previous studies (Yilmaz, 1985; Yilmaz and Yilmaz, 2004; Rice
and others, 2006, 2009; Sarifakioglu and others, 2009; Parlak and others, 2013b),
although the possibility of formation during the Jurassic was not totally excluded. Yet,
Uysal and others (2010) infer a Late Carboniferous formation age on the basis of
Re-Os whole rock dating for the Refahiye ophiolite.

In this study, we mapped at a scale of 1/25,000 an area 720 km?, 36 km by 20 km,
including the Refahiye and Kurtlutepe metamorphic domains (fig. 4A) In the studied
transect, overall the ophiolite lacks obvious signs of regional metamorphism, and is
represented by mantle peridotite (clinopyroxene-bearing harzburgite with minor
dunite and chromite deposits), locally crosscut by up to 30 cm thick dikes of
clinopyroxenite and gabbroic intrusions postdating the clinopyroxenite dikes, ranging
in size from a few meters to several hundreds of meters (figs. 5A and 5B). The gabbroic
rocks are of two distinct types: (i) A layered gabbroic stock (type-I), only exposed from
the west of the Refahiye town, (ii) non-cumulate gabbroic rocks (type-II). The type-II
gabbroic rocks form numerous dikes/pods/stocks. Some dikes cross-cut others, suggest-
ing multiple dike emplacements. Within type-II gabbros and hosting peridotite, there
are =50 cm-thick discontinuous veins of trondhjemite (fig. 5C) and pegmatitic gabbro.
Overall, serpentinization and carbonatization are widespread in the peridotite. Nearly
65 km to the east of the study area, from the north of Erzincan (fig. 3A), Sarifakioglu
and others (2009) and Parlak and others (2013b) describe domains of cumulate
peridotite-gabbro, isotropic gabbro and sheeted dike complex in addition to the
mantle peridotite.

The Refahiye metamorphic rocks consist of predominantly greenschist (~40 % of
the outcrop area), marble (~30 %), serpentinite (~20 %), phyllite (~10 %), and
minor metachert, amphibolite, garnet amphibolite, eclogite and garnet mica schist.
Amphibolite, garnet amphibolite, eclogite and garnet micaschist termed “high-grade
blocks,” are encountered in two locations with sizes up to 10 m (indicated by stars in
fig. 4A). Greenschist contains actinolite/Na-Ca amphibole, epidote, chlorite, albite,
titanite, £phengite, *calcite quartz and =hornblende and *rutile. Hornblende and
rutile occur locally in some samples, and are replaced by actinolite and titanite,
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respectively. Phyllite includes mineral assemblages involving quartz, muscovite-
phengite, chlorite, albite, rutile, Zgarnet, Ztourmaline and *stilpnomelane. Com-
mon presence of relict phases (such as rutile, hornblende) and chlorite pseudo-
morphs after garnet suggest that “at least” parts of the greenschistfacies rocks
represent the retrograded products of garnet-amphibolite and eclogite-facies metamor-
phism. Stepwise Ar-Ar dating of white micas from two phyllite samples and U-Pb rutile
dating of rutile from a mica schist sample consistently yielded ages of 175 = 5 Ma (20),
suggesting that the metamorphism occurred during the early to medial Jurassic
(Topuz and others, 2013a). Due to widespread presence of oceanic rock types
(serpentinite, metachert) and overall absence of any granitic rocks, the rock assem-
blage was interpreted as an oceanic subduction-accretion complex (Yilmaz and Yilmaz,
2004; Topuz and others, 2013a). The Kurtlutepe metamorphics include sub-greenschist-
facies metavolcanic and volcanoclastic rocks (~65 % of the outcrop area), marble
(~20 %), calc-phyllite (~15 %), and minor metachert and carbonated serpentinite.
Marked differences in metamorphic-grade and tectonic position of the metamorphic
domains in the Refahiye and Kurtlutepe areas indicate that the tectonic contacts in
both domains are unrelated to each other (fig. 4B).
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Fig. 5. Outcrop and hand-specimen pictures. (A) Gabbroic intrusions “G” within the serpentinized
harzburgite “H”, (B) slightly serpentinized massive harzburgite, (C) trondhjemite vein (light-colored)
within the well-foliated gabbro, (D) polished surface of a trondhjemite sample (#343b) with pronounced
igneous foliation.

ANALYTICAL TECHNIQUES

Whole-rock analyses were performed at Acme Analytical Laboratories Ltd. in
Vancouver, Canada by ICP emission spectrography (Jarrel Ash AtomComb 975) for
major elements and the trace elements Ba, Nb, Ni, Sr, Sc, Y and Zr, and an ICP mass
spectrometer (Perkin-Elmer Elan 6000) for the determination of other trace elements
including rare earth elements. Analytical procedures and levels of uncertainty are the
same as outlined in Topuz and others (2010).

Major element compositions of the minerals were determined using the Jeol
JXA-8900 RL wavelength dispersive electron microprobe (EMP) at the University of
Mainz. Olivine, orthopyroxene, clinopyroxene, spinel and hornblende were analyzed
using an accelerating potential of 20 kV, a beam current of 12 nA, and a spot size of 2
pm. Feldspars were analyzed with a defocused beam (10 pm) in order to minimize loss
of alkalis. Natural and synthetic minerals were used for calibration.

Cathodo-luminescence images of the zircons were taken before in-situ LA-ICP-MS
dating in the Geology Department of the Hacettepe University (Ankara) to character-
ize zircons to be dated. The CL images were produced by a Zeiss Evo-50 SEM equipped
with cathode-luminescence and EDS detectors. LA-ICP-MS analyses for the zircons
were performed at the Institute of Geosciences at Mainz, utilizing a system consisting of
a New Wave 213 nm laser coupled to an Agilent 7500ce quadrupole ICP-MS. Analytical
procedures are the same as outlined in Topuz and others (2010).
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PETROGRAPHY AND MINERAL CHEMISTRY

Clinopyroxene-bearing harzburgite and dunite are massive to feebly foliated, and
contain olivine, orthopyroxene, spinel and minor clinopyroxene (figs. 5B and 6A).
Secondary phases are tremolite-hornblende, magnetite, serpentine, chlorite and talc.
Clinopyroxene occurs either as inclusion in orthopyroxene, or forms individual grains.
Feeble foliation is defined by the slightly parallel alignment of internally non-
deformed orthopyroxene grains. The peridotites from the northwestern part of the
study area (for example, sample # 444) display a marked tectonic fabric, defined by
elongated olivine with deformation lamella, undulose extinction and bent orthopyrox-
ene (fig. 6B), suggesting post-igneous deformation. Olivine (Fog o) is homogeneous
with NiO contents of 0.37 to 0.50 weight percent. Orthopyroxene shows clinopyroxene
exsolution lamella, and the compositional range Wo,_,Engg 4Fs; 1o with variable Al,O4
and CaO contents, 1.06 to 4.85 and 0.30 to 2.19 weight percent, respectively (fig. 7A;
table 1). Similarly, clinopyroxene (Wo,,.50En s 53Fs; ;) has variable Al,O4 contents of
1.26 to 4.60 weight percent (fig. 7B). Spinel displays Mg/ (Mg+Fe2+) and Cr/ (Cr—+Al)
of 0.38 to 0.76 and 0.18 to 0.62, respectively (fig. 7C; table 2). Only in the oxidized
domains of spinel grains (sample #219), Cr/(Cr+Al) values increase dramatically
(0.62-0.89), associated with the decrease of Mg/(Mg-i—FeQJ') values (0.40-0.25). With
these compositional features, pyroxene and spinel resemble those from both the
modern abyssal and depleted forearc peridotites (for example, Dick and Bullen, 1984;
Hebert and others, 1990; Johnson and others, 1990; Ishii and others, 1990). Compa-
rable compositional variations in spinel were also documented from the eastern part of
the Refahiye ophiolite by Rice and others (2006) (dotted areas in fig. 7C). Pargasite
inclusions are common in spinel. Late amphibole is represented by tremolite (table 3).

Clinopyroxenite contains totally serpentinized olivine grains up to 5 volume percent
and minor Cr-Al spinel apart from the clinopyroxene. Clinopyroxene
(Wo s 50En,;50Fs35) is replaced by actinolite to hornblende along the fractures
indicative of water ingress, and displays Al and Na contents of 0.009 to 0.080 and 0.001
to 0.013 cations per 3 oxygens, respectively (table 1). Dissimilar to Cr-Al spinel in the
host peridotite, Cr-Al spinel has Xy, values of 0.18 to 0.30 and Cr/(Cr+Al) ratios of
0.48 to 0.61 (sample 96D in fig. 7C; table 2). Actinolite-hornblende displays variable
Al,O4 (2.00-9.97 wt%), CreO4 (0.30-1.61 wt%) and Na,O contents (0.31-1.67 wt%)
(table 3).

Cumulate gabbro (type-I) is characterized by medium grain sizes (@?~1-3 mm), and
comprises clinopyroxene, plagioclase, and minor orthopyroxene and spinel (figs. 6C
and 6D). Locally there are dark-colored strongly altered domains consisting of cumulus
olivine (now serpentine), intercumulus cloudy-looking plagioclase and clinopyroxene.
Overall the samples do not display any sign of deformation. Cloudy appearance in
plagioclase is caused by alteration into a fine-grained intergrowth consisting of albite,
pumpellyite and prehnite. Other secondary phases are serpentine, chlorite, calcite and
actinolite.

Non-cumulate gabbro (type-Il) is fine to medium-grained (~200 pm to 3 mm), and
consist of plagioclase, hornblende, ilmenite, titanite and quartz, and accessory phases
of apatite and zircon (figs. 6E and 6F). Absence of any anhydrous ferromagnesian
minerals (olivine and pyroxene) is remarkable. Secondary phases are prehnite,
pumpellyite, *actinolite, *chlorite, *epidote, albite and *K-feldspar. Gabbro dis-
plays feebly to well-developed foliation, defined by parallel alignment of hornblende
and plagioclase, and concentration of ilmenite grains (a pseudocumulate texture).
Both hornblende and plagioclase are mostly internally undeformed, suggesting a
magmatic origin for the foliation (for example, Vernon, 2000). Hornblende has local
inclusions of plagioclase, quartz and ilmenite, and displays Al,Og and TiO, contents in
the range 6.00 to 9.00 and 0.77 to 1.50 weight percent. Na,O contents vary between
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Fig. 6. Microtextural features of the different rock types in the Refahiye ophiolite. (A) Clinopyroxene
occurs as inclusion in orthopyroxene (Cpx-bearing harzburgite #91). (B) Olivine with undulose extinction
and bend orthopyroxene (harzburgite #442), (C) relic clino- and orthopyroxene in a cumulate gabbro.
Cloudy-looking areas represent former plagioclase (cumulate gabbro #322), (D) cumulus olivine (partially
serpentinized) and intercumulus plagioclase (totally altered) (cumulate gabbro #593e3). (E) Feebly
elongated hornblende and plagioclase grains in gabbro. Note that the ilmenite grains are concentrated
along the foliation plane. (non-cumulate gabbro #252) (F) Ilmenite is overgrown by titanite (non-cumulate
gabbro #252). (G) Plagioclase grains in a dynamically recrystallized quartz matrix (trondhjemite, #605B).
(H) A very plagioclase-rich trondhjemite (#342). The long side of the images is 4.4 mm.
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Fig. 7. Compositional variation of pyroxenes and spinels from the Refahiye peridotite (A) Xy, vs Al,Oy
contents in orthopyroxene. Fields for the abyssal and forearc peridotite are from Johnson and others (1990),
and Ishii and others (1992), respectively. (B) TiO, vs. Al,Og in clinopyroxene. Fields for abyssal and forearc
peridotite are taken from Hebert and others (1990) and Ishii and others (1992), respectively. (C) Xy,
(Mg/Fe“-‘ng) vs. X¢, (Cr/(Cr+Al)) in spinel. Fields of abyssal and forearc peridotite are after Dick ané
Bullen (1984). Dotted areas represent the spinel compositions reported in Rice and others (2006).

0.90 to 1.50 weight percent (table 3). Plagioclase (Ang, sg) is compositionally zoned
with intrasample variation up to 35 mole percent, whereby the cores are characterized
by An-richer compositions. Ilmenite has MnO contents up to 1.30 to 2.00 weight
percent, and usually overgrown by titanite. Titanite is characterized by Al and Fe
contents of 0.66 to 2.50 and 0.60 to 1.00 weight percent.

Trondhjemite displays a feeble foliation (fig. 5D), and comprises plagioclase, quartz,
and subordinary cummingtonite, hornblende and biotite (figs. 6G and 6H). Accessory
phases are apatite and zircon, and minor alteration minerals such as chlorite, prehnite,
albite and actinolite are found. Cummingtonite is overgrown by hornblende. Modal
composition varies considerably, from quartz-rich ones to quartz-poor ones. Interstitial
quartz locally display dynamically recrystallized features (fig. 6G), suggesting that the
deformation was also ongoing in subsolidus state. The cores of plagioclases (Ang;_s4)
are characterized by An-richer compositions up to 6 mole percent. Cummingtonite is
characterized by Xy, values of 0.53 to 0.56, and Ca and Al contents of 0.13 to 0.198 and
0.175 to 0.280 cations per 23 oxygens (table 3). Hornblende is characterized, on the
other hand, by Al,O4 and Na,O contents of 5.62 to 10.08 weight percent, and 0.60 to
1.00 weight percent, respectively.
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BULK-ROCK CHEMISTRY

Representative whole-rock analyses of the cumulate gabbro (type-1), non-
cumulate gabbro (type-2), pegmatitic gabbro and trondhjemite are given in table 4. As
indicated above, the samples are variably overprinted by the subgreenschist-facies
hydrothermal metamorphism. Samples with minimal hydrothermal overprint were
selected for analysis. Loss on ignition values range from 3.60 to 5.00 weight percent in
the cumulate gabbro, from 0.70 to 1.80 weight percent in noncumulate gabbros, and
0.40 to 3.80 in trondhjemites. These values are related to the relative amounts of the
igneous hydrous phases (amphibole, =biotite) together with the hydrothermal ones
(prehnite, pumpellyite, chlorite, actinolite and epidote). In the petrological consider-
ations we rely only on the relative abundances in the high-field strength and rare earth
elements which are mostly regarded as immobile during the low-grade metamorphism
(for example, Rollinson, 1995).

Cumulate gabbro (type-1) has low SiO, (43-46 wt%), high Al,O4 (16-18 wt%) and
high MgO contents (12-13 wt%) (table 4). Mg numbers [Mg# = molecular MgO/
(MgO+FeO#*)] are anomalously high, ranging from 0.85 to 0.88. REE patterns are
slightly fractionated ((La/Yb)., ~1.19) and display significant positive Eu anomalies
(Eu/Eu* ~1.61-1.84) (fig. 8A). All these geochemical features are in line with the
cumulate nature.

Non-cumulate gabbro (type-II) is characterized by narrow compositional range SiO,
(45-52 wt%), TiOg (1.26-2.11 wt%), Al,Og (14-16 wt%) and K,O (0.08-0.67 wt%). Mg
numbers range from 0.39 to 0.53. The Cr and Ni contents are low (Cr = 144 ppm, Ni
~4-28 ppm). Despite the presence of locally well-developed igneous foliation, bulk-
rock compositions do not show any indication for a cumulate nature. The gabbro
displays nearly flat REE patterns with (La/Yb)., and insignificant Eu/Eu* values of
0.51 to 1.07 and 0.86 to 1.04, respectively (fig. 8B). On the multi-element variation
diagrams the gabbros have slightly negative Nb-Ta through, and K, Pb and Sr
anomalies ranging from positive to negative with respect to MORB composition, which
is probably related to the subsolidus hydrothermal metamorphism (fig. 9B). With all
these geochemical features, the gabbro resemble arc tholeiites.

Trondhjemite, used here as a general term to refer to felsic quartzo-feldspathic
dikes, displays highly variable SiO, (51-76 wt%), Al,O5 (13-27 wt%) and CaO (3-12
wt%) contents, reflecting variable modal amounts of quartz and plagioclase. In clear
distinction to the host type-2 gabbro, the trondhjemite displays variably fractionated
concave upward REE patterns with (La/Yb)_,~3-23, and pronounced positive Eu
anomaly (Eu/Eu*~1.72-10.47; fig. 8C). On the multi element variation diagrams (fig.
9C), the trondhjemite displays highly variable intersample patterns with positive
anomalies of Sr, Eu, Pb and Zr-Hf with respect to MORB composition. Several
microstructural and geochemical features, for example (i) high concentration and
parallel alignment of plagioclases (see Vernon and Collins, 2011), (ii) highly variable
plagioclase-controlled bulk-rock chemical and modal composition (for example,
strong variations in SiO,, Al,O3 and CaO contents), and (iii) marked positive Eu
anomaly imply a “cumulate flavor.” However, we regard the cumulative processes as
highly unlikely to have occurred in =50 cm-thick veins. There are two possibilities: (i) a
melt phase was expelled from the veins after the crystallization of plagioclase due to
differential stress, or (ii) trondhjemite was emplaced as a “plagioclase +melt mush.”

GEOCHRONOLOGY

To constrain timing of the ophiolite formation, we carried out in-situ LA-ICP-MS
U-Pb dating on zircons from two trondhjemite samples (96A and 746C; fig. 3). The
sample 746C is from the easternmost part of the Refahiye ophiolite to the east of the
NAF outside the study area. Both samples are feebly foliated, and consist of plagioclase,
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TABLE 4

Whole-rock analyses of selected samples from the intrusive rocks in the Refahiye ophiolite,

NE Turkey

Sample 317C 322 96B 252 270 272 343A 358A 618 634B  358B
Rock type CG CG GAB GAB GAB GAB GAB GAB GAB GAB GAB
SiO, 4559 4340 50.74 51.58 49.77 51.73 48.04 49.63 46.03 4493 50.89
TiO, 0.08 0.07 1.65 1.55 1.26 1.59 1.87 1.96 1.63 2.11 2.03
Al O, 1626 1799 15.11 1488 1577 1648 15.19 15.1 1449 14.65 13.87
Fe,0; 4.35 3.68 12.09 1240 11.01 11.55 15.13 1341 1474 1485 13.81
MnO 0.09 0.07 0.20 0.20 0.18 0.18 0.23 0.19 0.23 0.22 0.21
MgO 12.05 13.24 5.56 5.46 6.15 4.47 5.37 4.45 7.58 7.39 4.40
CaO 16.28 14.68 8.90 9.53 9.95 8.50 9.06 9.06 11.64 10.76 8.55
Na,O 1.32 1.23 3.92 3.14 3.18 3.83 3.87 4.20 2.48 3.01 4.54
K,0 0.06 0.06 0.54 0.26 0.58 0.67 0.18 0.31 0.08 0.13 0.21
P,0s 0.01 0.01 0.16 0.13 0.11 0.14 0.16 0.12 0.16 0.18 0.17
LOI 3.60 5.00 0.90 0.70 1.80 0.70 0.70 1.20 0.70 1.50 1.10
Total 99.76  99.72  99.80 99.82 99.8 99.83  99.79 99.63  99.77 99.75 99.82
Sc 43 24 35 37 38 31 42 42 50 43 36

Ni 1269 2453 247 28.3 23.6 13.3 8.3 4.3 20.2 20.3 8.6

Cr 5713 1970 144 41 109 21 <14 <14 109 96 21

Co 37.6 36.3 34.4 33.1 33.7 30.6 42.4 40.5 46.9 45.7 34.4
\Y% 112 64 313 366 326 343 519 541 447 491 433
Cu 156 108.6 544 22.8 46.0 39.8 96.9 1393.8 99.8 137.5  66.2
Zn 7 6 23 16 9 19 30 26 23 23 22

Ga 8.6 8.0 18.4 17.8 17.5 19.2 17.6 17.1 16.8 17.4 17.8
Cs <0.1 0.5 <0.1 <0.1 <0.1 <0.1 0.2 <0.1 0.1 3.6 <0.1
Rb 0.7 2.0 7.5 2.2 7.0 8.6 2.3 2.8 0.6 1.9 1.6

Ba 10 44 106 54 73 80 48 101 19 55 43

U <0.1 <0.1 0.2 <0.1 <0.1 0.2 <0.1 0.1 <0.1 <0.1 0.2

Th <0.2 <0.2 0.6 0.6 0.5 0.8 <0.2 0.2 <0.2 <0.2 0.5

Pb <0.1 0.1 0.6 0.3 0.4 0.3 0.3 1.1 0.2 0.2 0.5

Sr 106.4 439 2343  143.1 2267 2204 206 308.7 127.8 1963 170.1
Nb 0.4 <0.1 2.7 2.2 2.0 2.2 2.3 2.0 2.2 2.9 3.0

Ta <0.1 <0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2

Zr 5.1 1.3 118.2 107 78.4 96.5 87.7 80.3 66.3 106.4 116.2
Hf <0.1 <0.1 3.1 3.1 2.2 2.8 2.5 2.4 2.3 2.7 34

Y 2.3 1.8 37.6 34.4 28.3 33.8 37.9 29.5 44.2 38.2 40.9
La 0.3 <0.1 5.6 5.6 42 4.6 4.0 3.9 33 4.6 5.5

Ce 0.8 0.2 15.6 14.6 11.6 13.2 12.3 10.4 12.3 13.7 16.4
Pr 0.09 <0.02 243 2.26 1.83 2.00 2.09 1.67 2.19 2.22 2.48
Nd 0.5 <0.3 12.5 11.2 9.4 11.1 10.7 8.6 13.3 12.1 13.4
Sm 0.18 0.11 3.88 3.44 2.82 342 3.7 2.92 4.22 3.84 4.28
Eu 0.12 0.10 1.36 1.26 1.06 1.23 1.31 1.20 1.45 1.29 1.50
Gd 0.29 0.25 5.13 4.88 3.94 4.61 5.38 4.24 6.25 5.48 6.17
Tb 0.06 0.05 1.02 0.95 0.77 0.89 0.99 0.79 1.15 1.02 1.14
Dy 0.37 0.33 6.00 5.79 4.43 5.4 6.58 4.98 7.24 6.42 7.00
Ho 0.09 0.06 1.34 1.22 0.97 1.20 1.36 1.10 1.57 1.39 1.57
Er 0.23 0.17 4.15 3.66 3.17 3.6 4.05 3.21 4.56 4.12 4.72
Tm 0.03 0.02 0.60 0.57 0.47 0.54 0.62 0.51 0.70 0.61 0.70
Yb 0.17 0.15 3.88 3.52 2.85 3.63 3.94 3.12 433 3.84 4.44
Lu 0.03 0.02 0.59 0.54 0.43 0.52 0.59 0.48 0.65 0.58 0.68
Mgt 0.85 0.88 0.48 0.47 0.53 0.43 0.41 0.40 0.50 0.50 0.39
(La/Yb)en 1.19 - 0.97 1.07 0.99 0.85 0.68 0.84 0.51 0.81 0.84

(La/Gd)cn 0.86 - 0.91 0.96 0.89 0.83 0.62 0.77 0.44 0.70 0.74
(Gd/Yb)en 1.56 1.47 1.16 1.19 1.19 1.08 1.11 1.12 1.17 1.17 1.13
Eu/Eu* 1.61 1.84 0.93 0.94 0.97 0.95 0.90 1.04 0.86 0.86 0.89
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TABLE 4

(continued)

Sample 605C 348B 350 358E  96A 342 343B. 605B  636C

Rock type  GAB PG PG PG TR TR TR TR TR MDL
SiO, 49.18 45.34 4531 53.97 75.61 5483  51.19 7435 54.39 0.01
TiO, 1.68 0.13 0.63 0.27 0.10 0.17 0.26 0.28 0.20 0.01
AL O3 14.13 22.73 18.77 19.27 1413 26.54 2386 13.00 21.37 0.01
Fe,05* 12.99 4.17 6.34 3.11 0.93 1.00 2.14 1.94 1.57 0.04
MnO 0.21 0.08 0.12 0.09 0.02 0.02 0.03 0.04 0.04 0.01
MgO 5.44 8.04 10.10 5.82 0.54 0.55 1.53 0.78 2.44 0.01
CaO 10.89 15.17 14.57 9.93 3.49 9.71 11.69 349 10.79 0.01
Na,O 3.47 1.19 1.30 4.92 4.54 6.05 5.39 5.55 5.73 0.01
K,O 0.32 0.12 0.13 0.11 0.10 0.13 0.06 0.12 0.14 0.01
P,0;s 0.11 <0.01 <0.01 0.07 0.02  <0.01 0.05 0.03 0.05 0.01
LOI 1.40 2.80 2.30 2.30 0.50 1.00 3.80 0.40 3.20 -5.10
Total 99.81 99.82 99.72  99.85 99.99 9996 9995 9998  99.90

Sc 40 23 29 13 2 2 3 2 3 1

Ni 18.3 4.0 59.1 10.6 25.9 3.7 4.9 2.2 6.1 0.1
Cr 55 <14 582 89 <14 <14 <14 <14 <14 14
Co 38.3 31.9 333 15.2 2.6 3.0 6.2 3.8 5.0 0.2
A% 449 86 247 92 24 26 51 20 <§ 8

Cu 74.8 1.9 3.1 2.1 34 0.4 2.6 5.9 1.2 0.1
Zn 19 6 4 2 4 4 6 12 12 1

Ga 17.2 14.1 14.9 13.8 11.7 20.5 18.6 12.2 14.5 0.5
Cs 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.1 0.1 0.1
Rb 2.3 1.3 0.9 0.9 0.8 1.2 1.7 0.6 1.7 0.1
Ba 62 61 55 98 124 27 27 96 126 1

U 0.1 <0.1 <0.1 0.1 0.9 <0.1 <0.1 0.3 2.0 0.1
Th 0.2 <0.2 <0.2 0.6 1.4 <0.2 <0.2 53 16.1 0.2
Pb 0.3 0.6 1.1 1.1 1.6 0.4 0.3 0.5 29.9 0.1
Sr 200.8 571.0 7583 4785 190.1 387.3 313.5 153.6  448.1 0.5
Nb 1.3 0.3 6.7 2.8 1.8 0.3 0.5 1.9 11.2 0.1
Ta 0.1 <0.1 0.4 0.1 <0.1 <0.1 <0.1 <0.1 0.5 0.1
Zr 72.3 53 29.8 93.7 127.7 1459 732 1446 119.7 0.1
Hf 2.3 0.2 1.4 2.3 34 3.1 1.9 42 3.5 0.1

Y 30.5 3.7 20.9 11.7 2.5 2.5 4.1 4.1 8.0 0.1
La 3.1 1.5 6.1 7.6 4.9 1.5 1.7 23.8 33.8 0.1
Ce 9.4 2.6 16.4 14.9 6.8 2.1 3.1 38.5 65.8 0.1
Pr 1.52 0.36 2.32 1.63 0.64 0.23 0.40 3.62 6.09 0.02
Nd 8.7 1.5 11.2 6.3 1.6 1.0 1.6 11.1 20.3 0.3
Sm 2.92 0.42 2.68 1.53 0.23 0.22 0.41 1.37 3.21 0.05
Eu 1.15 0.34 0.96 0.64 0.63 0.77 0.78 0.61 1.57 0.02
Gd 4.47 0.51 3.32 1.80 0.22 0.23 0.51 0.86 2.22 0.05
Tb 0.83 0.10 0.57 0.31 0.07 0.05 0.10 0.12 0.29 0.01
Dy 5.38 0.62 345 1.97 0.28 0.34 0.56 0.66 1.47 0.05
Ho 1.19 0.12 0.73 0.40 0.10 0.08 0.14 0.12 0.28 0.02
Er 3.49 0.40 2.11 1.23 0.32 0.29 0.42 0.48 0.85 0.03
Tm 0.53 0.06 0.31 0.20 0.08 0.05 0.08 0.08 0.15 0.01
Yb 3.29 0.39 1.94 1.28 0.44 0.39 0.53 0.69 1.13 0.05
Lu 0.51 0.06 0.28 0.21 0.12 0.08 0.10 0.14 0.23 0.01
Mgt 0.45 0.79 0.76 0.79 0.53 0.52 0.59 0.44 0.75

(La/Yb).,  0.64 2.59 2.12 4.00 7.51 2.59 2.16 2325  20.17
(La/Gd)en  0.58 2.46 1.54 3.53 18.61  5.45 2.78 2312 12.72
(Gd/Yb)ey,  1.11 1.13 1.30 1.07 0.70 0.57 0.83 0.77 1.13
Eu/Eu* 0.97 2.25 0.98 1.18 8.56 1047 522 1.72 1.80

CG: Cumulate gabbro (Type-I); GAB = Gabbro (Type-II); PG: Pegmatitic gabbro; TR: Trondhjemite;
Mg# = (MgO/(MgO+FeO,,,)) in molar proportions; ., = chondrite-normalized; Eu/Eu* = Eu,,/(Sm_,
Gd,,,)"7; oxides are given in wt%. trace elements in pg/g. MDL detection limits.



1072 G. Topuz and others—]Jurassic ophiolite formation and emplacement as backstop

100§I ! ! ! ! ! ! ! ! ! ! ! ! ! !

10

Rock/Chondrite
111 1 1 IIIIIII

L A Cumulate gabbro (Type-I)
ol 11

00— 7T 7T T T T 7T T T T T

10 |8

Rock/Chondrite

B Non-cumulate gabbro (Type-II)
opb—t v 11

100

10

Rock/Chondrite

C Trondhjemite

La Pr Pm Eu Tb Ho Tm Lu
Ce Nd Sm Gd Dy Er Yb

0.1

Fig. 8. Chondrite-normalized rare earth element patterns. Normalizing values were taken from
Boynton (1984).

quartz and minor hornblende, = cummingtonite and biotite. Apatite and zircon are
accessory phases.

Zircons are mostly euhedral, and display oscillatory and sector zoning (fig. 10).
However it contains local irregular domains indicative of recrystallization. High U
contents (443-1960 ppm) and relatively high Th/U ratios (0.11-1.08) and oscillatory
zoning are characteristic of the zircons grown from a melt phase (table 5; Hoskin and
Schaltegger, 2003). 11 and 13 grains of zircon from sample 96A and 746 were analyzed
for their U-Pb isotopic compositions, yielding concordia ages of 186 * 4 Ma and 178 =
4 Ma (20), respectively (fig. 11). In general, there is a large spread of the U-Pb isotopic
data especially in sample 96A that cannot be accounted for by a single zircon
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Fig. 9. N-MORB-normalized trace element abundance patterns (normalized to values given in Sun and

McDonough, 1989).

population. Furthermore, there is a rough correlation between Th/U ratios of the
dated zircons and the obtained age values (not shown).



1074  G. Topuz and others—Jurassic ophiolite formation and emplacement as backstop

Fig. 10. Cathodoluminescence (CL) images of the dated zircons (sample # 746C).

Zircons have high U-Pb isotopic closure temperature (for example, Lee and
others, 1997, Cherniak and Watson, 2000). On the basis of the topological and
geochemical features of the analyzed grains, the U-Pb zircon date of 186 £ 4 Ma and
178 = 4 Ma (20; Pliensbachien to Toarcien, Ogg and others, 2008) are regarded as the
age of magmatic crystallization, while the recrystallization occurred shortly after the
formation within the analytical uncertainty of the geochronological data, and accord-
ingly approximates the time of the oceanic spreading. These zircon ages are slightly
older than the two Ar-Ar plateau ages of the hornblende from the associated foliated
gabbros (sample 96B: 174 + 4 Ma, 20; sample 252: 173 £ 4 Ma, 20; see fig. 4A), which
are interpreted as cooling ages below 500 to 580 °C of the gabbroic rocks (Topuz and
others, 2013a). All these age values consistently suggest that the Refahiye ophiolite
formed during early Jurassic time.

DISCUSSION

Arc tholeiitic affinity of the locally foliated non-cumulate gabbros indicate forma-
tion in a suprasubduction-zone environment (for example, Miyashiro, 1973; Pearce
and others, 1984), as suggested by Rice and others (2006, 2009), Sarifakioglu and
others (2009) and Parlak and others (2013) on the basis of bulk rock geochemistry on
basic rocks and spinel composition from the mantle rocks from the eastern end of the
Refahiye ophiolite. The mantle peridotite contains low to high Cr# spinels together
with low- to high-Al pyroxenes dependent on the location, encompassing the composi-
tional fields defined by modern forearc and partly abyssal peridotites (fig. 7). This
geochemical duality/transition is documented in most suprasubduction-zone ophio-
lites (for example, Choi and others, 2008; Rollinson, 2008; Uysal and others, 2009),
and can be explained either by (i) transformation of former MORB-type (abyssal)
domain to a suprasubduction one because of a fracture zone becoming a juvenile
subduction zone due to rotation pole shift (Casey and Dewey, 1984; Dewey and Casey,
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TABLE 5

LA-ICP-MS U-Th-Pb isotopic data and calculated ages for zircon grains from the
trondhjemite, Refahiye Ophiolite, NE Turkey

Analysis U Th Th “®Pb  *Pb Pb tho Pb *®Pb Pb >*Pb
U 232Th 235U 238U 206Pb 232Th 235U 238U

Age Age Age

Ma) (Ma) (Ma)

Sample 96A

13 1005 658 0.65 0.0152(12) 0.406(32) 0.0307(17) 0.45 0.0958(71) 305423 346424 195411
2% 446 166 0.37 0.0087(03) 0.181(08) 0.0271(06) 0.45 0.0485(19) 17606 169+7 1721+4
34 1465 1222 0.83 0.0091(02) 0.214(07) 0.0311(07) 0.61 0.0498(14) 18344 19746 19845
4# 805 214 0.27 0.0089(03) 0.206(12) 0.0295(16) 0.48 0.0506(28)  180+7 190+10 187+10
S# 1891 1251  0.66 0.0094(08) 0.207(11) 0.0298(14) 0.58  0.0508(23) 190+15 1919  189+9
6 1160 577 0.5 0.0091(08) 0.213(09) 0.0287(11) 0.61 0.0545(20) 184£17 196+8  182+7
T# 1960 2111  1.08 0.0096(04) 0.218(08) 0.0312(08) 0.62  0.0507(15)  192+8  200£7  198+5
8i#* 990 226 023 0.0170(20) 0.281(21) 0.0290(19) 0.54 0.0703(47) 341+39 251+17 18412
o# 1024 555  0.54 0.0086(06) 0.199(14) 0.0291(19) 0.57 0.0496(31) 173£12 185+12 185+12
10# 1286 981 0.76  0.0089(06) 0.201(05) 0.0292(05) 0.61  0.0504(11) 178+12 186+5 18543
11# 1468 1141  0.78 0.0089(03) 0.211(08) 0.0306(08) 0.57  0.0499(16)  179+5  194+7 19545
12# 1360 1110 0.82 0.0086(06) 0.195(06) 0.0291(06) 0.5  0.0491(13) 173+12 181+5  185+4
13# 443 179 0.4 0.0093(06) 0.179(06) 0.0279(05) 0.53  0.0471(14) 186+13 1676  177+3
14# 722 324 045 0.0096(08) 0.179(12) 0.0262(13) 048  0.0500(30) 19417 167410 167+8
Sample 746

1# 1000 442 0.44 0.0097(09) 0.217(17) 0.0292(14) 0.62  0.0525(32) 194+18 199+14 18549
2# 408 107 026 0.0086(13) 0.194(20) 0.0293(12) 0.19  0.0481(51) 174+26 180+17 186+8
3# 469 51 0.11 0.0106(22) 0.196(21) 0.0274(10) 0.11  0.0517(56) 213+44 182+18 174+6
4% 339 120 036 0.0119(15) 0.270(30) 0.0297(14) 0.13  0.0662(77) 238+31 243+24 18949
S#* 559 120 0.21 0.0125(23) 0.237(29) 0.0255(14) 0.05 0.0676(91) 25146 216+24  162+9
6#* 264 39 0.15 0.0110(19) 0.258(29) 0.0283(12) 0.05 0.0672(79) 222+39 233+23 18048
TH* 249 76 0.31 0.0099(14) 0.245(30) 0.0284(12) 0.29 0.0618(72) 200+28 223+24  180+8
8t 305 109 036 0.0085(10) 0.197(24) 0.0276(10) 0.11  0.0515(62) 170+19 183+20 176+6
o#* 522 222 042 0.0124(15) 0.270(24) 0.0302(14) 0.25 0.0655(59) 250429 243+19 19249
10#* 365 171 047 0.0085(10) 0.233(25) 0.0292(12) 0.48 0.0565(53) 170£19 213+£20 1858
11# 1398 375 0.27 0.0081(11) 0.186(12) 0.0261(11) 0.30  0.0532(35) 164422 173x11  166+7
128+ 549 140 025 0.0279(58) 0.401(43) 0.0282(14) 0.29 0.1064(110) 556+115 342431 17949
13# 410 122 030 0.0122(18) 0.194(22) 0.0268(11) -0.09 0.0556(68) 225+£35 180+18  170+7
14#* 263 100 0.38 0.0153(25) 0.402(56) 0.0296(14) 0.28 0.103(139) 306+51 343+42  188+9
15#* 192 27 0.14  0.0238(40) 0.300(39) 0.0291(15) 0.06 0.0795(108) 475+79 267+31 185+10
16# 585 176 030 0.0091(13) 0.200(18) 0.0280(13) 0.30 0.0539(48) 182+26 185+16 178+8
17# 1147 762 0.66 0.0077(09) 0.184(11) 0.0285(10) 0.14 0.0486(33) 154+18 172+10 181+7
18# 597 168 0.28 0.0076(12) 0.158(18) 0.0261(12) 0.05 0.0458(57) 153£23 149+16  166+8
194 395 197 050 0.0087(22) 0.198(31) 0.0305(27) 0.36 0.0505(76) 17543 183427 194+17
20# 488 189 0.39 0.0092(12) 0.213(20) 0.0303(14) 0.25 0.0535(50) 186+25 196+17  192+9
21# 488 189 039 0.0092(12) 0.213(20) 0.0303(14) 0.25 0.0535(50) 186+25 196+17  192+9
22# 1457 1354 0.93 0.0079(09) 0.201(12) 0.0291(11) 0.26  0.0517(32) 160+18 186+11  185+7

U and Th concentrations are estimated from sensitivity factors calculated from G]J zircon (the Mainz
crystal has 322 ppm U and 10.7 ppm Th). ***Hg interferences on ?°*Pb are subtracted using a ***Hg/***Hg
ratio of 1.918. 2%°U is calculated from 2**U using a 2381 /235U ratio of 137.88. rho = error correlation defined as
the quotient of the propagated errors of the 2°°Ph /238U, 2°7Ph /#**U and 2°"Pb/2°°Pb ratios. Uncertainties in
parentheses are given for the last two digits and correspond to 1o. * = Analysis not used for age calculation,
due to irregular behavior of the ablation signal.

2011), or (ii) progressive depletion and metasomatism of a common melt source over
the course of ophiolite formation (Shervais, 2001; Whattam and Stern, 2011). Overall,
suprasubduction-zone settings encompass forearc, intraarc and backarc domains. On
the basis of field relationships, such as (i) association with the coeval subduction-
accretion complex, and (ii) presence of the Triassic intraoceanic subduction and
accretion complex to the north, we favor a suprasubduction-zone forearc setting above
ajuvenile subduction zone.

Striking features of the Refahiye ophiolite in the studied part are (i) injection of
the mantle section by hydrous basic magmas with suprasubduction-zone signature, and
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Fig. 11. Concordia diagrams of U-Pb zircon ages. Error ellipses are given at the 2 o level. Concordia ages
are calculated by Isoplot 3.50 (Ludwig, 2003).

(ii) local growth of relatively late hydrous minerals in mantle peridotites. Igneous
intrusions into the deeper levels of oceanic crust and upper mantle are not rare
phenomena seen in ophiolite complexes (for example, Moores and Vine, 1971;
Karson, 1984; Nicolas, 1989; Malpas, 1990; Sarkarinejad, 2003). In the Refahiye
ophiolite, grain sizes of the gabbroic stocks/dikes range from fine to medium, and
there are locally dike through dike crosscutting relationships, suggesting several
generations of dike injection. A similar case was documented in the Troodos ophiolite,
and accounted for by the presence of multiple magma chambers related to intermit-
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tent magmatic and tectonic activity (Malpas, 1990). Growth of the relatively late
hydrous minerals in the peridotites, such as tremolite-hornblende, talc and chlorite as
well as large-scale serpentinization can be tentatively attributed to the hydrothermal
processes of injecting basic magma. There are two potential tectonic settings for dike
intrusions into the mantle section: (i) very slowly spreading ridges or oceanic core
complexes, and (ii) fracture zone consisting of three segments, a transform fault
between two ridge ends and their non-transform extensions.

Apart from the local hydrothermal mineral growths in both peridotites and
gabbros related to sea-floor hydrothermal metamorphism, rocks of the Refahiye
ophiolite do not show any sign of regional metamorphism. We can thus eliminate the
possibility that the Refahiye ophiolite was ever subducted. The associated metamor-
phic rocks include substantial oceanic material (for example, serpentinite, metachert,
and metabasic rocks with enriched mid-ocean ridge basalt and ocean island basalt
signatures; Topuz and others, 2013a; Gé¢mengil and others, 2013%). Both the green-
schist-facies rocks (for example, Na-Ca amphibole and phengite) and high-grade
blocks (eclogite, garnet amphibolite, and micaschist) contain mineral assemblages,
suggesting metamorphism in a subduction zone. The field relations (see figs. 3 and 4),
such as (i) association of the unsubducted suprasubduction-zone ophiolite with nearly
coeval metamorphosed accretionary complexes, (ii) absence of any direct relationship
to the southern Atlantic-type continental margin, represented by the Munzur lime-
stones, and (iii) absence of any indication in the stratigraphic record of the southern
Atlantic-type continental margin, the Menderes-Taurus block, for ophiolite obduction
(fig. 2) clearly point to the emplacement of a trapped forearc ophiolite above its own
subduction-accretion complex (fig. 12A). Thus, the Refahiye ophiolite differs from the
“Late Cretaceous” ophiolite bodies and underlying ophiolitic mélanges, obducted
onto the Munzur limestones, ~20 km to the south of the Refahiye ophiolite (fig. 3A;
for example, Ozgﬁl and Tursucu, 1984). The location of the Refahiye ophiolite as the
distal section of the Eastern Pontide continental margin atop a subduction-accretion
complex requires that the ophiolite emplacement as a backstop along the Pacific-type
continental margin occurred during early-medial Jurassic time. However, the oldest
sedimentary rocks which discordantly overlie the Refahiye ophiolite and the associated
metamorphic rocks in the studied transect are of early to medial Eocene age (figs. 3
and 4). There are local outcrops of late Jurassic—early Cretaceous calciturbidites
(Kolayli, ms, 1996), clearly overlying the Kop ophiolite (own observation), which is
located roughly 30 km to the north east from the eastern end of the Refahiye ophiolite
and occupies a similar tectonic position as the Refahiye ophiolite (fig. 1). This situation
implies that the absence of older lithologies on the ophiolite and metamorphic rocks
in the studied transect is probably related to uplift and erosion following the Paleocene-
early Eocene continental collision between the Eastern Pontides and the Menderes-
Taurus block. How far the original intraoceanic subduction was from the East Pontide
margin during early Jurassic is unclear. It may be that the original subduction zone was
farther away from the East Pontide margin and the Refahiye ophiolite plus its
subduction-accretion cushion was emplaced by the elimination of a now vanished
oceanic tract after Jurassic.

Common presence of the Jurassic ophirags within the Cretaceous ophiolitic
mélanges (Dilek and Thy, 2006; Celik and others, 2011, 2013; Gonciioglu and others,
2012) and rarely preserved structurally intact Jurassic ophiolites (the Refahiye and
Sevan ophiolites: this study; Galoyan and others, 2009; Hassig and others, 2013)

2 Gogmengil, G., Altuntas, 1. E., Topuz, G., Celik, O. F., and Ozkan, M., 2013, The diverse sources for the
metaigneous rocks in the Jurassic metamorphosed accretionary complexes (Refahiye, NE Turkey): Geodi-
namica Acta, submitted.
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indicate that the ophiolite formation during Jurassic time was common along the IAE
ocean similar to the Balkans. As pointed out above, early to medial Jurassic subduction-
accretion complexes in the Refahiye area occur exclusively within the ophiolite, either
beneath it or as tectonic slice within it, and do not have a contact with the late
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Cretaceous ophiolitic mélange (figs. 3 and 4). This field relationship implies that
accretion was not continuous from early Jurassic to late Cretaceous time (fig. 12B). In
case of continuous subduction and accretion, it is expected that subduction-accretion
complex displays gradual younging towards the trench, as documented in the Francis-
can complex (Wakabayashi and others, 2010; Wakabayashi, 2013, and the references
therein). This field relationship can be accounted for by (i) non-existence of a late
Jurassic subduction due to the Cimmerian collision (preferred by Sengér), or removal
of the trenchward domains of subduction-accretion complex and overlying ophiolite
by (ii) a strike-slip fault or (iii) subduction erosion (preferred by Topuz). On the basis
of absence of a definable continental fragment between the subduction-accretion
complexes of different ages, Topuz and others (2013a) inferred episodic accretionary
growth of the southern margin of the Pontides from Late Paleozoic to end-Mesozoic
without involvement of Cimmerian ribbon continent (The third author, A. M. C.
Sengor disagrees with this view). As so far no strike-slip activity apart from the active
NAF has been documented close to the IAES, removal by strike-slip fault is regarded as
unlikely. Subduction erosion (the third possibility) has been recognized as the main
process for the removal of the upper plate material (for example, von Huene and
Scholl, 1991; Kukowski and Oncken, 2006), and diminish the width of the previously
accreted material (in our case Jurassic subduction-accretion complex and overlying
suprasubduction-zone ophiolite). Field geological evidence for the operation of the
subduction erosion is provided by the northward migration of the magmatic arc fronts
during early-medial Jurassic and late Cretaceous times (see Okay and Sahinttrk, 1997).
Whether the dismemberment of the Jurassic ophiolites and their incorporation into
the Cretaceous ophiolitic mélanges in form of ophirags occurred during subduction
erosion or during a separate event is an open question.

The key problem now has become why the Jurassic ophiolites in the Balkans were
obducted onto an Atlantic-type continental margin and the Refahiye ophiolite re-
mained as a forearc backstop atop a developing subduction-accretion complex along a
Pacific-type continental margin. In the eastern Mediterranean region, the main
Tethyan sutures are represented by the Vardar suture in the Balkans, and the
Intra-Pontide, the Izmir-Ankara-Erzincan, the Inner Tauride and the Bitlis sutures in
Turkey (fig. 1). Existence of another suture, the so-called Pindos-Mirdita, is highly
contentious (compare, Robertson, 2012; Ferriere and others, 2012). Closure of both
the Vardar and Izmir-Ankara-Erzincan oceans is thought to have occurred during early
Tertiary time (Sengor and Yilmaz, 1981; Okay and Sahintiirk, 1997; Rolland and
others, 2009b; Sosson and others, 2010; Robertson, 2012). The late Jurassic ophiolite
obduction over the Pelagonian zone in the Balkans can be traced into Sporades islands
in the Aegean Sea, and Late Cretaceous ophiolite obduction onto Menderes-Taurus
block is not observed to the west of the Bornova flysch zone (fig. 1) (Okay and others,
2012, and the references therein). Unlike the Balkans, there is no indication for
ophiolite obduction in the stratigraphic record of the Menderes-Taurus block during
late Jurassic to early Cretaceous time (fig. 3). During the early Jurassic, Tethys formed a
westerly narrowing embayment between the Laurasia and Apulia, a continental block
partly detached from the Gondwana-Land (fig. 12C; Sengoér and Natal’in, 1996;
Barrier and Vrielynck, 2008). Such a paleogeographic reconstruction requires that the
distance between the Laurasia and the Apulia was shorter relative to that in the east.
Based on this argument, we hypothesize that the intra-oceanic subduction zone was
located close to the southern Atlantic-type continental margin in the Balkans and far
away in Turkey and farther east during early to medial Jurassic time (fig. 12C). In this
situation, further subduction would lead to ophiolite obduction over the Atlantic-type
continental margin in the west, and to the growth of the accretionary wedge in the east.
Increase in the amount of accreted material beneath the ophiolite would eventually
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resultin the gravitational collapse of ophiolite, to be obducted onto its own Pacific-type
continental margin. In the Balkans, ophiolite obduction during the late Jurassic over
the Atlantic-type continental margin requires initiation of another subduction zone in
the oceanic domain in the north. Consequently, a late Cretaceous accretionary prism
locally overrides the former passive margin with its earlier obducted (Jurassic) ophio-
lites, as in Kozara area (northern Bosnia and Herzegovina) (Ustaszewski and others,
2009, 2010). This situation is comparable with that in Oman. During the late Creta-
ceous, ophiolite obduction took place over the Oman, and subduction along a
different subduction zone is still ongoing beneath the Makran (Searle and Cox, 1999).

CONCLUSIONS

The Refahiye ophiolite with a length of ~175 km and width of ~20 km forms one
of the biggest ophiolite bodies occurring between the Eastern Pontides and the
Menderes-Taurus block in northern Turkey. The ophiolite is represented mainly by
mantle peridotites locally crosscut by gabbroic intrusions with suprasubduction-zone
affinities. U-Pb zircon and published Ar-Ar hornblende ages are consistently indicative
of an ophiolite formation during early Jurassic time. Presence of rarely preserved
structurally intact ophiolites (the Refahiye ophiolite) together with the reported
widespread presence of Jurassic ophirags in Cretaceous ophiolitic mélanges reveals
that Jurassic oceanic spreading was widespread along the Izmir-Ankara-Erzincan
ocean, similar to the Balkans. Several lines of evidence such as (i) close association with
coeval oceanic accretionary complexes, (ii) absence of any direct relationship to the
southern Atlantic-type continental margin (the Menderes-Taurus block), and (iii)
absence of any indication in the stratigraphic record of the southern Atlantic-type
continental margin for ophiolite emplacement during Jurassic time, conclusively
suggest emplacement of a trapped forearc ophiolite above its own subduction-
accretion complex as a backstop. Striking difference in mode of emplacement (obduc-
tion over the leading edge of the Atlantic-type continental margin vs. emplacement of
a forearc ophiolite above its own subduction-accretion complex at the Pacific-type
continental margin) between the Eo-Hellenic ophiolites and the Refahiye ophiolite
was probably a function of the distance of the intra-oceanic subduction zone to the
Atlantic-type continental margins for example, Pelagonia in the Balkans and Menderes-
Taurus block in Turkey. Rarity of the structurally intact Jurassic ophiolites in Turkey is
related to the later removal by subduction erosion and dismemberment by tectonic
processes from the upper plate of the subduction zone and incorporation into
Cretaceous ophiolitic mélanges.
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