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ARrr. LIL—On the Equilibrium of Heterogeneous Substances;
by J. WILLARD G1BBS.* Abstract by the author.

It is an inference naturally suggested by the general increase
of entropy which accompanies the changes occurring in any
isolated material system that when the entropy of the system
has reached a maximum, the system will be in a state of equi-
librium.  Although this principle has by no means escaped
the attention of physicists, its importance does not appear to
have been duly appreciated. Little has been done to develop
the principle as a foundation for the general theory of thermo-
dynamic equilibrium,.

The principle may be formulated as follows, constituting a
criterion of equilibrium :

1. For the equalibrium of any wsolaled syslen it is necessary and
sufficient that <n ali possible variations of the state of the system
which do not alter its enerqy, the variution of its entropy shall
etther vanish or be negative.

The following form, which is easily shown to be equivalent
to the preceding, is often more convenient in application :

II. For the equilibrium of any isolated system it is necessary and
sufficient that in all possible variations of the state of the sysiem
which do not alter s entropy, the variation of its energy shall
either vanish or be positive,

If we denote the energy and entropy of the system by ¢ and
n respectively, the criterion of equilibrium may be expressed
by either of the formule

(81, 0, M

(6&)y=0. (2)
Again, if we assume that the temperature of the system is
uniform, and denote its absolute temperature by ¢, and set

p=&—t, (3)
the remaining conditions of equilibrium may be expressed by
the formula

(84);Z0, (4)

the suffixed letter, as in the preceding cases, indicating that the
quantity which it represents is constant. This coudition, in
connection with that of uniform temperature, may be shown to
be equivalent to (1) or (2). The difference of the values of #
for two different states of the system which have the same
temperature represents the work which would be expended in
bringing the system from one state to the other by a reversible
process and without change of temperature.

* Transactions of the Connecticut Academy of Arts and Sciences, vol. iii, pp.
108-248 and 343-524.
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It the system is incapable of thermal changes, like the sys-
tems considered in theoretical mechanics, we may regard the
entropy as having the constant value zero. Conditions (2) and
(4) may then be written

6e=0, dip=o0,

and are obviously identical in signification, sice in this case
/:e‘

Conditions (2) and (4), as criteria of equilibrium, may there-
fore both be regarded as extensions of the criterion employed
in ordinary statics to the more general case of a thermody-
namic system. In fact, each of the quantities —e and —¢
(relating to a system without sensible motion) may be regarded
as a kind of force-function for the system,—the former as the
force-function for constunt entropy, (i. e., when only such states
of the system are considered as have the same entropy,) and
the latter as the force-function jfor constant temperature, (i. e.,
when only such states of the system are considered as have the
same uniform temperature).

In the deduction of the particular conditions of equilibrium
for any system, the general formula (4) has an evident advan-
tage over (1) or (2) with respect to the brevity of the processes
of reduction, since the limitation of constant temperature
applies to every part of the system taken separately, and
diminishes by one the number of independent variations in the
state of these parts which we have to consider. Moreover, the
transition from the systems considered in ordinary mechanics
to thermodynamic systems is most naturally made by this
formula, since it has always been customary to apply the
principles of theoretical mechanics to real systems on the sup-
position (more or less distinctly conceived -and expressed) that
the temperature of the system remains constant, the mechanical
properties of a thermodynamic system maintained at a constant
temperature being such us might be imagined to belong to a
purely mechanical system, and admitting of representation by
a force-function, as follows directly from the fundamental laws
of thermodynamies.

Notwithstanding these considerations, the author has pre-
ferred in general to use condition (2) as the criterion of equi-
librium, believing that it would be useful to exhibit the con-
ditions of equilibrium of thermodynamic systems in connection
with those quantities which are most simple and most general
in their definitions, and which appear most important in the
general theory of such systems. The slightly different form in
which the subject would develop itself, if condition (4) had
been chosen as a point of departure instead of (2), is occasion-
ally indicated.



J. W. Qibbs— Equilibrium of Heterogeneous Substances. 443

Equalibrium of masses tn contact.—The first problem to which
the criterion is applied is the determination of the conditions
of equilibrium for different masses in contact, when uninflu-
enced by gravity, electricity, distortion of the solid masses, or
capillary tensions. 'The statement of the result is facilitated
by the following definition.

If to any homogeneous mass in a state of hydrostatic stress
we suppose an infinitesimal quantity of any substance to be
added, the mass remaining homogeneous and its entropy and
volume remaining unchanged, the increase of the energy of the
mass divided by the quantity of the substance added is the poten-
teal for that substance in the mass considered.

In addition to equality of temperature and pressure in the
masses in contact, it is necessary for equilibrium that the
potential for every substance which is an independently varia-
ble component of any of the different masses shall have the
same value in all of which it is such a component, so far as
they are in contact with one another. But if a substance,
without being an actual component of a certain mass in the
given state of the system, is capable of being absorbed by it,
it is sufficient if the value of the potential for that substance
in that mass is not less than in any contiguous mass of whigh
the substance is an actual component. We may regard these
conditions as sufficient for equilibrium with respect to infinites-
imal variations in the composition and thermodynamic state
of the different masses in contact. There are certain other
conditions which relate to the possible formation of masses
entirely different in composition or state from any initially
existing. These conditions are best regarded as determining
the stability of the system, and will be mentioned under that
head.

Anything which restricts the free movement of the compo-
nent substances, or of the masses as such, may diminish the
number of conditions which are necessary for equilibrium.

Lquilibrium of osmotic forces.—If we suppose two fluid masses
to be separated by a diaphragm which is permeable to some of
the component substances aid not to others, of the conditions
of equilibrinm which have just been mentioned, those will
still subsist which relate to temperature and the potentials for
the substances to which the diaphragm is permeable, but those
relating to the potentials for the substances to which the dia-
phragm is impermeable will no longer be necessary. W hether
the pressure must be the same in the two fuids will depend
upon the rigidity of the diaphragm. KEven when the dia-
phragm is permeable to all the components without restriction,
equality of pressure in the two fuids is not always necessary
for equilibrium.
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Liffect of graveity.—In a system subject to the action of gravity,
the potential for each substance, instead of having a uniform
value throughout the system, so far as the substance actually
occurs as an independently variable component, will decrease
uniformly with increasing height, the ditference of its values
at different levels being equal to the difference of level multi-
plied by the force of gravity.

Fundamental equations.—Let ¢, 9, v, t and p denote respect-
ively the energy, entropy, volume, (absolute) temperature, and
pressure of a homogeneous mass, which may be either fluid or
solid, provided that it is subject only to hydrostatic pressures,
and let m,, m,, . .. m, denote the quantities of its inde-
pendently variable components, and g,, p¢,, . . . g, the poten-
tials for these components. It is easily shown that e is a
function of 3, v, m , m,, . . m, and that the complete value
of de is given by the equation

de=tdn—pdv+ p dn + p,dm, ...+ pdm,. (5)
Now if ¢ is known in terms of », », m, ... m, we can
obtain by differentiation ¢, p, g, . . . g, in terms of the same
variables. T'his will make » + 8 independent known relations
between the 2n 4 5 variables, ¢ %, v, m ,m,, . .. m, ¢ p,
Koy Pay - - Mo These are all that exist, for of these varia-
bles, n + 2 are evidently independent. Now upon these rela-
tions depend a very large class of the properties of the com-
pound considered,—we may say in general, all its thermal,
mechanical, and chemical properties, so far as active tendencies
are concerned, in cases in which the form of the mass does not
require consideration. A single equation from which all these
relations may be deduced may be called a fundamental equa-
tion. An equation between ¢, 3, v, m,, m,, . . . m,isa funda-
mental equation. But there are other equations which possess
the same property.
If we suppose the quantity ¢ to be determined for such a
mass as we are considering by equation (3), we may obtain by
differentiation and comparison with (5)

dip=—ndt—pdv -+ p,dn,+ m,dm, ... + u,dm,  (6)
If, then, ¢ is known as a function of ¢, v, m,, m,, . . . m,, we
can find 7, p, ¢, o, . . . g, in terms of the same variables.
If we then substitute for ¢ in our original equation its value

taken from equation (3) we shall have again n 4+ 8 independent
relations between the same 2n + 5 variables as before.

Let
t=ce—tn+po, (7)
then, by (5),

dt: _77dt+vdp+#1dm1+ﬂadma MR +,u,.dm,,. (8)
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If, then, ¢ is known as a function of ¢, p, m,, m,, . . . m,,
we can find 7, v, ¢, s, - - . p, in terms of the same variables,
By eliminating £, we may obtain again n + 8 independent rela-
tions between the same 2n 4- 5 variables as at first.*®

If we integrate (5), (6) and (8), supposing the quantity of
the compound substance considered to vary {from zero to any
finite value, its nature and state remaining unchanged, we
obtain

s=tn—povt+pum -+ pum, ...+ y.m, (9)
p=—=pot+um+pum, ...+ pm, (10)
t=puom, 4 p,m, oo+ gy, (11)

If we differentiate (9) in the most general manner, and com-
pare the result with (5), we obtain

—vdp+ndt+m du, +mdu, . .. +m,du, =0, (12)
or

g ™ g 4™ e g
dp_vdt-{— - du, + ” au, . .. + v du,=0. (13)

Hence, there is a relation between the n 4+ 2 quantities ¢, p,
Koy Moy - - - Me which, if known, will enable us to find in
terms of these quantities all the ratios of the n + 2 quantities
PV, M, My, ... m, With (9), this will make n + 8 inde-
pendent relations between the same 2n + 5 variables as at first.

Any equation, therefore, between the quantities

& ua v, my, Myy o o o My,
or P, t, v, m, My o o o My,
or ¢, ¢, P m,, My o o o My,
or t) p, }’ln Iua, oo o HMny

is a fundamental equation, and any such is entirely equivalent
to any other.

Coexisten! phases.—In considering the different homogeneous
bodies which can be formed out of any set of component sub-
stances, it is convenient to have a term which shall refer solely
to the composition and thermodynamic state of any such body
without regard to its size or form. The word phase has been
chosen for this purpose. Such bodies as differ in composition
or state are called different phases of the matter considered, all

* The properties of the quantities —1 and —{ regarded as functions of the
temperature and volume, and temperature and pressure, respectively, the composi-
tion of the body being regarded as invariable, have been discussed by M. Massieu
in a memoir entitled **Sur les fonctions caractéristiques des divers fluides et sur
la théorie des vapeurs” (Mém. Savamts Etrang., t xxii) A brief sketch of his
method in a form slightly different from that ultimately adopted is given in Comptes
Rendus, t. 1xix, (1869) pp. 868 and 1057, and a report on his memoir by M. Bertrand
in Comples Rendus, t. 1xxi. p. 2567. M. Massieu appears to have been the first to
solve the problem of representing all the properties of a body of invariable com-
position which are concerned in reversible processes by means of a single function.
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bodies which differ only in size and form being regarded as
different examples of the same phase. Phases which can
exist together, the dividing surfaces being plain, in an equi-
librium which does not depend upon passive resistances to
change, are called coéxistent.

The number of independent variations of which a system of
coéxistent phases is capable is n+2—7, where r denotes the
number of phases, and n the number of independently variable
components in the whole system. For the system of phases is
completely specified by the temperature, the pressure, and the
n potentials, and between these n+42 quantities there are r in-
dependent relations (one for each phase), which characterize the
system of phases.

When the number of phases exceeds the number of compo-
nents by unity, the system is capable of a single variation of
phase. The pressure and all the potentials may be regarded as
functions of the temperature. The determination of these func-
tions depends upon the elimination of the proper quantities
from the fundamental equationsin p, {, g, ¢,, ete., for the several
members of the systemn. DBut without a knowledge of these
fundamental equations, the values of the differential co-efficients

such as 7]; may be expressed in terms of the entropies and

volumes of the different bodies and the quantities of their
several components. For this end we have only to eliminate
the differentials of the potentials from the different equations
of the form (12) relating to the different bodies. In the simplest
case, when there is but one component, we obtain the well-
known formula
_Cl—'p:??'-n”: Q
dt v'—v" t (v =v')’

in which ¢/, v, %/, ", denote the volumes and entropies of a
given quantity of the substance in the two phases, and Q the
heat which it absorbs in passing from one phase to the other.

It is easily shown that if the temperature of two cogxistent
phases of two components is maintained constant, the pressure
is in general a maximum or minimum when the composition
of the phases is identical. In like manner, if the pressure of
the phases is maintained constant, the temperature is in general
a maximum or minimum when the composition of the phases
is identical. The series of simultaneous values of ¢ and p for
which the composition of two coéxistent phases is identical
separates those simultaneous values of ¢and p for which no
coéxistent phases are possible from those for which there are
two pairs of coéxistent phases.

If the temperature of three coéxistent phases of three compo-
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pents is maintained constant, the pressure is in general a maxi-
mum or minimum when the composition of one of the phases
is such as can be produced by combining the other two. If
the pressure is maintaiiied constant, the temperature is in gen-
eral a maximum or minimum when the same condition in
regard to the composition of the phases is fulfilled.

Stability of fluids.—A criterion of the stability of a homoge-
neous Auid, or of a system of coéxistent fluid phases, is afforded
by the expression

&— t,ﬂ +1),U —/ul,nvl'l—/’lq,mn L llnlm» (] 4)

in which the values of the accented letters are to be determined
by the phase or system of phases of which the stability is in
question, and the values of the unaccented letters by any other
phase of the same components, the possible formation of which
18 in question. We may call the former constants, and the lat-
ter variables. Now if the value of the expression, thus deter-
mined, is always positive for any possible values of the vari-
ables, the phase or system of phases will be stable with respect
to the formation of any new phases of its components. But if
the expression is capable of a negative value, the phase or sys-
tem is at least practically unstable. By this is meant that,
although, strictly speaking, an infinitely small disturbance or
change may not be sufficient to destroy the equilibrium, yet a
very small change in the initial state will be sufficient to do so.
The presence of a small portion of matter in a phase for which
the above expression has a negative value will in general be
sufficient to produce this result. In the case of a system of
phases, it is of course supposed that their contiguity is such
that the formation of the new phase does not involve any trans-
portation of matter through finite distances.

The preceding criterion affords a convenient point of depart-
ure in the discussion of the stability of homogeneous fluids.
Of the other forms in which the criterion may be expressed,
the following is perhaps the most useful.

If the pressure of a jfluid is greater than that of any other phase
of s independent variable components which has the same temper-
ature and potentials, the fluid is stable with respect to the formaiion
of any other phase of these components; but if ils pressure 7s not
as great as that of some such phase, 1t will be practically unstable.

Stability of fluids with respect to continuous changes of phase.—
In considering the changes which may take place in any mass,
we have often to distinguish between infinitesimal changes in
existing phases, and the formation of entirely new phases. A
phase of a fluid may be stable with respect to the former kind
of change, and unstable with respect to the latter. In this case,
it may be capable of continued existence in virtue of proper-
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ties which prevent the commencement of discontinuous changes.
But a phase which is unstable with respect to continuous
changes is evidently incapable of permanent existence on a
large scale except 1n consequence of passive resistances to
change. To obtain the conditions of stability with respect to
continuous changes, we have ouly to limit the application of
the variables in (14) to phases adjacent to the given phase.
We obtain results of the following nature.

The stability of any phase with respect to continuous changes
depends upon the same conditions with respect to the second
and higher differential coéfficients of the density of cnergy
regarded as a function of the density of entropy and the densi-
ties of the several components, which would make the density
of energy a minimum, if the necessary conditions with respect
to the first differential coéfficients were fulfilled.

Again, it is necessary and sufficient for the stability with
respect to continuous changes of all the phases within any
given limits, that within those limits the same conditions should
be fultilled with respect to the second and higher ditferential
coéfficients of the pressure regarded as a function of the tem-
perature and the several potentials, which would make the
pressure a minimum, if the necessary conditions with respect to
the first differential coéfficients were fulfilled

The equation of the limits of stability with respect to con-
tinuous changes may be written

(d'l'l") =0, or <d2p> =w», (15)
Ayt py oo oy A2/t ey, oo ey

where 7, denotes the density of the component specified or
m.~v. It is in general immaterial to what component the
suffix , is regarded as relating.

Oritical phases.—The variations of two coéxistent phases are
sometimes limited by the vanishing of the difference between
them. Phases at which this occurs are called critical phases. A
critical phase, like any other, is capable of n+1 independent
variations, n denoting the number of independently variable
components. But when subject to the condition of remaining
a critical phase, it is capable of only n—1 independent varia-
tions. There are therefore two independent equations which
characterize critical phases. These may be written

((ZM") =0, (ﬁ&') =0. (16)
d}/" by o . My d}/nz by o0 o M-y

It will be observed that the first of these equations is identical
with the equation of the limit of stability with respect to con-
tinuous changes. Tn fact, stable critical phases are situated at
that limit. They are also situated at the limit of stability with
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respect to discontinuous changes. These limits are in general
distinet, but touch each other at critical phases.

Geometrical <lustrations.—In an earlier paper,* the author
has described a method of representing the thermodynamic
properties of substances of invariable composition by means of
surfaces. The volume, entropy, and energy of a constant
quantity of the substance are represented by rectangular
coordinates. This method corresponds to the first kind of
fundamental equation described above. Any other kind of
fundamental equation for a substance of invariable composition
will suggest an anulogous geometrical method. In the present
paper, the method in which the codrdinates represent tempera-
ture, pressure, and the potential, is briefly considered. But
when the composition of the body is variable, the fundamental
equation canuot be completely represented by any surface or
finite number of surfaces. In the case of three components, if
we regard the temperature and pressure as constant, as well as
the total quantity of matter, the relations between ¢, m , m,, m,
may be represented by a surface in which the distances of a
point from the three sides of a triangular prism represent the
quantities m,, m,, m,, and the distance of the point from the
base of the prism represents the quantity ¢. In the case of
two components, analogous relations may be represented by a
plane curve. Such methods are especially useful for illustrating
the combinations and separations of the components, and the
changes in states of aggregation, which take place when the
substances are exposed in varying proportions to the tempera-
ture and pressure considered.

Fundamental equations of ideal gases and gas-mixtures.—From
the physical properties which we attribute to ideal gases, it is
easy to deduce their fundamental equations. The fundamental
equation in ¢, %, v, and m for an ideal gas is

e=Em _»n m
¢ log s --H+a.10g;. @17

m

that in ¢, ¢, v, and m is

z~:Em+mt(c—H—clogt+alog%>: (18)
that in p, ¢, and g is

H—¢c—a c¢c+a p—E

p=ae o e R (19)
where ¢ denotes the base of the Naperian system of logarithms.
As for the other constants, ¢ denotes the specific heat of the

* Transactions of the Connecticut Academy, vol. ii, part 2,
AM, JoUR. 8¢I.—THIRD Smggs‘ Vor. XVI, No. 96.—Dkc., 1878,
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gas at constant volume, a denotes the constant value of pv+my,
E and H depend upon the zeros of energy and entropy. The
two last equations may be abbreviated by the use of different
constants. The properties of fundamental equations mentioned
above may easily be verified in each case by differentiation.

The law of Dalton respecting a mixture of different gases
affords a point of departure for the discussion of such mixtures
and the establishment of their fundamental equations. It is
found convenient to give the law the following form:

The pressure in o mixture of different gases is equal to the sum
of the pressures of the different gases as existing each by iself at the
same temperature and with the same value of s potential.

A mixture of ideal gases which satisfies this law is called an
tdeal gas-mixture. Its fundamental equation in p, ¢, g,, g, ete.
is evidently of the form

Hi—e—a cta #_—i)
p:21<ale woog o M (20)
where X', denotes summation with respect to the different com-
ponents of the mixture. From this may be deduced other
fundamental equations for ideal gas-mixtures. That in ¢, ¢, v,
m,, m,, etc. is

h= E,(Elml+ mlit<cl--~-Hl —c,logt+4a, logn%>). (21)

Phases of dissipated energy of ideal gas-mixtures.—When the
proximate components of a gas-mixture are so related that
some of them can be formed out of others, although not neces-
sarily in the gas-mixture itself at the temperatures considered,
there are certain phases of the gas-mixture which deserve
especial attention. These are the phases of dissipated energy,
i. e., those phases in which the energy of the mass has the least
value consistent with its entropy and volume. An atmosphere
of such a phase could not furnish a source of mechanical power
to any machine or chemical engine working within it, as other
phases of the same matter might do. Nor can such phases be
affected by any catalytic agent. A perfect catalytic agent would
reduce any other phase of the gas-mixture to a phase of dissi-
pated energy. The condition which will make the energy a
minimum is that the potentials for the proximate components
shall satisfy an equation similar to that which expresses the
relation between the units of weight of these components. For
example, if the components were hydrogen, oxygen and water,
since one gram of hydrogen with eight grams of oxygen are
chemically equivalent to nine grams of water, the potentials for
these substances in a phase of dissipated energy must satisfy
the relation

M+ 8o = O Uw.
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Gas-mixiures with convertible components.—The theory of the
phases of dissipated energy of an ideal gas-mixture derives an
especial interest from its possible application to the case of
those gas-mixtures in which the chemical composition and
resolution of the components can take place in the gas-mixture
itself, and actually does take place, so that the quantities of
the proximate components are entirely determined by the
quantities of a smaller number of ultimate components, with
the temperature and pressure. These may be called gas-
mixiues with convertible components. 1f the general laws of
ideal gas-mixtures apply in any such case, it may easily be
shown that the phases of dissipated energy aure the only phases
which can exist. We can form a fundamental equation which
shall relate solely to these phases. For this end, we first form
the equation in p, ¢, ¢,, g,, etc. for the gas-mixture, regarding
its proximate components as not convertible. This equation
will contain a potential for every proximate component of the
gas-mixture. We then eliminate one (or more) of these poten-
tlals by means of the relations which exist between them in
virtue of the convertibility of the components to which they
relate, leaving the potentials which relate to those substances
which naturally express the ultimate composition of the gas-
mixture.

The validity of the results thus obtained depends upon the
applicability of the laws of ideal gas-mixtures to cases in which
chemical action takes place. Some of these laws are generally
regarded as capable of such application, others are not so
regarded. But it may be shown that in the very important
case in which the components of a gas are convertible at certain
temperatures, and not at others, the theory proposed may be
established without other assumptions than such as are gen-
erally admitted.

It is, however, only by experiments upon gas-mixtures with
convertible components, that the validity of any theory con-
cerning them can be satisfactorily established.

The vapor of the peroxide of nitrogen appears to be a mixture
of two different vapors, of one of which the molecular formula is
double that of the other. If we suppose that the vapor con-
forms to the laws of an ideal gas-mixture in a state of dissipated
energy, we may obtain an equation between the temperature,
pressure, and density of the vapor, which exhibits a somewhat
striking agreement with the results of experiment.

Equilibrium of stressed solids.—T'he second paper commences
with a discussion of the conditions of internal and external
equilibrium for solids in contact with fluids with regard to all
possible states of strain of the solids. These conditions are
deduced by analytical processes from the general condition of
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equilibrium (2). The condition of equilibrium which relates
to the dissolving of the solid at a surface where it meets a fluid
may be expressed by the equation

&E~1 v
bl ke (22)
where ¢, , v, and m, denote respectively the energy, entropy,
volume, and mass of the solid, if it is homogeneous in nature
and state of strain,—otherwise, of any small portion which
may be treated as thus homogeneous,—gu, the potential in the
fluid for the substance of which the solid consists, p the pres-
sure in the fluid and therefore one of the principal pressures
in the solid, and ¢ the temperature. It will be observed that
when the pressure in the solid is isotropie, the second member
of this equation will represent the potential in the solid for the
gubstance of which it consists [see (9)], and the condition
reduces to the equality of the potential in the two masses,
just as if it were a case of two fluids. But if the stresses in
the solid are not isotropic, the value of the second member of
the equation is not entirely determined by the nature and state
of the solid, but has in general three different values (for the
same solid at the same temperature, and in the same state of
strain) corresponding to the three principal pressures in the
solid. If a solid in the form of a right parallelopiped is sub-
ject to different pressures on its three pairs of opposite sides by
fuids in which it is soluble, it is in geuneral necessary for equi-
librium that the composition of the fluids shall be different.

The fundamental equations which have been described above
are limited, in their application to solids, to the case in which
the stresses in the solid are isotropic. An example of a more
general form of fundamental equation for a solid, is afforded
by an equation between the energy and entropy of a given
quantity of the solid, and the quantities which express its state
of strain, or by an equation between ¢ [sge (8)] as determined
for a given quantity of the solid, the temperature, and the
quantities which express the state of strain.

1

Capillarity.—The solution of the problems which precede
may be regarded as a first approximation, in which the peculiar
state of thermodynamic equilibrium about the surfaces of dis-
continuity is neglected. To take account of the condition of
things at these surfaces, the following method is used. Let us
suppose that two homogeneous fluid masses are separated by a
surface of discontinuity, i. e., by a very thin non-homogeneous
film. Now we may imagine a state of things in which each of
the homogeneous masses extends without variation of the densi-
ties of its several components, or of the densities of energy and
entropy, quite up to a geometrical surface (to be called the divid-
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ing surface) at which the masses meet. We may suppose this
surface to be sensibly coincident with the physical surface of
discontinuity. Now if we compare the actual state of things
with the supposed state, there will be in the former in the
vicinity of the surface a certain (positive or negative) excess of
energy, of entropy, and of each of the component substances.
These quantities are denoted by €%, 7®, m%, m$, ete. and are treated
as belonging to the surface. The ®is used simply as a distin-
guishing mark, and must not be taken for an algebraic exponent.

It is shown that the conditions of equilibrium already
obtained relating to the temperature and the potentials of the
homogeneous masses, are not affected by the surfaces of discon-
tinuity, and that the complete value of de®is given by the
equation

0=t 0140 s+ u, OmS+ p, S+ ete. (23)

in which s denotes the area of the surface considered, ¢ the tem-
perature, p,, t, etc. the potentials for the various components
1n the adjacent masses. It may be, however, that some of the
components are found only at the surface of discontinuity, in
which case the letter g4 with the suffix relating to such a sub-
stance denotes, as the equation shows, the rate of increase of
energy at the surface per unit of the substance added, when the
entropy, the area of the surface, and the quantities of the other
components are unchanged. The quantity ¢ we may regard as
defined by the equation itself, or by the following, which is
obtained by integration:

S=t ¥+ 0 s+ py m§4 p, M5+ ete. (24)
There are terms relating to variations of the curvatures of
the surface which might be added, but it is shown that we can
give the dividing surface such a position as to make these terms
vanish, and it is found convenient to regard its position as thus
determined. It is always sensibly coincident with the physical
surface of discontinuity. (Yet in treating of plane surfaces,
this supposition in regard to the position of the dividing surface
is unnecessary, and it is sometimes convenient to suppose that
its position is determined by other considerations.)
With the aid of (23), the remaining condition of equilibrium
for contiguous homogeneous masses is found, viz:

o (et ) =p'~p', (25)
where p’, p”’ denote the pressures in the two masses, and ¢, ¢
the principal curvatures of the surface. Since this equation
has the same form as if a tension equal to o resided at the sur-
face, the quantity o is called (as is usual) the superfical tension,

and the dividing surface in the particular position above men-
tioned is called the surface of tension.
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By differentiation of (24) and comparison with (23), we obtain
do=—ndt— 1 du,—I,du, — ete., (26)
. 7 m§ mj
where g, I3, Iy, ete. are written for 5 s 5 oty and de-
note the superficial densities of entropy and of the various sub-
stances. We may regard ¢ as a function of ¢, g, g, etc., from
which if known g, 1}, I3, etc. may be determined in terms of
the same variables. An equation between @, ¢, g, s, etc. may
therefore be called a fundamental equation jfor the surface of dus-
continuity. The same may be said of an equation between €5,
75, s, m§, m§, ete.

It is necessary for the stability of a surface of discontinuity
that its tension shall be as small as that of any other surface
which can exist between the same homogeneous masses with the
same temperature and potentials. Beside this condition, which
relates to the nature of the surface of discontinuity, there are
other conditions of stability, which relate to the possible motion
of such surfaces. One of these is that the tension shall be posi-
tive. The others are of a less simple nature, depending upon the
extent and form of the surface of discontinuity, and in general
upon the whole system of which it is a part. The most simple
case of a system with a surface of discontinuity is that of two
coéxistent phases separated by a spherical surface, the outer mass
being of indefinite extent. When the interior mass and the
surface of discontinuity are formed entirely of substances which
are components of the surrounding mass, the equilibrium is
always unstable; in other cases, the equilibrium may be stable.
Thus, the equilibrium of a drop of water in an atmosphere of
vapor is unstable, but may be made stable by the addition of a
little salt. The analytical conditions which determine the
stability or instability of the system are easily found, when the
temperature and potentials of the system are regarded as known,
as well as the fundamental equations for the interior mass and
the surface of discountinuity.

The study of surfaces of discontinuity throws considerable
light upon the subject of the stability of such phases of fluids
as have a less pressure than other phases of the same compo-
nents with the same temperature and potentials. Let the pres-
sure of the phase of which the stability is in question be denoted
by p’, aud that of the other phase of the same temperature and
potentials by p”’. A spherical mass of the second phase and of
a radius determined by the equation

20=(p"-p) 1 (27)
would be in equilibrium with a surrounding mass of the first

phase. This equilibrium, as we have just seen, is instable, when
the surrounding mass is indefinitely extended. A spherical
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mass a little larger would tend to increase indefinitely. The
work required to form such a spherical mass, by a reversible
process, in the interior of an infinite mass of the other phase,
1s given by the equation

W =gs—(p"— pHov". (28)
The term os represents the work spent in forming the surface,
and the term (p” — p’) v’ the work gained in forming the inte-
rior mass. The second of these quantities is always equal to
two-thirds of the first. The value of W is therefore positive,
and the phase is in strictness stable, the quantity W afford-
ing a kind of measure of its stability. We may easily express
the value of W in a form which does not involve any geo-
metrical magnitudes, viz:

_ l6=#g’

- 3(pll_])l)27
where p”, p’ and ¢ may be regarded as functions of the tempe-
rature and potentials. It will be seen that the stability, thus
measured, is infinite for an infinitesimal difference of pressures,
but decreases very rapidly as the difference of pressures
increases. These conclusions are all, however, practically lim-
ited to the case in which the value of », as determined by
equation (27) is of sensible magnitude.

With respect to the somewhat similar problem of the stabil-
ity of the surface of contact of two phases with respect to the
formation of a new phase, the following results are obtained.
Let the phases (supposed to have the same temperature and
potentials) be denoted by A, B, and C; their pressures by pa,
ps and pc; and the tensions of the three possible surfaces o,5,
0o, Oac-  Lf pe is less than

OscPa~+ OacPs
Gpc+ Oac

there will be no tendency toward the formation of the new
phase at the surface between A and B. If the temperature or
potentials are now varied until p¢ is equal to the above expres-
sion, there are two cases to be distinguished. The tension a5
will be either equal to g,¢ + agpc or less. (A greater value
could only relate to an unstable and therefore unusual surface.)
If 6,8 = 0ac + 0p, 2 farther variation of the temperature or
potentials, making p, greater than the above expression, would
cause the phase C to be formed at the surface between A and
B. Butif o,5 < 0s¢ + 0y, the surface between A and B would
remain stable, but with rapidly diminishing stability, after pg
has passed the limit mentioned.

The conditions of stability for a line where several surfaces
of discontinuity meet, with respect to the possible formation of

(29)
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a new surface, are capable of a very simple expression. If the
surfaces A-B, B-C, C-D, D-A, separating the masses A, B, C,
D, meet along a line, it is necessary for equilibrium that their
tensions and directions at any point of the line should be such
that a quadrilateral a, 8, 7, 0 may be formed with sides repre-
senting in direction and length the normals and tensions of
the successive surfaces. For the stability of the system with
reference to the possible formation of surfaces between A and
C, or between B and D, it is farther necessary that the tensions
oxc and ogp should be greater than the diagonals ey and 56
respectively. The conditions of stability are entirely analo-
gous in the case of a greater number of surfaces. For the
conditions of stability relating to the formation of a new
phase at a line in which three surfaces of discontinuity meet,
or at a point where four different phases meet, the reader is
referred to the original paper.

Liguid films.—When a fluid exists in the form of a very
thin film between other fluids, the great inequality of its exten-
sion in different directions will give rise to certain peculiar
properties, even when its thickness is sufficient for its interior
to have the properties of matter in mass. The most important
case is where the film is liquid and the contiguous fluids are
gaseous. If we imagine the fillm to be divided into elements
of the same order of magnitude as its thickness, each element
extending through the film from side to side, it is evident that
far less time will in general be required for the attainment of
approximate equilibrium between the different parts of any
such element and the contiguous gases than for the attainment
of equilibrium between all the different elements of the film.

There will accordingly be a time, commencing shortly after
the formation of the film, in which its separate elements may
be regarded as satisf{ying the conditions of internal equilibrium,
and of equilibrium with the contiguous gases, while they may
not satisty all the conditions of equilibrium with each other.
It is when the changes due to this want of complete equilib-
rium take place so slowly that the film appears to be at rest,
except so far as it accommodates itself to any change in the
external conditions to which it is subjected, that the character-
istic properties of the film are most striking and most sharply
defined. It is from this point of view that these bodies are
discussed. They are regarded as satisfying a certain well-
defined class of conditions of equilibrium, but as not satisfying
at all certain other conditions which would be necessary for
complete equilibrium, in consequence of which they are subject
to gradual changes, which ultimately determine their rupture.

The elasticity of a film (i. e., the increase of its tension when
extended,) is easily accounted for. It follows from the general
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relations given above that, when a film has more than one com-
ponent, those components which diminish the tension will be
found in greater proportion on the surfaces. When the film 1s
extended, there will not be enough of these substances to keep
up the same volume- and surface-densities as before, and the
deficiency will cause a certain increase of tension. It does not
follow that a thinner film has always a greater tension than a
thicker formed of the same liquid. When the phases within
the films as well as without are the same, and the surfaces of
the films are also the same, there will be no difference of ten-
sion. Nor will the tension of the same film be altered, if a
part of the interior drains away in the course of time, without
affecting the surfaces. If the thickness of the filin is reduced by
evaporation, its tension may be either incrensed or diminished,
according to the relative volatility of its different components.

Let us now suppose that the thickness of the film is reduced
until thie limit is reached at which the interior ceases to have
the properties of matter in mass The elasticity of the flm,
which determines its stability with respect to extension and
contraction, does not vanish at this limit, But a certain kind
of instability will generally arise, in virtue of which inequali-
ties in the thickness of the film will tend to increase through
currents in the interior of the film. This probably leads to the
destruction of the film, in the case of most liquids. In a film
of soap-water, the kind of instability described seems to be
manifested in the breaking out of the black spots. DBut the
sudden diminution in thickness which takes place in parts of
the film is arrested by some unknown cause, possibly by vis-
cous or gelatinous properties, so that the rupture of the film
does not necessarily follow.

Electromotive force.—The conditions of equilibrium.may be
modified by electromotive force. Of such cases a galvanic or
electrolytic cell may be regarded as the type. With respect to
the potentials for the ions and the electrical potential the fol-
lowing relation may be noticed :

When all the conditions of equilibrium are fulfilled in a galvanic
or electrolytic cell, the electromotive force is equal to the difference in
the values of the potential for any ton at the surfaces of the electrodes
multiplied by the electro-chemical equivale.t of that won. the greatr
potential of an anivn berng at the same elecirode as the greater elec-
trical polential, und the reverse betng true of a cation.

The relation which exists between the electromotive force of
a perfect electro-chemical apparatus (i. e., a gnlvanic or electrolytic
cell which satisties the condition of reversibility,) and the
changes in the cell which accompany the passage of electricity,
may be expressed by the equation

de=(V'=V")de+ tdp+d W, + dW, (30)
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in which de denotes the increment of the intrinsic energy in
the apparatus, 7 the increment of entropy, de the quantity
of electricity which passes through it, V' and V’’ the electrical
potentials in pieces of the same kind of metal connected with
the anode and cathode respectively, d W the work done by
gravity, and dW, the work done by the pressures which act on
the external surface of the apparatus. The term dWg may
generally be neglected. The same is true of dWp, when gases
are not concerned. If no heat is supplied or withdrawn the
term ¢dy will vanish. But in the calculation of electromotive
forces, which is the most important application of the equation,
it is convenient and customary to suppose that the temperature
is maintained constant. Now this term ¢dy, which represents
the heat absorbed by the cell, is frequently neglected in the
consideration of cells of which the temperature is supposed to
remain constant. In other words, it is frequently assumed that
neither beat or cold is produced by the passage of an electrical
current through a perfect electro-chemical apparatus (except
that heat which may be indefinitely diminished by increasing
the time in which a given quantity of electricity passes), unless
it be by processes of a secondary nature, which are not 1mmedi-
ately or necessarily connected with the process of electrolysis.

That this assumption is incorrect is shown by the electro-
motive force of a gas battery charged with hydrogen and nitro-
gen, by the currents caused by differences in the concentration
of the electrolyte, by electrodes of zinc and mercury in a
solution of sulphate of zine, by a priors considerations based
on the phenomena exhibited in the direct combination of the
elements of water or of hydrochloric acid, by the absorption
of heat which M. Favre has in many cases observed in a gal-
vanic or electrolytic cell, and by the fact that the solid or
liquid state of an electrode (at its temperature of fusion) does
not affect the electromotive force.





