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THE LOW-TEMPERATURE GEOCHEMICAL CYCLE OF IRON: FROM
CONTINENTAL FLUXES TO MARINE SEDIMENT DEPOSITION
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ABSTRACT. Suspended sediments from 34 major rivers (geographically wide-
spread) and 36 glacial meltwater streams have been examined for their variations in
different operationally-defined iron fractions; Feyy (iron oxides soluble in dithionite),
Fepy (iron soluble in boiling HCI but not in dithionite) and Fey; (total iron less that
soluble in boiling HCl). River particulates show a close association between Fey, and
total iron (FeT), reflecting the effects of chemical weathering which derive oxide iron
from, and retain it in close association with, total iron. Consistent with this, continental-
scale average Feyy/FeT ratios vary with runoff ratios (average river runoff per unit
area/average precipitation per unit area). By contrast, the diminished effects of
chemical weathering produce no recognizable association of Feyy with FeT in glacial
particulates, and instead both Fepg and Fey; are closely correlated with FeT, reflecting
essentially pristine mineralogy. A comparison of the globally-averaged compositions of
riverine particulates and marine sediments reveals that the latter are depleted in Feyy,
Fepg and FeT but enriched in Fey. The river and glacial particulate data are combined
with estimates of authigenic, hydrothermal, atmospheric and coastal erosive iron
fluxes from the literature to produce a global budget for Feyy, Fepg, Fe; and FeT.
This budget suggests that the differences between riverine particulates and marine
sediments can be explained by; (i) preferentially removing Feyy from the riverine
particulate flux by deposition into inner shore reservoirs such as floodplains, salt
marshes and estuaries; and (ii) mixing the resulting riverine particulates with Feyg-
depleted glacial particulates. Preliminary measurements of inner shore sediments are
consistent with (i) above. Phanerozoic and modern normal marine sediments have
similar iron speciation characteristics, which implies the existence of a long-term
steady state for the iron cycle. This steady state could be maintained by a glacioeustatic
feedback, where Feyp-enriched riverine particulates are either more effectively trapped
when sealevel is high (small ice masses, diminished glacial erosion), or are mixed with
greater masses of Feyg-depleted glacial particulates when sealevel is low (large ice
masses, enhanced glacial erosion). Further important controls on the steady state for
Feyy operate through the formation of euxinic sediments and ironstones, which also
provide sealevel-dependent sinks for Feyp-enriched sediment.

INTRODUCTION

Valuable insights into the nature and magnitude of oceanic removal processes for
major and trace elements have been gained from examining the mass balance
relationships between elemental riverine fluxes, and concentrations in seawater and
oceanic sediments (see for example Garrels and Mackenzie, 1971; Martin and Mey-
beck, 1979; Drever and others, 1988; Martin and Windom, 1991). However, previous
attempts to examine such mass balance relationships have usually been based on total
element fluxes and concentrations whereas the geochemical cycles of many elements,
and in particular iron (Wollast and Mackenzie, 1983; Martin and Windom, 1991;
Haese, 2000), may be strongly affected by their solid phase speciation. Thus the
purpose of this paper is to present a more detailed approach to the low temperature
geochemical cycle of iron, by quantifying the major continental fluxes and marine
sediment sinks in terms of solid phase speciation.
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The global iron cycle is unique for a combination of three reasons. Firstly, iron is
one of the few major elements capable of undergoing redox transformations under
surface (or near-surface) conditions. Secondly, iron exhibits markedly non-conserva-
tive behavior in estuaries (where it is preferentially flocculated and/or precipitated),
such that dissolved fluxes to the ocean basins are typically depleted in iron by
approximately 90 percent with respect to riverine supply (Boyle and others, 1974;
Holliday and Liss, 1976; Sholokovitz, 1976; Boyle and others, 1977; Sholokovitz and
others, 1978). Thirdly, iron is overwhelmingly transferred from the continents to the
ocean in particulate rather than dissolved phases (Martin and Meybeck, 1979; Drever
and others, 1988; Martin and Windom, 1991). These factors all involve to some extent
the formation, transport and aggregation of iron as oxides, and thus emphasize the
significant role that solid phase speciation plays in the iron cycle (Haese, 2000).

Our approach is based on the findings of Trefry and Presley (1982) who
compared the solid phase speciation of suspended sediment samples from the Missis-
sippi River and delta, with bottom sediments from the delta. The total Fe/Al ratio
remained roughly uniform in suspended sediment through the salinity gradient, but
changes did occur in the amounts of iron extracted by citrate-buffered dithionite
(mainly iron oxides; see later) such that riverine suspended sediment was enriched in
oxide iron (2.4 percent Fe) relative to delta suspended sediment (2.2 percent Fe) and
delta bottom sediments (1.8 percent Fe). The ratios of oxide iron to Total Fe were 0.52,
0.47 and 0.43 for riverine suspended, delta suspended and delta bottom sediments
respectively. The main thrust of the Trefry and Presley (1982) study was towards
changes in Mn speciation through the delta and the iron data were not discussed in
detail, although they clearly suggest that there may be differences in the solid phase
iron speciation of riverine suspended sediment compared to marine sediments.

We will present comparable iron speciation data for suspended sediment from a
selection of 34 world rivers, which will be used to quantify the global riverine input flux
in terms of different solid phase iron fractions. Additionally we report the solid phase
speciation of rock flour collected from 36 glacial meltwater streams and of Saharan
atmospheric dust. Raiswell and Canfield (1998) have reported solid phase iron
speciation data for modern marine sediments from different depositional settings, and
these data are here supplemented by analyses for a suite of deep-sea red clays. The
riverine data will be compared to this marine sediment data to ascertain whether the
changes observed by Trefry and Presley (1982) are evident on a global scale. The
analyses presented here will be supplemented by literature data in order to derive
values for other iron fluxes (glacial, atmospheric, hydrothermal, coastal erosive and
authigenic), and to examine their impact on the riverine/marine sediment compari-
son. Finally we will construct a preliminary partial geochemical cycle for iron species
on a global scale, and examine how this cycle has operated through the Phanerozoic.

SAMPLING METHODS

The Raiswell and Canfield (1998) database includes 46 samples of aerobic
Continental Margin sediments from depths < 1000 m and 56 Deep Sea samples from
depths > 1000 m. The continental margin sediments are muds and sands, and the
Deep Sea samples include carbonate and siliceous oozes and clays. Thus the main
sediment types are well represented, but pelagic red clays are possibly an important
omission. Hence 9 deep-sea red clays have been analysed (table 1), comprising 5
samples from the eastern and northwestern Atlantic Ocean (Thomson and others,
1984; Colley and others, 1984) and 4 from the ODP sites 135 and 195 in the Pacific
Ocean (Parson and others, 1992; Salisbury and others, 2001). New data are also
presented for a suite of Saharan dust samples (table 1), collected on four occasions in
2001 on a clean glass impactor sampler located at Bet Herut, on the Mediterranean
coast of Israel (Herut and others, 2001).
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TaBLE 1

Solid phase iron speciation in deep sea red clays and atmospheric particulates

Feur Fepr Fey FeT Feygr/

FeT
RED CLAYS
E. Atlantic (25°42.4'N 30°57.7°W)!
Core 10400 69-71 cm 2.26 0.99 2.80 6.06 0.37
Core 10400 173-175 cm 1.86 0.88 2.67 5.41 0.34
NW Atlantic (23°41.3’N 59°40.9’W)?
Core 10163 40-42 cm 1.58 1.46 2.58 5.60 0.28
NW Atlantic (26°49°’N 60°24.7°W)?
Core 10164 24-26 cm 1.65 1.45 2.61 5.71 0.28
NW Atlantic (21°43.6'N 65°30.5"W)?
Core 10170 20-22 cm 1.30 1.59 2.10 4.99 0.26
S Pacific (18°34.0’S 177°51.7°W)*
ODP Site 135-834 0-5cm 1.94 - - 2.81 0.69
S Pacific (22°13.2’S 175°44.9°'W)*
ODP Site 135-840 0-5cm 0.42 - - 3.13 0.13
N Pacific (13°47.0'N 146°0.17’E)*
ODP Site 195-1201A 0-5cm 1.24 - - 5.58 0.22
ODP Site 195-1201B  0-5c¢cm 1.89 - - 5.23 0.36
Mean 1.57 - - 4.95 0.33
Standard Deviation 0.54 - - 1.16 0.16
SAHARAN DUST
Bet Herut, Israel, 30/4/01 0.96 0.60 1.42 2.98 0.32
Bet Herut, Israel, 1/5/01 1.07 0.57 1.81 345 0.31
Bet Herut, Israel, 13/5/01 0.98 0.47 1.55 3.00 0.33
Bet Herut, Israel, 20/10/01 1.29 0.40 2.10 3.79 0.34
Mean 1.08 0.51 1.72 3.30 0.33
Standard Deviation 0.15 0.09 0.30 0.39 0.01

_ Superscripts identify further details: 'Thomson and others (1984), *Colley and others (1984),
3Parson and others (1992), 1Szallisbury and others (2001).

Suspended riverine particulates were collected from 25 rivers, which discharge
directly into the ocean, and these data are combined with literature analyses of 9
additional rivers (table 2). Suspended sediments were collected from the mid-point of
the main channel at approximately mid-depth. Rivers were sampled whenever possible
at downstream locations but always in regions remote from any tidal influence (that is,
where there is generally downstream, unidirectional flow; GESAMP, 1987). In order to
minimize the effects of unrepresentative sample collection, sufficient volumes of water
were sampled to allow the collection and analysis of several grams of sediment from
each river. Samples were pressure-filtered through either 0.40 pm polycarbonate filters
or 0.45 pm nitrocellulose filters, then air-dried and carefully removed from the filters
using a scalpel (see Poulton and Raiswell, 2000). Samples were collected at various
times from 1995 to 1997, with individual rivers being sampled on only one occasion.
The glacial samples consist of meltwater suspended sediments collected from many of
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TABLE 2

Characteristics of the riverine data set

Sediment
River discharge Runoff Precipitation ~ Date Locality
(Tg/yr) (mm/yr) (mm/yr) sampled
Amazon 1200 1067 2228 7/96 Macapa, Brazil
Huanghe 1100 72 501 7/97 N. China (37°52'N, 118°42'E)
Brahmaputra 540 378 2030 6/97 Bangladesh (25°14'N, 89°36'E)
Changjiang 480 510 1164 7/97 Shishou, China (29°44'N, 112°24'E)
Mississippi 400 151 895 See Canfield (1997)
Magdalena 220 843 2225 1/97 Colombia (07°30'N, 73°05'W)
Mekong 160 544 2225 3/96 My Tho, Vietnam
Colorado 120 134 500 6/96 Arizona, USA (37°56'N, 110°22'W)
Nile 120 48 816 4/96 Atbara, Sudan (17°38'N, 33°S6'E)
Danube 67 259 889 11/95 Tuttlingen, Germany
Yukon 60 249 502 See Gibbs (1997)
Rhone 31 559 1131 10/95 Loyettes, France
Rio Grande 20 83 380 See Canfield (1997)
Brazos 16 63 630 See Canfield (1997)
Han 10 590 NA 1/97 Seoul, Korea
Burdekin 3 7.6 NA 1/96 Queensland, Australia, (19°05'S,
145°41'E)
Garonne 22 359 1079 8/96 Toulouse, France
Tombigbee 22 510 1510 See Canfield (1997)
Yodogawa 19 NA NA 6/97 Osaka, Japan
Loire 1.5 246 969 10/95 Nevers, France
Seine 1.1 130 NA 10/95 Marney S. Seine, France
Rhine 0.72 462 1215 11/95 Schaffhausen, Switzerland
Connecticut 0.56 575 1130 See Canfield (1997)
Severn 0.44 380 NA 3/96 Worcester, UK
Colorado, Texas 0.42 25 880 See Canfield (1997)
Wye 0.20 630 NA 3/96 Hereford, UK
Tyne 0.13 680 NA 11/95 Newcastle, UK
Clyde 0.11 430 NA 12/96 Hamilton, Scotland
Neuse 0.08 360 1260 See Canfield (1997)
Ouse 0.03 NA NA 2/96 York, UK
Avon 0.02 NA NA 3/96 Stratford, UK
James 0.01 380 1130 See Canfield (1997)
Aire 0.01 NA NA 2/96 Skipton, UK
Tees 0.006 NA NA 2/96 Barnard Castle, UK

Discharge, runoff and precipitation data from Milliman and Syvitski (1992). NA = not available. Sample
dates and localities are given only for those rivers sampled during the present study.

the world’s major glacial localities (table 3). The sampling procedure was essentially
the same as for river particulates, with samples being filtered (0.4 or 0.45 wm) either
immediately or within a few hours of collection.

Table 2 shows the sediment discharges for all the rivers, which together represent
approximately 23 percent of the annual global riverine sediment flux, based on the
estimate of 20000 Tg/yr (see later) for pre-dam sediment discharge to the ocean
(Milliman and Syvitski, 1992). Milliman and Syvitski (1992) subdivide this discharge
flux on a continental-scale and on this basis our river particulate data represent 46
percent of the sediment flux from North America, 73 percent from South America, 45
percent from Europe, 36 percent from Asia, 19 percent from Africa and 5 percent from
Australia. We have no data from Central America or the Oceanic Islands. Thus there is
good coverage for many of the important sediment-discharging regions, however
certain areas are under-represented by the current data set (see later).
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TABLE 3

Chemical characteristics of the glacial sediment samples. All concentrations in wt %

Fegr/ Org.
Sample Feyr  Fepr Fey FeT FeT C
Argentiere (The Alps) 0.07 0.63 0.32 1.02 0.069 0.04
Arolla-upper (The Alps) 0.19 0.63 1.90 2.72 0.070  0.07
Arolla (The Alps) 078 1.61 2.57 496 0.16 0
Astrolabe (Antarctica) 024 0.89 0.35 1.48 0.16 0.03
Austerdalsbregn (Norway) 0.03 099 0.29 1.31 0.023 0.04
Austre Broggerbreen (The Alps) 054 1.11 0.11 1.76 0.31 0.69
Black Rapids (Alaska) 076 3.29 0.76 4.81 0.16 0.55
Boverdal (Norway) 085 274 2.96 6.55 0.13 0.98
Campbell (Antarctica) 0.24 1.85 0.37 2.46 0.10 0.08
Crary Ice Rise (Antarctica) 0.14 114 1.08 236 0.059 0.11
Finsterwalder (Norway) 052 0.59 1.13 224 0.23 0.94
Glomaga (Norway) 0.76  3.49 0.80 5.05 0.15 4.69
Gulkana (Alaska) 030 211 3.89 6.30 0.048 0.18
Helm (Canada) 074 179 0.89 3.42 0.22 0.37
Hvita (Iceland) 0.64 3.09 3.78 7.51 0.085  0.08
Jakobshaven Isbrae (Greenland) 0.05 045 1.02 1.52 0.033  0.02
John Evans (Ellesmere Island) 0.17 0.18 0.14 0.49 0.35 0.50
Leverett (Greenland) 0.11  0.69 225 3.05 0.036 0.04
Markarfljot (Iceland) 089 242 6.60 991 0.090 0
Mattevispa (Switzerland) 055 L70 292 5.17 0.11 L.11
Noyes (Alaska) 041 232 237 510 0.080 0.70
Peters (Alaska) 1.01 248 1.21 4.70 0.22 0.37
Place (Canada) 0.13 096 1.87 2.96 0.044 0
Pre De Ba (Italy) 0.12  0.08 0.39 0.59 0.20 0.06
Quissertaq (Greenland) 023 1.25 2.17 3.65 0.06 0.04
Robertson (Canada) 048 031 0.02 0.81 0.59 1.10
Russell (Greenland) 0.17 0.84 2.86 3.87 0.044 0.03
Saint Soilin (The Alps) 097 1.84 1.31 4.12 0.24 0.56
Scott Turnerbreen (Svalbard) .72 1.19 0.88 3.79 045 3.29
Skattafelljokui (Iceland) 071 455 2.39 7.65 0.093 0
Solheimajokull (Iceland) 0.17 5.63 6.40 12.0 0.014 0.14
Storglacieren (Sweden) 020 053 7.71 8.44 0.024 0.24
Svart (Norway) 038 222 3.26 5.86 0.065 0.85
Tsanfleuron (The Alps) 1.04 0.16 0.52 1.72 0.61 0.26
Tsijiore (The Alps) 0.17 0353 3.22 3.92 0.043  0.05
Variegated (Alaska) 041 279 5.50 8.70 0.047 0.15
Mean 047 1.64 2.12 4.22 0.11
Standard Deviation 037 1.28 1.95 2.78 0.11

The sampling of riverine suspended particulates in order to estimate annual
fluxes of sediment mass and associated elements is a complex matter (see Walling and
others, 1992; de Vries and Klavers, 1994; Olive and Rieger, 1992). Such estimates
require measurements of water discharge, suspended sediment concentration and
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suspended sediment composition, which are all subject to temporal and spatial
variations (Walling, 1983; Horowitz and others, 2001). Horowitz and others (2001)
point out that there can be more than order of magnitude variations in the site-specific
measurements of discharge and suspended sediment concentrations (on an intra- or
inter-annual basis), but compositional variations rarely exceed a factor of 2. Consistent
with this, compositional variations between rivers tend to be higher than those found
for repeat analyses of sediment from single rivers, particularly for major elements
(Konovalov and Ivanova, 1970; Martin and Meybeck, 1979).

The present study further seeks to constrain compositional (also mineralogical
and grain-size) variations by mainly focusing on ratios of iron species to total iron.
There are no literature values on sources of variation in ratios of iron species to total
iron, but there is good evidence from several major river systems to show that major
element ratios of suspended riverine particulates show relatively little variation with
discharge. Trefry and Presley (1982) found that the Fe/Al ratio of suspended particu-
lates from the Mississippi remained constant (0.53+/—0.01) through an annual
discharge cycle. Similarly riverine particulates from the Scheldt (Zwolsman and van
Eck, 1999) showed little seasonal variation in Fe/Al (1.02+/-0.06). Longer term
variations have been examined by Horowitz (personal communication), who recorded
the following mean and standard deviations for Fe/Al ratios in suspended sediment
collected at approximately monthly intervals from autumn 1995 to spring 2002 in the
Ohio (0.55+/—0.03), Mississippi (0.46+/—0.05), Missouri (0.42+/—0.06), Atchafa-
laya (0.484/—0.05), Willamette (0.71+/—0.06) and Columbia (0.57+/—0.06) rivers
in the United States. The Fe/Al ratio of suspended sediment (Tuominen, personal
communication) from the Fraser River, Canada, collected twice monthly (spring 1991
to spring 1995) also showed only a limited variation (1.47+/—0.20). In all these studies
the coefficient of variation of the mean Fe/Al ratio lay in the range 5 to 13 percent.
Somewhat larger variations (Walling, personal communication) have been found in
some United Kingdom rivers with high Fe/Al ratios (Ouse 3.3+/—0.7, Swale 3.6+ /
—0.8), but overall the data indicate that single sampling episodes can provide a
reasonable first approximation of major element ratios in suspended particulates.

ANALYTICAL METHODS

A variety of extraction procedures have been used to determine the speciation of
metals in sediments (see for example Chester and Hughes, 1967; Gibbs, 1977; Tessier
and others, 1979; Forstner and others, 1981). These procedures commonly provide a
measure of the metals associated with five phases (adsorbed, associated with oxyhydrox-
ides, organic matter or carbonates, or present in residual silicate minerals). However,
organic matter, carbonate and adsorbed phases tend to be relatively insignificant in
terms of the total transport of iron (Gibbs, 1973, 1977; Trefry and Presley, 1982; Zhang
and others, 1990; Baruah and others, 1996). Thus we have adopted a three stage
extraction procedure for our river particulates, based on techniques used to determine
the speciation of iron in marine sediments (see Berner, 1970; Canfield, 1989; Raiswell
and others, 1994). The techniques used to determine iron speciation in our riverine
sediments in table 4 are therefore identical to those adopted for the marine sediments
to which they will be compared.

The chosen extraction scheme for iron allows the recognition of three operation-
ally defined fractions commonly used to define the reactivity of sediment iron towards
dissolved sulfide. Amorphous and crystalline iron oxides (with the exception of
magnetite; Canfield, 1988; Raiswell and others, 1994) were solubilised by a citrate-
buffered (pH = 4.8) sodium dithionite solution (Canfield, 1989; Raiswell and others,
1994). This method additionally removes the generally lower proportions of iron
present in exchange sites (see above). A boiling 12N HCI extraction quantitatively
extracts the same oxides but, in addition, removes iron present as magnetite and some
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TABLE 4

Chemical characteristics of the river suspended sediment. Concentrations in wt %

River Feur Fepg Fey FeT Feug/ Fepr/ Fey/ Organic C
FeT FeT FeT

Amazon 2.60 0.38 2.61 5.59 0.47 0.07 0.47 3.13
Huanghe 0.96 143 1.20 3.59 0.27 0.42 0.33 1.25
Brahmaputra 0.62 2.17 0.27 3.06 0.20 0.71 0.09 0.83
Changjiang 1.86 1.72 1.34 492 0.38 0.35 0.27 0.78
Mississippi' 1.27 4.19 0.30 1.83
Magdalena 3.00 0.96 0.98 4.94 0.61 0.19 0.20 2.46
Mekong 348 0.39 1.37 5.24 0.66 0.07 0.26 1.95
Colorado 1.10 1.33 0.55 2.98 0.37 0.45 0.19 2.05
Nile 2.40 2,71 4.09 9.20 0.26 0.30 045 0.72
Danube 2.03 1.17 1.69 4.89 0.42 0.24 035 15.75
Yukon? 2.57 6.32 0.41
Rhone 1.61 0.89 0.83 333 0.48 0.27 0.25 8.36
Rio Grande' 0.68 2.69 0.25 1.24
Brazos' 0.72 3.61 0.20 1.10
Han 0.17 0.11 0.09 0.37 0.46 0.30 0.24 47.90
Burdekin 325 0.44 2.33 6.02 0.54 0.07 0.39 1.49
Garonne 2.08 0.99 2.07 5.14 0.41 0.19 0.40 5.54
Tombigbee' 2.06 5.09 0.41 251
Yodogawa 1.43 1.17 0.88 348 0.41 0.34 0.25 7.87
Loire 1.85 0.68 2.75 5.28 0.35 0.13 0.52 6.94
Seine 1.02 0.47 1.34 2.83 0.36 0.17 047 9.25
Rhine 1.42 0.09 2.61 4.12 0.35 0.02 0.63 15.84
Connecticut' 1.99 5.17 0.39 3.86
Severn 1.74 1.71 1.48 493 0.35 035 0.30
Colorado (TX)! 0.75 3.74 0.20 1.35
Wye 0.63 1.33 1.31 327 0.19 0.41 0.40 6.00
Tyne 2.21 1.14 2.12 5.47 0.40 0.21 0.39 7.93
Clyde 1.07 0.49 1.99 3.55 0.30 0.14 0.56 9.96
Neuse! 4,16 7.29 0.57 6.62
Ouse 1.46 0.40 2.64 4.50 0.32 0.09 0.59 8.88
Avon 1.44 0.94 1.46 3.84 0.38 0.25 0.38 12.69
James' 3.02 5.95 0.51 5.35
Aire 3.19 0.47 1.32 4.98 0.64 0.09 0.27 9.83
Tees 4.93 0.85 1.58 7.36 0.67 0.12 0.22 11.35

Superscripts denote data from 'Canfield (1997) and 2Gibbs (1977).

silicate iron (Berner, 1970; Raiswell and others, 1994). This method also removes
approximately 40 percent of the organic C from stream sediment standard STSD-4 and
10 to 55 percent of the organic C found in suspended sediment from the Brahmaputra,
Magdalena, Nile and Burdekin rivers (Poulton and Raiswell, 2000). However the
concentrations of iron associated with readily degradable organic matter are small (see
above). Total iron was liberated with an HF-HCIO,-HNOg extraction (Walsh, 1980),
and any additional iron extracted by this method relative to the HCI extraction can be
considered to be present mainly as silicates. All iron analyses were measured by flame
AAS. Replicate extractions (n = 8) of stream sediment standard STSD-1 indicate a
precision of <4 percent for all methods, and total iron measurements were within 2
percent of the certified value.

The iron extracted by dithionite (FeD) from oxides is considered to be highly
reactive towards dissolved sulfide (Canfield and others, 1992) and is termed Fei. The
boiling HCI technique additionally removes iron (FeH) which is sulfidized only on a
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TABLE 5

Comparison of major element literature analyses of suspended river particulate
compositions with analyses from the present study (in wt%). Standard deviations
based on replicate measurements of stream sediment standard STSD-4
(from Poulton and Raiswell, 2000)

FeT FeT
River This study Literature Source
Amazon 5.59+0.11 5.55 Martin and Meybeck, 1979
Huanghe 3.59+0.07 3.72 Huang and others, 1992
Changjiang 4.92x0.10 520 Huang and Zhang, 1990
Magdalena 4.94+0.10 520 Martin and Meybeck, 1979
Mekong 5.35+0.10 5.60 Martin and Meybeck, 1979
Colorado 2.98+0.06 3.66 Martin and Meybeck, 1979
Danube 5.86x0.12 5.50 Martin and Meybeck, 1979
Garonne 5.42+0.11 5.80 Martin and Meybeck, 1979

time scale of 10° to 10° years (Canfield and others, 1992; Raiswell and Canfield, 1996).
Hence FeH-FeD represents an iron fraction that reacts only slowly with dissolved
sulfide and is here termed poorly reactive (Fepy). Finally, the total iron content (FeT)
can be used to define the remaining fraction of iron, which is essentially un-reactive
(Fey = FeT-FeH).

Note that the iron minerals originally present in riverine particulates as dithionite-
soluble oxides (FeD) may be converted to sulfides following deposition in the marine
environment. Here the oxides react with reduced sulfide produced by microbial
sulfate reduction during the early stages of diagenesis (Canfield, 1989; Canfield and
others, 1992). Thus the Feyy pool in the marine sediments of Raiswell and Canfield
(1998) includes iron present as oxides (FeD) plus that present as pyrite and acid
volatile sulfides (FeP). Hence Feyy is equal to FeD in riverine particulates and equal to
FeD + FeP in marine sediments.

Riverine and glacial samples were also analysed for organic C, which was deter-
mined as the difference between total C and inorganic C after ashing at 450°C. Carbon
was measured by gas chromatography using a Carlo Erba 1106 Elemental Analyzer, as
also was total sulfur.

RESULTS

Mean Compositions of Riverine and Glacial Particulates

Prior to estimating the mean composition of riverine particulates we have com-
pared our total iron data (table 5) with literature analyses of river particulates from the
Amazon, Huanghe, Changjiang, Magdalena, Mekong, Colorado, Danube and Ga-
ronne. Our total Fe data are within 8 percent of literature data, except for Fe in the
Colorado, where the difference is closer to 20 percent. We have also found a close
correspondence between our total Al data and literature data for suspended sediments
from a selection of these rivers (Poulton and Raiswell, 2000). These comparisons
demonstrate that our sampling and analytical approaches provide data which are
consistent with literature values.
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The iron speciation data for the river suspended sediments sampled during this
study are reported in table 4, together with some partial speciation data for 9
additional rivers from Canfield (1997) and Gibbs (1977). Figure 1 shows the relative
variations in solid phase iron speciation for the 25 rivers, plotted in order of decreasing
sediment discharge. The total iron content consists of rather variable proportions of
Feyr (20-67 percent), Fepp (7-71 percent) and Fey (9-63 percent), but the order of
abundance is most commonly Feyyy (40+/—13 percent) > Fey; (36+/—14 percent) >
Fepg (24+/—16 percent). The riverine data in table 4 can be averaged with each river
given equal weight, or averaged following discharge or areal-weighting. All these
techniques give essentially similar results in the present case, so our approach has
followed that of Milliman and Meade (1983). Thus each of the rivers in table 4 have
been allocated to one of the drainage basins identified by Milliman and Meade (1983),
and the compositions discharge-weighted to estimate the mean composition of the
riverine flux from that basin (table 6). The basinal data are then discharge-weighted
again to produce the mean composition of the riverine flux from each continent. The
global mean composition of the riverine particulate flux can be estimated by again
discharge-weighting the compositions from each continent (table 6). The overall
composition of the global riverine particulate flux is FeT 4.49+/—0.18 percent, Feyy
1.94+/—0.08 percent, Fepp 1.12+/—0.04 and Fey, 1.37+/0.05 percent. Our global
FeT value of 4.49+/—0.18 percent compares closely with the value of 4.8 percent
estimated by Martin and Meybeck (1979), even though they included some river data
reported on an organic CAree basis.

The analyses of the 36 suspended sediments collected from glacial meltwaters are
reported in table 3, and their relative variations in iron speciation are plotted in figure
1. Total S was below the detection limit (0.01 percent) in 29 samples and < 0.07
percent in the remaining 9 samples, so that Fey; mainly consists of dithionite-soluble
Fe with no significant sulfide Fe. The mean composition is FeT 4.2+ /—2.8 percent,
Feyr 0.47+/—0.37 percent, Fepy 1.6+/—1.3 percent and Fey, 2.1+/—2.0 percent.
The proportions of Fey are generally lower than those of Fepp and Fey; but the ranges
of variation (Feyr 1-60 percent, Fepp 6-75 percent and Fey, 2-92 percent) are wider
than those in riverine particulates. The mean total iron content on an organic Cfree
basis (4.3 percent) is close to the average for sedimentary rock (4.5 percent also
organic C-ree; Garrels and Mackenzie, 1971). The glacial sediments have a mean Fe,
/FeT =0.11+/-0.11.

Our approach requires a comparison between riverine and marine sediment, thus
corrections must be made for the dilution effects of biogeneous sediment. Table 6
shows the mean and standard deviations for iron speciation in the sampled rivers, with
the data discharge-weighted and derived from table 5 by correcting for the dilution
effects of organic C (assuming a CH,O composition). The inorganic C contents of
these river particulates are small enough (0.99+/—1.1 percent) to be ignored. Table 7
also shows the continental margin and deep-sea data of Raiswell and Canfield (1998),
which are corrected to a carbonate-free basis only. Corrections for organic C contents
are small enough to ignore, as both the continental margin and deep-sea sediments
have mean organic C contents, which are < 1 percent (continental margin 0.98+/
—0.61 percent, deep-sea 0.92+ /—0.86 percent) with no values exceeding 3 percent. A
students ‘t’ test shows that there are no significant differences between the continental
margin and deep-sea sediments for any of the iron species, and these data have
therefore been combined to produce a mean marine sediment composition (table 7).
This mean iron content (4.0+/—1.0 percent) is comparable to the estimate of 4.9
percent (on a carbonate-free basis) by Garrels and Mackenzie (1971), and to two
estimates of 5.3 percent and 4.5 percent by Wollast and Mackenzie (1983). The mean
of all three literature estimates (4.9+/—0.4 percent) is rather higher than our own
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Fig. 1. Relative proportions of Feyy, Fepr and Fey in riverine and glacial particulates. Riverine
discharges decrease downwards.
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TABLE 6

Sediment discharge (Milliman and Meade, 1983) and particulate iron riverine
Sfluxes. a. pre-dam discharge b. Milliman and Syvitski (1992) c. Canfield (1997)
d. Gibbs (1977). Concentrations in wit%. Column 2 shows the

sediment discharge of the rivers sampled in this study

Sediment Sampled
Discharge Sediment Feyr Fepr Fey FeT
(Tg/yr) Discharge
Tg/yn)
N. America:
St. Lawrence 4
U.S. Atlantic 13 0.7 2.28° 5.46°
Gulf Coast 466" 438.2 1.23¢ 4.11°
Colorado 120* 120 1.10 1.33 0.55 2.98
Columbia 8
Rest of W. U.S. 62
Canada W. Coast 61
S. Alaska (glacial) 340
S. Alaska (non-glacial) 104 60 2.57¢ 6.32¢
N. Alaska 42
Mackenzie 100
N. NE Canada 30
SUBTOTALS 1350 618.9 1.18 1.33 0.55 3.62
Central America:
Mexico 210
Remainder 323
SUBTOTALS 442
South America:
Northwest 150
Magdalena 220 220 3.00 0.96 0.98 4.94
Northern 1218 1200 2.60 0.38 2.61 5.59
Eastern 28
Southern 154
Western & South 18
SUBTOTALS 1788 1420 2.66 047 2.36 5.49
Europe:
Western 31 6.5 1.69 0.78 2,10 4.57
Alpine 66 31 1.61 0.89 0.83 3.33
Black Sea 133 67 2.03 1.17 1.69 4.89
SUBTOTALS 230 104.5 1.86 1.04 1.50 4.40
Eurasian Arctic: 84
Asia:
Northeast 100 1.9 1.43 1.17 0.88 3.48
NE China/Korea 658 10 0.17 0.11 0.09 0.37
Huanghe 1100° 1100 0.96 1.51 1.20 3.59
Rest of China 930 480 1.86 1.72 1.34 4.92
Ganges/Brahmaputra 1060 540 0.62 2.17 0.27 3.06
SE Asia & Himalayas 2068 160 3.48 0.39 1.37 5.24
India 286
Indus 100
Asia Minor 67
SUBTOTALS 6349 22919 1.85 111 0.99 3.92
Africa:
Northwest 110
West 113
Southwest 17
East 240
Zambesi 20
Nile 120* 120 2.40 271 4.09 9.20
SUBTOTALS 620 120 2.40 2.71 4.09 9.20
Australia:
East, North 62 3 3.25 0.44 2.33 6.02
Oceanic Islands: 9000°
TOTAL AND MEANS ~20,000 4558.3 1.94 1.12 1.37 4.49
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TABLE 7

Comparison of the mean corrected compositions of riverine particulates and
marine sediments (concentrations in wt. % )

Species Rivers Cont. Margin  Deep Sea  Combined Sed.
FeT 4.81+0.19 3.69+0.91 4.29+0.98 3.99+0.98
Feur 2.09+0.08 1.03+0.40 1.06+0.47 1.04+0.44
Fepr 1.21+0.05 0.84+0.26 1.00+0.58 0.92+0.46
Fey 1.49+0.06 1.83£0.53 2.25+0.67 2.03+0.63

Feugr/FeT 0.43+0.03 0.28+0.06 0.25+0.10 0.26+0.08
Fepr/FeT 0.25+0.01 0.23+0.07 0.26+0.15 0.25+0.13
Fey/FeT 0.31+0.02 0.50+0.06 0.49+0.15 0.49+0.09

River data are discharge weighted. Sediment data from Raiswell and Canfield (1998).

estimate (4.0+/—1.0 percent) but the difference is only significant at the 10 percent
level. Nevertheless, the following discussion pays the greatest attention to ratios of the
Fe species, rather than concentrations, as the former should be unaffected by dilution
from Fe-poor phases. On this basis table 7 shows that the riverine particulates have
higher Fey, /FeT ratios than marine sediments (0.43+/—0.03 compared to 0.26+/
—0.08), and lower Fe; /FeT ratios (0.31+/—0.02 compared to 0.49+/—0.09). Mean
and standard deviations of Fepy /FeT ratios overlap in the two data sets.

Data Representivity

The differences between the composition of riverine particulates and marine
sediment might arise if our river samples were not truly representative of the global
riverine flux, such that the measured mean riverine Feyr/FeT ratio is too high. The
present riverine data set has no samples from Central America and the Oceanic Islands
and few from Africa and Australia. However Central America, Africa and Australia
together supply less than 6 percent of the global riverine particulate flux (table 6), and
even exceedingly low Fey, /FeT ratios (not observed for Australia; table 6) would not
produce a significant change in the global mean riverine Feyy/FeT ratio. By contrast
the riverine flux from the Oceanic Islands represents approximately 45 percent of the
global flux (see table 6), however this region is characterised by high rainfall and rapid
runoff that should produce high runoff ratios (which are in turn likely to be associated
with high Fey/FeT ratios; see fig. 2). We cannot discount the possibility that
improved sample coverage of the above areas (and especially the Oceanic Islands)
might change our global mean Fey, /FeT ratio, but our riverine particulates represent
approximately 23 percent of the global riverine flux and it seems unlikely that the
poorly-sampled areas would have Feyr/FeT ratios low enough to depress our global
riverine mean significantly towards the marine sediment value.

It could be argued that significant compositional differences might occur during
major flood conditions, when the daily load of some rivers may reach up to 70 percent
of their normal annual load (Milliman, 1991). However there is apparently little
seasonal variation in Fe/Al in riverine particulates (see earlier), which were sampled
through variations of more than one order of magnitude in water discharge and/or



786 S. W. Poulton and R. Raiswell—The low-temperature geochemical cycle of iron:

Fetr (wt%)
(95)
1
[ ]

y = 0.54x - 0.58
R =0.80

FeT (wt%)

B y =0.40x-0.15
3.5 4 R=0.75

Feu (wt%)
[S]
W

FeT (Wi%)

0.6

054 C

0.4 1

y = 0.85x+ 0.05
K R=0.87

0.3 1

Feur/FeT

0.2

0.1 A

O T T T
0.2 0.3 0.4 0.5 0.6

Runo(Tratio
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suspended sediment concentrations. Bedload is estimated to be less than 10 percent of
the global riverine flux (Milliman and Syvitski, 1992), which is too small a proportion
to significantly modify our observed global mean riverine Fey/FeT ratio. Finally we
note that the close similarity between our global riverine FeT of 4.5+/—0.2 percent
and that of 4.8 percent by Martin and Meybeck (1979) also supports the representivity
of the present riverine data set.

The observed differences between the Feyr/FeT ratios of riverine particulates
and marine sediment might also result from non-representative sampling of marine
sediments. Our global FeT for marine sediments (4.0+/—1.0 percent) was not
significantly different to that found by other workers (4.9+/—0.4 percent; see earlier)
but might suggest that the data of Raiswell and Canfield (1998) did not fully account
for a sediment type high in FeT (which might also have a high Fey/FeT ratio). Deep
sea red clays represent the only common sediment type which might have these
characteristics, and table 1 shows data from a suite of Atlantic and Pacific red clays. FeT
values for this limited data set are indeed high (mean 5.0+ /—1.2 percent; comparable
to the range given by Chester, 1990) but the Feyz/FeT ratios are not exceptionally
high (0.33+/—0.16). Red clays occupy a significant fraction of the ocean floor (38
percent of 360 x 10° km?* Libes, 1992) but receive only low sediment fluxes. For
example Thomson and others (1984) estimate that the accumulation rates of authi-
genic plus detrital FeT are 0.018-0.035 g cm ™2 in 10° years, which produces a FeT flux
of 24-48 Tg/yr (1 Tg = 102 g), which is less than 10 percent of the riverine flux (see
later). Clearly much higher values of Fey,/FeT would be needed for red clays to
account for the observed compositional discrepancies between the global riverine flux
and marine sediments.

The discrepancy between the riverine particulate concentrations of Fey, and the
concentrations in marine sediments could also be resolved if post-depositional changes
in iron speciation occurred within the modern marine sediments analysed by Raiswell
and Canfield (1998). Total iron is likely to have been conserved because our mean
sediment composition is close to that of average sedimentary rock (see earlier).
However the iron oxides measured as Fepy are dissolved when anoxic conditions
develop during early diagenesis. This dissolved iron mainly either diffuses to the
sediment surface and is re-precipitated under oxic conditions as iron oxides (see for
example Van Cappellen and Wang, 1996), or is precipitated anoxically as sulfides (see
for example Canfield and Raiswell, 1991) or incorporated into Fe-rich clay minerals
(see for example Aplin, 2000). The measurements of Feyyy in the modern sediments of
Raiswell and Canfield (1998) include iron from oxides and sulfides (see earlier); thus
post-depositional processes affecting these phases will not change our measured
speciation. Iron re-mobilised during anoxic diagenesis and incorporated into iron-rich
clays such as smectites, glauconite et cetera is also substantially extracted by dithionite
(Raiswell and others, 1994). Other clay minerals (chlorite and biotite) contain much
less dithionite-soluble iron but are likely to be mainly detrital, rather than authigenic,
in origin. We conclude that post-depositional changes in iron mineralogy cannot
explain the scale of the observed and required differences in iron speciation, although
they may be contributory. Overall we can find no reasonable basis for attributing the
observed differences between riverine particulates and marine sediments to sampling
artefacts.

INTERPRETATION

Relationships between Iron Species in Riverine and Glacial Particulates

There are no significant correlations between the concentrations of any of the
iron species in the riverine particulates and their organic C contents, but correlations
between Fey and FeT (0.80), and Fey and FeT (0.75) are both significant at the less
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than 0.1 percent level (fig. 2A and B). The plot of Fey against FeT (fig. 2A) shows
some scatter but approximates to linearity with the regression equation

Feyr = 0.54 FeT — 0.58 r=0.8

The errors on the intercept are sufficiently large (0.58+/—0.35) as to suggest that the
regression line passes very near (or through) the origin. The larger data set of Poulton
(ms, 1998) contains 73 rivers (those described here plus an additional 39 rivers that do
not discharge directly into the ocean), which demonstrate a similar relationship of
Feyr with FeT;

Feye = 0.59 FeT — 0.70 r = 0.85

These relationships clearly suggest that iron oxides are largely derived from, and
retained in association with, the total iron fraction. This close link between Feyx and
FeT arises from the increased removal of the more soluble components of rocks and
soils (Na, K, Ca, Mg) at high rates of chemical weathering (which concentrates
less-soluble elements like Fe), coupled with the release of iron from parent rock
minerals and the subsequent formation of iron oxides (see Canfield, 1997). This
influence of chemical weathering on the speciation of iron in world river particulates
apparently persists over a wide range of geological, geographical and climatological
variability in the sampled river basins. By contrast, the glacial speciation data (table 3)
show only a weak correlation between Feyz and Fe (r = 0.22), but strong correlations
between Fepp and FeT (r = 0.78), and Fey and FeT (r = 0.88). Both the latter
correlations are significant at the <<0.1 percent level. These findings are entirely to
be expected given the dominance of physical weathering over chemical weathering in
glacial environments. Weak chemical weathering results in most iron being retained in
pristine phases which are soluble in HCl and/or HF. Thus Fep and Fey; predominate
and are well correlated with FeT.

Our riverine data are consistent with Canfield (1997), who has comparable data
for Feyz and FeT for 23 rivers from the United States, which demonstrate the
influence of runoff (an indicator of the intensity of chemical weathering) on the Fep
and FeT contents. These rivers have Feyr/FeT ratios which increase from values of
0.15 to 0.20 at low runoff to 0.4 to 0.75 at high runoff, and the positive correlation
between runoff and Fey, /FeT was attributed to increased weathering which produced
proportionately more Feyy from the parent rock (see above). Our data in table 4 have
a comparable range in Feyr/FeT (0.19-0.67) but fail to show any significant relation-
ships between Feyp/FeT and either runoff or precipitation, probably because our
rivers are more geographically diverse and include those originating from mountain-
ous and lowland catchments, where the relative influences of chemical versus physical
weathering may be vastly different (see Stallard, 1995). There are however weak
correlations (significant at around the 5 percent level) between Feyz and both runoff
and precipitation.

Our Fepr/FeT data do however show a significant dependence on runoff ratio
(average river runoff per unit area/average rainfall per unit area) on a continental
scale. The discharge-weighted Feyr/FeT ratios for each continent increase in the
order Africa (0.26), North America (0.33), Europe (0.42), South America (0.46) and
Asia (0.47), ignoring the Australian continental average, (our data is based only on one
sample). These mean continental Fey, /FeT ratios are closely related to their runoff
ratios (fig. 2C), as given by Berner and Berner (1996). Thus our continental-scale data
show highest Fep, /FeT ratios in regions where losses of precipitation by runoff are
maximized relative to evaporation. This produces increased chemical weathering
which enriches Fe and Al, and depletes Na, Ca, Kand Mg (see earlier).
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Comparisons between Riverine Particulates and Marine Sediments

A comparison of the corrected riverine and marine sediment compositions in
table 7 shows that sediment transport from rivers into the marine environment
apparently produces a decrease in the FeT, Feyy and Fepy contents, whereas Fey,
appears to increase. The errors on the discharge-weighted riverine data in table 7 are
derived from the analytical precision, and may therefore underestimate the effects of
temporal and spatial variability. Hence the differences between the riverine and
marine sediment data are tested statistically with a ‘7’ test (rather than with the
students ‘t’ test which requires standard deviations for both sets of samples). The z test
shows that all these differences are highly significant at the << 0.1 percent level.
Comparable results are found if the riverine particulate data are tested separately
against the continental margin and deep-sea data. These differences are also reflected
in a comparison of the Feyp/FeT ratios. A z test shows that the Feyg/FeT ratio of
riverine particulates (0.43+/—0.03) is significantly different from marine sediments
(0.26+/—0.08) at the << 0.1 percent level.

Note that the decrease in FeT (~0.8 wt percent) is approximately equivalent to
that found for Feyy (~1.0 wt percent). However simple removal of Fey, from the
riverine particulates does not appear to be sufficient to produce a marine sediment
composition. Thus the removal of 0.8 wt percent Fey, from the riverine particulates
would produce material with the composition; Feyr = 1.29 percent, Fepp, = 1.21
percent, Fe; = 1.49 percent and FeT = 3.99 percent. This composition has Feyy/
FeT = 0.32+/-0.03, Fepgr/FeT = 0.30+/—0.02 and Fe,/FeT = 0.37+/—0.02, which
only just overlaps the mean and standard deviation of these ratios in the marine
sediments. However simple removal of riverine Fe; takes no account of other
sediment additions to the ocean basins. Thus the following sections evaluate two
possible explanations for the differences between the riverine and marine sediment
compositions, specifically that;

(i) There may be net additions of Feyp-depleted sediment which mix with riverine
particulates in the ocean basins,

(ii)) There may be significant removal of Fejg-enriched material from riverine
particulates prior to entry into the ocean basins.

SEDIMENT AND DISSOLVED IRON ADDITIONS TO THE OCEAN BASINS

This section examines whether the addition of other iron sources to the ocean
basins could modify the riverine Feyy/FeT ratio (0.43+/—0.03) towards the observed
marine sediment composition (0.26+/—0.08). Modern marine sediments are consid-
ered to contain material derived from detrital and non-detrital sources. The main
detrital sources, apart from riverine suspended sediment, are from atmospheric
particulates, coastal erosion and glacial sources. Non-detrital material is derived from
solution in the first instance and can be sub-divided into biogenous, authigenic,
hydrothermal and diagenetic sources (Chester, 1990). Clearly the riverine particulate
flux can only be modified to approach the marine sediment composition if diluted by
mixing with material of low Fepy/FeT ratios. Biogenous sediments have low Fe
contents (and are thus a possible diluent), but their sediment fluxes are too small to
produce a significant dilution of the riverine Feyy/FeT flux (CaCO4 1500 Tg/yr,
organic C 200 Tg/yr and SiO, 800 Tg/yr; Wollast and Mackenzie, 1983). Our data are
anyway compared on a carbonate and organic C-ree basis (see earlier). Some of the
remaining detrital and non-detrital sediment sources will have low Fey,/FeT ratios
relative to the riverine flux, and are thus possible diluents, whilst others may supply
material with high Fey/FeT ratios. A rigorous approach requires that we account for
all such sources, and weight their contributions relative to riverine particulate supply.
Clearly we initially require an estimate of the global riverine particulate flux.
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The Global Riverine Discharge Flux

Unfortunately quantifying the global flux of riverine sediment is not a simple
matter. Sediment discharge data are significantly affected by both temporal and spatial
variability. Substantial temporal variability can occur on hourly, daily, weekly, monthly,
seasonal and annual timescales (Horowitz and others, 2001), and regular sampling for
long periods of time is thus necessary to produce reliable average values. However river
sediment discharges in different regions may have been measured infrequently and/or
over very different periods of time (Milliman and Meade, 1983). Furthermore the
measurement of sediment discharge during flood conditions may be difficult or even
impossible, even though such events may sweep substantial proportions of sediment
from temporary storage areas (floodplains, estuaries and salt marshes) into the oceans
(Ludwig and Probst, 1998). The paucity of measurements for many rivers during large
floods means that the problems of accounting for sediment delivery on the decadal to
centennial scale have not been addressed globally (Hay, 1998).

Site-specific spatial variability can occur in two dimensions (river width and
depth), thus depth- and width-integrated samples ideally should be collected (Horo-
witz and others, 2001). Variable data quality also results from the need to produce a
geographically widespread database, which integrates sediment discharge measure-
ments from many different rivers. Most global estimates are based on sediment
discharge data from the largest rivers (as defined by water discharge), although
Milliman and Syvitski (1992) have shown that small mountainous rivers, discharging
directly onto active margins, may have relatively low water discharges but relatively
high sediment fluxes. Furthermore, small basins tend to have limited floodplain
development (and most suspended sediment is thus readily flushed from the basin), in
contrast to larger basins where storage effects may be more significant (Ludwig and
Probst, 1998).

Difficulties also arise from the influence of natural and anthropogenic activities
on sediment production and trapping. It is generally agreed that burning, deforesta-
tion and agriculture have increased rates of soil erosion by a factor of 2 to 10 (Milliman
and Syvitski, 1992; Hay, 1998). However, increased erosion rates may not have
produced equivalent increases in the riverine flux, as many streams may be unable to
transport their increased loads, resulting in greater deposition in floodplain areas
(Berner and Berner, 1996). However sediment loads 2000 to 2500 years ago (prior to
human influences) may have been as low as 10000 Tg/yr (Milliman and Meade, 1983;
Berner and Berner, 1996). More recently, the effects of river management practices
have largely reduced river sediment fluxes. For example damming has severely
reduced the sediment fluxes from the Nile, Colorado, Mississippi, Zambezi and Indus
rivers (Milliman and Syvitski, 1992). Our marine sediment data span periods of time
which typically range up to several thousand years (as estimated from the sedimenta-
tion rate data of Raiswell and Canfield, 1998), which best corresponds to discharge
over the pre-dam but human-influenced period.

The most recent estimate of pre-dam discharge (20000 Tg/yr by Milliman and
Syvitski, 1992), based on river measurements, is revised upwards from earlier estimates
by increased fluxes from the Pacific Islands, the small mountainous rivers of southern
Asia and North and South America, and undocumented rivers with basins larger than
10000 km®. A further 1000 to 2000 Tg/yr of sediment are believed to be transported
annually by rivers as bed load and flood discharge. It is, however, uncertain how much
of this sediment actually reaches the ocean (Milliman and Meade, 1983). Gauging
stations may be located considerable distances upstream from the estuarine/marine
boundary, and there may be considerable sediment deposition between the gauging
station and the estuarine/marine boundary in environments such as estuaries, tidal
flats, salt marshes and floodplains, which range from sub-aerial to sub-aqueous (but
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with salinities less than fully marine). For example the gauging station on the Amazon
is located approximately 1000 km upstream of the mouth and there is a 30 to 40
percent loss in suspended sediment between the gauging station and the river mouth
(Kuehl and others, 1986). Allison and others (1998) measured floodplain sediment
accumulation rates in the Brahmaputra basin. Extrapolated over the whole basin, as
much as 39 to 71 percent of the river flux appears to be trapped prior to entry into the
marine environment. A similar proportion (39 to 40 percent) of the suspended
sediment delivered to the main channels of the Rivers Ouse and Tweed (United
Kingdom) is also stored on floodplains (Walling and others, 1999). Milliman and
Syvitski (1991) also note that a significant proportion of the riverine particulate load of
high-yield rivers in tectonically active settings is trapped landward of the ocean.

Storage in these environments may be permanent or transient (because major
floods may remove substantial proportions of sediment from downstream storage
areas; Hay 1998). Our marine sediment data integrates compositional variations over
periods of time, which range up to several thousand years (see earlier). These
sediments thus include any compositional effects arising from flood transport of
sediment from transient storage areas, and approximate to the steady state condition
(although excluding the effects of sediment storage on timescales in excess of several
thousand years).

Estimates of river sediment discharge to the oceans have also been based on
modeling empirical relationships between river sediment yields and hydrodynamic,
biological and geomorphological parameters. Ludwig and Probst (1992) used this
approach to produce an estimate of 16000 Tg/yr, which they believed might over-
estimate sediment storage effects. Bearing in mind the difficulties in obtaining
representative data and the poorly quantified effects of sediment storage, we will
initially use the Milliman and Syvitski (1992) riverine sediment flux estimate of 20000
Tg/yr as an upper estimate of pre-dam riverine sediment delivery to the oceans. The
effects of storage and/ or lower riverine flux estimates will be arbitrarily examined by
also considering the delivery of a smaller riverine load of 13000 Tg/yr (equivalent to a
35 percent storage prior to entry into the ocean basins). These two particulate mass
fluxes are both assumed to have the compositions given in table 7, and thus supply
sediment with Feyg/FeT = 0.43+/—0.03 which gives fluxes of 625+ /—25 to 962+ /
—38 Tg/yr of FeT, and 272+ /—11 to 418+ /—16 Tg/yr of Fe,; (table 8).

The Atmospheric Iron Flux

Preliminary attempts to estimate the global atmospheric flux of dissolved and
particulate trace elements, including iron, into the oceans have been reported by
GESAMP (1990) and Duce and others (1991). Iron is present mainly in particles
derived from natural mineral aerosol sourced from arid and semi-arid regions and can
be an important source of non-biogenic material to deep sea sediments (Duce and
others, 1980). Atmospheric fluxes of iron have been estimated from measurements of
the flux of mineral aerosol material (910 Tg/yr) to the oceans, which is assumed to
have an iron content of 3.5 percent, based on upper continental crust abundance
(Taylor and McLennan, 1985). This produces a global atmospheric iron flux of 32
Tg/yr, which includes both wet and dry deposition. More recent estimates by Jickells
and Spokes (2001) suggest that the use of a scavenging ratio (which relates the
concentration in precipitation to that in the aerosol phases) of 200 is more appropriate
than the value of 1000 used by Duce and others (1991). Depending on which
scavenging ratio is used, Jickells and Spokes (in press) estimate the FeT flux to be 14-35
Tg/yr (25+/—10 Tg/yr). We have extracted four samples of Saharan dust (table 1)
with dithionite and these give a mean Fey/FeT ratio of 0.33+/—0.01, less than the
Feyr/FeT ratio of riverine particulates. Based on these analyses, atmospheric dust
supplies a mass flux of 910 Tg/yr which produces a small dilution of riverine material
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towards the marine sediment Feyr/FeT ratio and also supplies fluxes of Feyp =
10+/—1.4,Fepp = 4.6+/—0.8, Fe; = 16+/—3, and FeT = 30+/—3.5 Tg/yr (table 8).

Iron Fluxes from Glacial and Coastal Erosion

Material derived from coastal erosion and glacial activities constitute further
additions of sediment to the oceans. Garrels and Mackenzie (1971) estimate that
coastal erosion by wave activity supplies a sediment flux in the range 200 to 900 Tg/yr,
with a preferred value of 250 Tg/yr. Based on earlier work, Lisitzin (1972) used an
estimate of 150 Tg/yr. The material eroded is likely to have speciation characteristics
similar to our continental margin sediments (table 7). Thus a coastal erosion mass flux
of 200 Tg/yr with Feyg/FeT = 0.26+/—0.08 would produce 8+/—2 Tg/yr FeT, and
2+/—1Tg/yr Feyg, 2+/—1Tg/yr Fepg and 4+ /—1 Tg/yr Fey; (table 8). This coastal
erosion flux is small but is nevertheless capable of diluting the riverine Feyy/FeT
towards the marine sediment value.

The input of glacial sediment to the ocean basins is poorly quantified, principally
because the erosive behavior of ice-sheets has not been clarified (Hay, 1998). Moun-
tain glaciers are known to be effective erosion agents but it is unclear whether
ice-sheets have a powerful abrasive effect or are relatively ineffective. Hay (1998)
reviewed previous glacial mass flux estimates to conclude that the present flux lay in
the range 800 to 5000 Tg/yr, most probably at the lower end. Values at the bottom of
this range may also be most appropriate since a significant proportion of glacial debris
may be trapped in fjords (Andrews and others, 1994).

Table 3 shows the mean and standard deviation of the sampled glacial sediments.
We have three samples from Antarctica (currently the largest glaciated region and
estimated to supply 90 percent of the global glacial flux; Garrels and Mackenzie, 1971)
with a mean Fey/FeT of 0.11+/—0.05, which is the same as the overall glacial mean
(0.11+/—0.11). Clearly the glacial flux has a relatively low Fey,/FeT ratio which
would drive the riverine flux composition towards that of marine sediments. A glacial
mass flux of 800-5000 Tg/yr with the mean composition shown in table 3 suggests that
glaciers supply 34+/—22 to 211+/—139 Tg/yr FeT, 4+ /-3 to 24+/—19 Tg/yr of
Fepg, 13+/—10 to 82+/—64 Tg/yr Fepg, and 17+/—16 to 106+/—95 Tg/yr Fey
(table 8).

Authigenic Iron Fluxes

Chester (1990) defines authigenic iron as that which originates from widespread
inorganic processes that remove dissolved iron from seawater, excluding hydrothermal
activity (which is localised rather than widespread) and iron recycled from porewaters
during suboxic diagenesis. Authigenic iron is removed to sediments on an ocean-wide
basis but the flux is small and only becomes significant in deep-sea sediments where
detrital fluxes are low.

The main sources of authigenic iron are derived from the dissolved input of rivers
(plus groundwaters) together with the iron liberated from sediments during oxic
diagenesis. These sources will be added to sediments as iron oxides (and thus add
material with Feyz /FeT ~ 1), but are small compared to the riverine particulate Feyyg
flux of 272-418 Tg/yr. Thus dissolved riverine fluxes of Fe (1.5 Tg/yr; Martin and
Windom, 1991) constitute less than 0.5 percent of the total iron particulate flux.
Groundwater fluxes of dissolved iron are also likely to provide only small fluxes of total
iron, but at present no reliable data are available. Garrels and Mackenzie (1971)
estimate groundwater discharge as 4 x 10'° litres/yr but this may be two orders of
magnitude too high (Maynard, 1976). Compilations of groundwater analyses (Lang-
muir, 1997) show that only around 2 percent of these waters contain more than 0.2
ppm dissolved Fe. Using this threshold value, together with the discharge flux of 4 x
10'? litres/yr, produces a dissolved Fe flux of less than 1 Tg/yr into the ocean basins.
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Given that the discharge flux may be excessive (see above), groundwaters are unlikely
to be an important source of FeT or Feyy.

Estimates of the authigenic flux of iron to deep-sea sediments (which includes
dissolved iron from continental sources plus oxic diagenesis) range up to 3 ug cm™ >
yr'1 (Krishnaswami, 1976; Thomson and others, 1984). Such fluxes, sustained on an
ocean-wide basis over an area of 360 x 10° km®, give a maximum FeT flux of 10 Tg/yr
which will be solely present as iron oxides (Feyr/FeT ~ 1). However the dissolved
sources of Feyy only total about 2 Tg/yr (see above), and we thus prefer a mean
authigenic flux of 5 Tg/yr (table 8). However the authigenic flux is clearly Feyg-
enriched (and thus unable to reconcile the difference between the riverine and
marine sediment compositions) whilst also being too small (table 8) to contribute
significantly to the overall Fey budget.

The Hydrothermal Iron Flux

Iron can also be delivered to the ocean basins from interactions between basaltic
lavas and seawater, which can occur in a range of different geological environments
and over a range of temperatures. Typically recognised are axial high temperature and
diffuse low temperature hydrothermal activity (the fluxes from which are reasonably
well-quantified), together with off-axis low temperature activity and the weathering of
hot and cold basalt on the seafloor.

High temperature fluids emerge from chimneys on hydrothermal mounds and
can range over compositional extremes from metal-rich and high salinity to metal-free
and vapour-rich. The metal-rich fluids can be black smokers (rich in Fe and H,S) or
white smokers (less rich in Fe and depleted in HyS) and their Fe contents range from
750 to 6470 pM/kg (Elderfield and Schlutz, 1996). On cooling, metal sulfides are
precipitated from the fluids in the vicinity of the vents (where H,S is available), whilst
iron oxides are formed further away (by oxidation of sulfides or from solutions with an
excess of metals over sulfide).

Diffuse low temperature fluids emerge from the hydrothermal mound surface or
from cracks in the seafloor at temperatures of 3° to 40°C, and are believed to be
derived from hot hydrothermal fluid which has cooled conductively or mixed with cold
seawater below the seafloor (James and Elderfield, 1996). Diffuse flow is difficult to
quantify because of the wide range of exit temperatures, and the largely unknown fluid
compositions (Kadco and others, 1995). These fluids are generally low in Fe compared
to high temperature flows, but the water flux may be substantially higher (2-3 orders of
magnitude; Elderfield and Schlutz, 1996).

Estimates of the combined effects of high temperature axial and diffuse flow are
usually made by assuming that diffuse flow is derived from black smoker fluids which
have been conservatively diluted with seawater (but see above). Elderfield and Schlutz
(1996) use this approach and combine the above Fe compositional range (750-6470
uM/kg) with a water flux of 3+/—1.5 x 10"? kg /yr to produce an Fe flux of 1-10 Tg/yr.
Wollast and Mackenzie (1983) estimate 15 Tg/yr based on a water flux which is
approximately an order of magnitude larger. This hydrothermal iron flux represents
iron vented into plumes, which we assume can potentially enter the modern sediment
reservoir. We exclude the iron precipitated in massive sulfide deposits in volcanogenic
rocks, which are not part of our sediment reservoirs.

Off-axis low temperature activity is poorly quantified but possibly more than 70
percent of the total heat flux occurs on the ridge flanks (Mottl and Wheat, 1994). This
suggests that there is an extremely high advective flux of seawater at low to moderate
temperatures (estimated to be about 2.5 x 10' kg/yr for a temperature of 20°C).
Unfortunately there are few Fe analyses of off-axis fluids. Mottl and others (1998)
found 0.34 ppm Fe in the warm springs emitted from basaltic outcrops on the flank of
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the Juan de Fuca Ridge and, if typical, the above water flux would then give an Fe flux
of 0.85 x 10'% g /yr or approximately 1 Tg/yr.

The low temperature weathering reactions of basalt can take place both on the
seafloor (in contact with large volumes of water and under oxidising conditions) or
down to 2 to 3 km depth (and involving smaller volumes of water and more reducing
conditions). Weathering occurs to a greater extent in the surface basalts but is
otherwise similar at surface and at depth. Altand others (1986) found that goethite was
abundant in the uppermost few hundred metres of pillow lavas, and occurred as
alteration halos around cracks and veins. Adjacent host rock had lost iron from sulfides
and olivine. The implication was that iron was lost from rock-dominated, reducing
parts of the system but was retained as oxides on contact with oxygenated seawater.
Here we will adopt the simple approach that Fe localised and trapped within the basalt
as oxides does not enter the sediment reservoir. Thus transfer of Fe from weathering
will occur only where dissolved Fe or particulate oxides are transported to seawater or
adjacent sediments. These potential Fe additions from weathering are difficult to
quantify but Maynard (1976) and Wolery and Sleep (1976) have estimated an FeT flux
of 7 Tg/yr, which is based on estimates of weathering rates to depths of several
hundred metres. Edwards and others (in press) have produced a larger estimate of 40
Tg/yr based on the consumption of oxygen by the microbial oxidation of iron in basalt
but a proportion of this iron is likely to be trapped within the basalt (see above).

Overall the iron flux from all hydrothermal sources appears to range from 9 to 18
(14+/—5) Tg/yr. The composition of all the hydrothermal products will approximate
to Fe(OH)g, and thus Feyz/FeT ~ 1.0. The mass of iron oxides added to marine
sediments is about double the FeT flux, or 18 to 36 (27+/—9) Tg/yr of material
approximately. Adding this iron source to the riverine Feyy/FeT would in fact
produce a mixture with a higher Feyr/FeT and thus move the overall composition
further away from that of marine sediments (table 8).

Combined Effect of Sediment Additions

Table 8 summarises the data from the sediment additions by hydrothermal
activity, authigenic sources, atmospheric deposition, coastal erosion and glacial activ-
ity. Their combined influence can be assessed by weighting the Fe flux values or
Feyr/FeT ratios by the appropriate mass flux. Only hydrothermal activity and authi-
genic sources can produce material which is Fegp-enriched relative to riverine particu-
lates, whereas all the other sediment sources mix with riverine particulates to produce
a combined sediment with a lower Feyy, /FeT ratio than the riverine particulates. Table
8 shows the compositions of the mixtures obtained by combining each maximum and
minimum value of the riverine flux (My) with the maximum and minimum value of
the glacial particulate flux (Mg). Each combination weights the composition of My
and Mg together with the specified values (table 8) of the other sources. No possible
combination of My and Mg can produce the observed marine sediment Feyy/FeT
(0.26+/—0.08); this value is most closely approached only by mixing minimum My
with maximum Mg, (0.35+/—0.06, see table 8). For completion, table 8 also shows the
values of Fepp/FeT and FeU/FeT of the different mixtures, but these fail to provide
any useful constraints. All the mixing models are capable of producing compositions
which overlap the mean and standard deviation Fepp/FeT of marine sediments
(0.25+/—-0.13), although only the combinations with maximum Mg (0.35+/—0.09
and 0.36+/—0.12, see table 8) overlap the marine sediment FeU/FeT (0.49+/—0.09).
The remaining discussion thus concentrates on the Fey;z component.

The possible mixing combinations of the two largest sediment sources (riverine
and glacial particulates) which could produce the observed marine sediment Fey/
FeT can be further explored by a simple two-component mixing model using the data
from table 8 (and ignoring the minor contributions from all the other sources). Figure
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Fig. 3. Variations in Fey,/FeT with different mixtures of riverine and glacial mass fluxes. Sloping lines
show the mean and standard deviation of the Fey,/FeT values achieved by mixing different mixtures of
riverine (My) and glacial (M) mass fluxes, expressed as (My)/ (My + Mg;). Horizontal lines show the mean
and standard deviation of Fe;r/FeT in modern marine sediments.

3 plots the variations in Fey,/FeT for different mixtures of the riverine (My) and
glacial (M, ) mass fluxes, expressed as the ratio of the riverine mass flux to the total
mass flux or My/ (Mg + Mg). The errors on the Feyr/FeT ratios of the mixtures are
large, such that any values of Mp/ (Mg + M) < 0.83 are able to produce sediment
mixtures with Fepr/FeT ratios which match (within errors) those found in marine
sediments (shown by horizontal lines). For example the highest value of My /(My +
M) that can produce a marine sediment composition is 0.83, which requires a
combination of either a very high Mg (3400 Tg/yr) with the present day My (20000
Tg/yr), or a somewhat lower M (1700 Tg/yr) with a low present day My (10000
Tg/yr). These combinations require that either the present-day riverine flux delivered
to the ocean basins lies at the lower end of the estimated range, or that the present-day
glacial flux lies at the upper end of the estimated range. Neither possibility can be
completely discounted but it seems probable the discrepancy between the composi-
tions of riverine and marine sediments cannot be completely resolved solely by mixing
different sediment sources.

REMOVAL OF FEHR-ENRICHED MATERIAL PRIOR TO ENTRY INTO THE OCEAN BASINS

The discrepancy between riverine and marine Fepr/FeT values might also be
resolved if the riverine particulate mass flux (and particularly the Feyy pool) is
substantially modified during transport through estuaries, such that riverine particu-
lates enriched in Fey, /FeT are trapped within a variety of non- to periodically-marine
environments (for example in estuaries, floodplains, salt marshes and tidal flats)
before reaching the marine environment. Such fractionation would be consistent with
the documented behavior of particulate iron in individual estuaries. Figueres and
others (1978) analysed the total iron contents of suspended sediments during estua-
rine mixing and demonstrated extensive losses of iron, which increased with increas-
ing grain size (85 percent loss from the 1.2-5 pm fraction, 75 percent loss from
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Fig. 4. Feyr/FeT content achieved by mixing different proportions of the riverine (Mg) and glacial
(M) particulate fluxes, after removal of 0 to 50 percent Feyy from the riverine flux prior to entry into the
ocean basins. Horizontal lines show mean (solid) and upper standard deviation (dashed) of modern marine
sediments.

0.45-1.2pum, 65 percent loss from 0.22-0.45um, 55 percent loss from 0.05-0.22pum and
50 percent loss from 0.025-0.05pum). Moore and others (1979) examined the total iron
and hydroxylamine hydrochloride-soluble iron contents of suspended sediments
through a salinity gradient in the Beaulieu Estuary (United Kingdom). Hydroxylamine
hydrochloride extracts iron present as ferrihydrite and lepidocrocite, but not haema-
tite and goethite (Canfield, 1988), whereas all four phases are soluble in dithionite
(Raiswell and others, 1994). Moore and others (1979) found that the hydroxylamine
hydrochloride extractable iron in river particulates decreased through the salinity
gradient from approximately 8 to 16 weight percent in the river end-member to
approximately 1 weight percent in seawater. By contrast, that fraction of the total iron
that was insoluble in hydroxylamine hydrochloride remained essentially uniform
through the estuary. There is as yet insufficient data to assess whether such Fe oxide
losses are reproduced in most rivers, or whether there are local and regional controls.

These studies do however clearly suggest that a significant fraction of Feyy-
enriched material can be removed from riverine particulates through the salinity
gradient, prior to entry into the ocean basins. Table 8 shows the effects of removing 40
percent of Feyy from riverine particulates before mixing with combinations of
minimum and maximum My and Mg. All these mixing combinations give mean and
standard deviations for Feyy/FeT, Fepr/FeT and Fey/FeT, which reasonably overlap
the values for marine sediment. The combination of mixing plus iron removal thus
avoids achieving a marine sediment composition only with combinations of high M
and low My (see earlier). Figure 4 expands on the budget approach of table 8 by
plotting the Feyy/FeT ratio reached for different mixing ratios My/ (Mg + M),
assuming Fep removal in the range of 0-50 percent. The marine sediment Feyy/FeT
of 0.26+/—0.08 can be achieved at ratios of My/(Mp + M) > 0.8 (consistent with
estimated present-day values of M, = 16000-2000 Tg/yr, and Mg 1000-2000 Tg/yr; see
earlier). These mixing ratios do however require that approximately 30 to 50 percent
of Feyy 1s removed prior to entry into the ocean basins.

Removal of Fey; appears to occur through the salinity gradient through which a
proportion of the riverine sediment flux may be deposited (on very variable time-
scales) in a range of different environments (estuaries, tidal flats and salt marshes), in
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TABLE 9

Fegp/Fel Values for Floodplain, Estuary and Salt Marsh Sediments

Environment Feyr/FeT (no. samples) Reference
Loch Etive, Scotland 0.63+/-0.05 (17) Strohle (ms)
Bottom sediments

Saguenay Fjord, Canada 0.34+/-0.7 (10) This study and see
Gagnon and others
(1995)

Great Marsh, Delaware, USA 0.62+/-0.24 (4) Kostka and Luther
(1994)

Cocodrie Salt Marsh, Louisiana,  0.54+/-0.05 Jackson and others

USA (1995)

Dee Salt Marsh, Cheshire, UK 0.36+/-0.27 (8) This study

Mersey Salt Marsh, Lancs, UK 0.26+/-0.04 (4) This study

Humber Salt Marsh, UK 0.36+/-0.06 (8) This study

conditions, which range from sub-aerial to sub-aqueous (but with salinities less than
fully marine). For convenience these depositional regions are hereon collectively
referred to as the inner shore. The mass of sediment in the inner shore reservoir may
be augmented by the addition of sediment on floodplains (where the river gauging
station is located above the riverine boundary) and may be diminished by large floods
(which episodically transport particulates into the marine environment). Once beyond
the estuarine/marine boundary, deposition occurs as marine sediment.

Table 9 shows literature values for Fez/FeT for some inner shore environments
plus a few values determined as part of this study. Depth profiles have been used where
possible to integrate the effects of any surface iron enrichments. Most samples have
higher Feyr/FeT ratios than marine sediments, and approximately half are also
higher than the mean Feyp/FeT ratio of riverine particulates. Dilution effects from the
deposition of bedload and returning marine particulates (especially derived from
coastal erosion) may make it difficult to identify preferential deposition of Fegy. The
data are sparse and geographically limited in distribution, but their average of 0.44
suggests that some fractionation of Feyg-enriched material appears to occur in the
inner shore. This fractionation, combined with dilution effects from sediment addi-
tions, provides the most reasonable explanation for the discrepancy in the Feyp/FeT
ratio in riverine particulates and marine sediments.

PHANEROZOIC TRENDS IN IRON SPECIATION

The combined modern sediment data in table 7 have ratios of Feyz/FeT =
0.26+/—0.08, Fepy/FeT = 0.25+/—0.09 and Fey/FeT = 0.49+/—0.09 which provide
a baseline for examining trends in iron speciation through the Phanerozoic record.
Table 10 shows a Phanerozoic compilation of iron speciation data, which includes most
of the normal marine shales, described by Raiswell and Berner (1986) and Raiswell and
Al-Biatty (1989). The database is neither large (170 samples) nor geographically
widespread (predominantly United Kingdom), and coverage of the Phanerozoic
record is uneven. However, with these provisos in mind, the data permit some tentative
conclusions to be drawn. Thus the ratio Feyp/FeT seems to have remained roughly
constant through the Phanerozoic, but there is some suggestion that the ratio is lower
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TaBLE 10

Variations in iron speciation for normal marine sediments through the Phanerozoic record

Feyp/FeT Fepp/FeT Fey/FeT

Modern (46) 0.26+/-0.08 0.254/-0.13 0.49+/-0.09
Lower Cretaceous (13) 0.15+/-0.04 0.49+/-0.08 0.35+/-0.08
Upper Jurassic  (27) 0.14+/-0.04 0.30+/-0.04 0.52+/-0.07
Silurian (6) 0.17+/-0.11 0.30+/-0.16 0.53+/-0.07
Middle & Upper 0.13+/-0.06 0.35+/-0.10 0.51+/-0.09
Ordovician (46)

Lower Cambrian (60) 0.14+/-0.11 0.41+/-0.11 0.45+/-0.10

Sediments described in Raiswell and Berner (1986), Raiswell and Al-Biatty (1989) and Poulton and
others (1998).

in ancient normal marine shales compared to modern normal marine sediments
(table 10). Furthermore this change appears to be accompanied by a commensurate
increase in Fepp/FeT. These changes, if real, probably reflect loss of any iron oxides
remaining after pyrite formation, during the reducing conditions of deep burial
diagenesis. Some of this iron may be incorporated into clay minerals (as non-dithionite
soluble Fe). However the observed changes in Feyyr /FeT (and Fepg/FeT) are not large
and there is otherwise no evidence for a significant change in the operation of the iron
cycle (in terms of speciation) over the Phanerozoic.

This result is not unexpected, as the geochemical cycle of iron is dominated by
oxidative chemical weathering, and oxygen levels have remained high enough through
the Phanerozoic to convert Fe(Il) to Fe(Ill) oxides. Greenhouse phases in the
Ordovician-Devonian and Jurassic-Cretaceous might have been expected to accelerate
weathering rates sufficiently to increase the ratio of Feyy/FeT, since there is some
evidence that this ratio is higher in riverine particulates from modern tropical regions
and increases with increased weathering (see earlier and Canfield, 1997). However the
effects on speciation may not be detectable globally, or our data may be inadequate to
detect such variations. Variations in the elemental composition of the riverine load are
usually assumed to be small through the Phanerozoic (Garrels and Mackenzie, 1971).
Thus there are close similarities in the elemental composition of modern and ancient
muddy sediments (Garrels and Mackenzie, 1971; Wollast and Mackenzie, 1983), with
large differences occurring only for CaO, CO, and HyO. More specifically the FeT
content of shales appears to show little variation through the Phanerozoic (Ronov and
Migdisov, 1971), although there is an increase in the ratio of Fe(II) to Fe (III) with time
(see above).

The uniform iron speciation characteristics of normal marine sediments through
the Phanerozoic record suggests the existence of robust and persistent sedimentologi-
cal or geochemical processes which maintain a constant composition for normal
marine sediments over geologic time. We suggest that the main controls on the
Feyr/FeT ratio are exerted by variations in the relative proportions of the riverine
particulate flux (My) and the glacial particulate flux (Mg) which enter the ocean
basins, together with Feyy trapping in inner shore environments. Thus Mg increases



800 S. W. Poulton and R. Raiswell—The low-temperature geochemical cycle of iron:

TaBLE 11

Feyp/FeT and FeP/FeT ratios in ancient euxinic sediments

No of Feyr/FeT FeP/FeT
Samples
Middle Cambrian Alum Shale, Sweden 53 - 0.67+/-0.13
(Armands,1972)
Upper Cambrian Alum Shale, Sweden 39 - 0.85+/-0.04
(Armands, 1972)
Devonian-Mississippian, New Albany 54 - 0.55+/-0.17
Group, USA (Frost, 1996)
Middle Devonian Oatka Creek Formation, | 33 - 0.71+/-0.2
New York State, USA (Werne and others,
2002)
Lower Jurassic Birchii Bed, Dorset, UK 8 0.39+/-0.07 0.36+/-0.06
Lower Jurassic Posidoniaschiefer, 18 - 0.47+/-0.07
Germany
Lower Jurassic Jet Rock, Yorks, UK 6 0.66+/-0.05 0.57+/-0.17
Upper Jurassic Kimmeridge Clay, Dorset,
UK (Raiswell and others, 2001)
Oxygen Restricted Biofacies 1 59 - 0.90+/-0.10
Oxygen Restircted Biofacies 2 3 - 0.67+/-0.14

during periods of enhanced glacial erosion, but greater volumes of ice also decrease
the volume of the oceans, causing a fall in sealevel. Lower sealevel tends also to
diminish the mass (and the proportion of Feg-enriched) riverine particulates which
are stored in inner shore areas. Conversely, as Mg decreases during periods of
diminished ice masses and glacial erosion, so the higher sealevels produce more
storage of riverine particulates (My decreases and is accompanied by more trapping of
Fepg).

The sealevel changes which constrain My /(Mg + M) also affect the proportions
of Feyp-enriched sediments which may provide long term storage capacity; namely
ironstones and euxinic sediments. We have found no relevant speciation data for
Phanerozoic ironstones although it has commonly been observed that these contain 30
to 45 weight percent Fe as oxides, silicates (glauconite, chamosite, bertherine) and/or
carbonates (Harder, 1989). The extraction data of Raiswell and others (1994) suggest
that substantial proportions (at least) of these minerals will be soluble in dithionite and
will therefore comprise a significant sink for Fey. There is however limited iron
speciation data on ancient euxinic sediments (table 11). These data can be supple-
mented from the literature by using the ratio FeP/FeT, which approximates to
Fegyr/FeT because all iron oxides are usually pyritised in euxinic depositional environ-
ments (Raiswell and Berner, 1985; Canfield and Raiswell, 1991; Raiswell and Canfield,
1998). Table 11 shows that Feyy/FeT is consistently higher in euxinic sediments
compared to modern and ancient normal marine sediments. The reasons for the high
Feyr/FeT ratios in euxinic sediments are not yet known, although Wijsman and others
(2001) have been able to show that enrichment in the Black Sea arises from the
preferential transportation of Feyy from the basin margin sediments together with
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conversion of Fepp and FeU into Feyy (see also Anderson and Raiswell, unpublished
data).

There are thus three sealevel-dependent, potential sinks, which could collectively
operate to store Feyp-enriched sediment, and assist mixing with glacial particulates in
maintaining a roughly constant Feyp/FeT ratio in normal marine shales through the
Phanerozoic. Firstly, Feyg-enriched sediments deposit in the inner shore. During
marine transgressions rising sealevel drowns river valleys and coastal embayments,
increasing inner shore areas which trap Feyg-enriched sediment. Secondly, high
Feyr/FeT ratios can clearly occur in sediments deposited beneath euxinic water
columns, which allow the formation of water column pyrite (Raiswell and Canfield,
1998; Wijsman and others, 2001; Raiswell and others, 2001; Werne and others, 2002).
Many black shales form at the peak of marine transgressions or, to a lesser extent, at
the initial stages of transgression (Wignall, 1994). Thirdly, the formation of ironstones
(which are ferric oxide enriched) is also favored by high sea-level, which produces
extensive flooding of the continental margin and inland seas (Van Houten and Arthur,
1989). A warm global climate with increased precipitation and chemical weathering
also favor ironstone formation (note that relatively high Fey, /FeT ratios are found in
tropical basins, and where there is high runoff; see earlier). These observations suggest
that there are reasonable mechanisms by which the global cycle of iron could operate
to maintain a roughly constant ratio of Feyr /FeT in normal marine shales deposited
through the Phanerozoic record. These mechanisms need more detailed investigation.

CONCLUSIONS

1. Riverine particulates sampled from basins which are geologically, geographi-
cally and climatologically diverse show a close correlation between Fey and FeT. The
iron oxides, which mainly comprise Feyg, are derived by chemical weathering from the
total iron fraction (FeT) and remain closely associated with this fraction.

2. Glacial particulates have relatively low proportions of Fey (0.47+/—0.37) and
show little association with FeT (Feyr/FeT =0.11+/—0.11). These observations are
consistent with an origin where the role of chemical weathering has been suppressed
(relative to the riverine environment) and the role of physical weathering is enhanced.

3. Riverine particulate Feyyp/FeT ratios averaged on a continental-scale are
closely correlated with continental runoff ratios, consistent with the weathering
controls in 1) above.

4. The globally averaged, discharge-weighted composition of riverine particulates
is enriched in Feyg/FeT (0.43+/—0.03) relative to average marine sediment (0.26+/
—0.08). This difference can be explained by a combination of; (a) Mixing with
Feygr-depleted glacial particulates, and (b) Loss of Feyy from riverine particulates to
inner shore (floodplain, estuarine and salt marsh) deposits, prior to entry into the
oceans. This behavior, which has been well documented in a number of rivers, is
apparently reproduced on a global basis.

5. Preliminary measurements of Fey, /FeT in inner shore sediments suggest that
these sediments are enriched relative to marine sediments. Further studies of iron
speciation in such sediments, relative to their riverine supply, are required.

6. The speciation of iron in modern normal marine sediments is, to a first
approximation, similar to that in comparable sediments through the Phanerozoic
record. A long-term steady state may be maintained through glacioeustatic controls.
Periods of diminished ice mass volume and glacial erosion produce a high sealevel and
lead to effective trapping of Feyg-enriched sediment in the inner shore deposits, but
the remaining riverine material is mixed with lower proportions of Feyp-depleted
glacial particulates. Conversely, increased ice volumes and enhanced glacial erosion
are associated with low sealevel, and less Feyy, is trapped before entry into the ocean
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basins. Moreover this riverine material is then mixed with higher proportions of glacial
particulates.
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