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AGES AND ORIGINS OF ROCKS OF THE KILLINGWORTH DOME,
SOUTH-CENTRAL CONNECTICUT: IMPLICATIONS FOR THE
TECTONIC EVOLUTION OF SOUTHERN NEW ENGLAND

JOHN N. ALEINIKOFF*#, ROBERT P. WINTSCH**, RICHARD P. TOLLO*#**,
DANIEL M. UNRUH#*, C. MARK FANNING#*#*#* and MARK D. SCHMITZ*

ABSTRACT. The Killingworth dome of south-central Connecticut occurs at the
southern end of the Bronson Hill belt. It is composed of tonalitic and trondhjemitic
orthogneisses (Killingworth complex) and bimodal metavolcanic rocks (Middletown
complex) that display calc-alkaline affinities. Orthogneisses of the Killingworth com-
plex (Boulder Lake gneiss, 456 = 6 Ma; Pond Meadow gneiss, ~460 Ma) were
emplaced at about the same time as eruption and deposition of volcanic-sedimentary
rocks of the Middletown complex (Middletown Formation, 449 = 4 Ma; Higganum
gneiss, 459 * 4 Ma). Hidden Lake gneiss (339 = 3 Ma) occurs as a pluton in the core of
the Killingworth dome, and, on the basis of geochemical and isotopic data, is included
in the Killingworth complex.

Pb and Nd isotopic data suggest that the Pond Meadow, Boulder Lake, and
Hidden Lake gneisses (Killingworth comglex) resulted from mixing of Neoprotero-
zoic Gander terrane sources (high 207pp /2%4Ph and intermediate €,,) and less radio-
genic (low 207pp /2%4Ph and low £,) components, whereas Middletown Formation and
Higganum gneiss (Middletown complex) were derived from mixtures of Gander
basement and primitive (low *°’Pb/2**Pb and high &,,) sources. The less radiogenic
component for the Killingworth complex is similar in isotopic composition to material
from Laurentian (Grenville) crust. However, because published paleomagnetic and
paleontologic data indicate that the Gander terrane is peri-Gondwanan in origin, the
isotopic signature of Killingworth complex rocks probably was derived from Gander
basement that contained detritus from non-Laurentian sources such as Amazonia,
Baltica, or Oaxaquia. We suggest that the Killingworth complex formed above an
east-dipping subduction zone on the west margin of the Gander terrane, whereas the
Middletown complex formed to the east in a back-arc rift environment.

Subsequent shortening, associated with the assembly of Pangea in the Carbonifer-
ous, resulted in Gander cover terranes over the Avalon terrane in the west; and in the
Middletown complex over the Killingworth complex in the east. Despite similarities of
emplacement age, structural setting, and geographic continuity of the Killingworth
dome with Oliverian domes in central and northern New England, new and published
isotopic data suggest that the Killingworth and Middletown complexes were derived
from Gander crust, and are not part of the Bronson Hill arc that was derived from
Laurentian crust. The trace of the Ordovician Iapetan suture (the Red Indian line)
between rocks of Laurentian and Ganderian origin probably extends from Southwest-
ern New Hampshire west of the Pelham dome of northcentral Massachusetts and is
coverd by Mesozoic rocks of the Hartford basin.

INTRODUCTION

Tectonic models for the origins of terranes in New England have evolved to
increasing complexity with the confluence of multiple techniques, including mapping
(structure and stratigraphy), igneous and metamorphic petrology, geochemistry,
geochronology, geophysics, and isotope geology (Tucker and others, 2001; Moench
and Aleinikoff, 2003). These methods have facilitated correlation of high-grade, highly
attenuated Paleozoic and Neoproterozoic rocks in southern New England with lower
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Fig. 1. Map of terranes of New England, modified from Hibbard and others (2006). Abbreviations: HB
(Hartford basin), DH (Dry Hill Gneiss of Pelham dome), MG (Massabesic Gneiss), P-N (Putnam-Nashoba).

grade correlatives in northern New England and Maritime Canada (Tremblay and
Pinet, 2005; Zagorevski and others, 2006; Wintsch and others, 2007). New interpreta-
tions have led to refinement of regional-scale terrane definitions and boundaries. It is
now clear that several terranes (Bronson Hill, Central Maine, Merrimack, Putnam-
Nashoba, Gander, and Avalon) of distinctly different origins are juxtaposed in a
relatively small area of south-central New England (fig. 1). The Killingworth dome is
shown here to be crucial to unraveling the accretionary history of terranes to the
Laurentian margin in the middle and late Paleozoic.

The Killingworth dome (fig. 2) is the southernmost of a series of domes that
expose largely calc-alkaline rocks along a narrow belt in central New England. The
dome was previously interpreted as consisting of a homogeneous body of tonalitic rock
(Rodgers, 1985). Webster and Wintsch (1987) used whole-rock major and trace
element geochemistry to redefine units within the dome, including both intrusive and
extrusive igneous rocks ranging in composition from granite to tonalite. Our new
geochronologic and isotopic data show that the emplacement history of the plutonic
rocks of the Killingworth dome is more complicated than previously thought. Geochemi-
cal and isotopic data indicate that this suite of igneous rocks was formed from diverse
sources in both the Ordovician and Carboniferous. Moreover, in contrast to the
geological record of much of New England, evidence of regional Acadian (Devonian)
metamorphic overprinting is lacking. Rather, there is compelling evidence that these
rocks were strongly metamorphosed, locally partially melted, and assembled by ductile
faulting in the Carboniferous. The details of these interpretations are presented below
to establish a new tectonic affinity for the Killingworth dome rocks in this area located
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Fig. 2. Generalized geologic map of southern New England (modified from Wintsch and others, 2003).
Abbreviations: BH (Bronson Hill), CM (Central Maine), HB (Hartford basin), M (Merrimack), P-N
(Putnam-Nashoba), Z (Neoproterozic rocks, subdivided into Z,—Avalon, Z;—Gander), CD (Clinton
dome), LD (Lyme dome), SNB (Selden Neck block), WD (Willimantic dome), HH (Honey Hill fault).
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at the intersection of the Bronson Hill, Central Maine, Merrimack, Gander, and
Avalon terranes (fig. 2).

GEOLOGIC SETTING

Orthogneisses within the Killingworth dome occur between metasedimentary
rocks of the Central Maine and Merrimack terranes to the east, Neoproterozoic
orthogneisses and paragneisses to the south, and Mesozoic arkoses of the Hartford
basin to the west (fig. 2). The Killingworth dome traditionally has been considered to
belong to the Bronson Hill Anticlinorium (Rodgers, 1985) or terrane (Wintsch and
others, 2005). The orthogneisses consist primarily of plagioclase + quartz, with lesser
amounts of biotite and amphibole. This limited range of modal compositions has
made field and petrographic subdivision of the felsic rocks difficult (Mikami and
Digman, 1957; Lundgren and Thurell, 1973). Various lithologies have been recog-
nized, but boundaries were not identified in the field. Consequently, this lithologic
assemblage has been collectively described as an undivided body of plagioclase gneiss
in most previous geological investigations (for example, Percival, 1842; Rice and
Gregory, 1906; Foye, 1949; Rodgers and others, 1959; Dixon and Lundgren, 1968).
Distinctions between these lithologies were based on: (1) km-scale compositional
zoning of plagioclase in the core region (Mikami and Digman, 1957), (2) degree of
foliation development, and (3) modal content of biotite and amphibole in the Clinton
quadrangle (Lundgren and Thurell, 1973). These relatively imprecise distinguishing
characteristics led Rodgers (1985) to assign all varieties of these plagioclase gneisses to
the Monson Gneiss. The outer margin of the Killingworth dome is occupied by
metavolcanic and metasedimentary rocks of the Middletown and Collins Hill Forma-
tions.

Webster and Wintsch (1987) recognized that rocks of the Killingworth dome
could be subdivided into distinct units on the basis of major- and trace-element
compositions and map-scale distribution (fig. 3). These units were originally identified
by reference to their geographic location around the dome (western, eastern south-
ern, and central gneisses), but none were formally named. Our new results reinforce
the interpretation that these bodies are petrologically distinct, thus justifying names
for each unit. In contrast to previous studies, we regard these rocks as igneous
lithodemic units rather than lithostratigraphic units. We follow the North American
Stratigraphic Code (1983) in discriminating between groups and complexes, and
formations and lithodemes. Use of new names supersedes Rodgers’ (1985) assignment
of these rocks to the Monson Gneiss because of unproven geologic continuity with
Monson rocks at the type locality in Massachusetts. We follow the time scale of
Gradstein and others (2004).

RESULTS

In this study, we supplement and expand on the work of Webster and Wintsch
(1987). Our data confirm the designation of distinct orthogneiss bodies, and we
establish ages and origins of these units. Thus, we have replaced the informal,
geographically-based names used by Webster and Wintsch (1987) with the following
new (informal) nomenclature: Higganum gneiss (formerly “western gneiss”), Pond
Meadow gneiss (formerly “eastern gneiss”), Boulder Lake gneiss (formerly “southern
gneiss;” originally called “Boulder Lake variety” of the Monson Gneiss for rocks in the
adjacent Clinton 7.5-minute quadrangle by Lundgren and Thurrell, 1973), and
Hidden Lake gneiss (formerly “central gneiss”). We retain the name “Turkey Hill belt
of Monson Gneiss” (Lundgren, 1963) for a narrow belt of rocks on the east side of the
Killingworth dome that Rodgers (1985) correlated with other rocks called Monson
Gneiss in north-central Connecticut and Massachusetts (Tucker and Robinson, 1990).
The formal name of Clinton Granite Gneiss (Lundgren, 1964) is retained for rocks
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Fig. 3. Geologic map of the Killingworth dome, modified from Rodgers (1985). Lithologic subdivision
of the Killingworth dome based on Webster and Wintsch (1987). Quadrangle abbreviations: C (Clinton), D
(Durham), DR (Deep River), E (Essex), G (Guilford), H (Haddam), MH (Middle Haddam). Abbreviations:
Jhb (Jurassic clastic sediments of the Hartford basin), Jhd (Jurassic Higganum dike), Och (Collins Hill),
Ompy; (Turkey Hill belt (Lundgren, 1963) of Monson Gneiss), SDu (Silurian and Devonian metaigneous
and metasedimentary rocks, undifferentiated), Zc (Clinton Granite Gneiss), Zsc (Stony Creek Gneiss), Zw
(Waterford Group), HH (Honey Hill fault). Fault contact surrounding Middletown-Higganum-Collins Hill
rocks is an interpretation based on data in this paper (see Discussion section).
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Fig. 4. Average modal compositions and average plagioclase composition (expressed as mol. % An) of
lithologies in the Killingworth dome.

that crop out in the Clinton dome, south of the Killingworth dome along the
Connecticut coast. The formal name Middletown Formation (Lundgren, 1963) is
retained for anthophyllite-bearing quartz-plagioclase gneiss and interbedded amphibo-
lite that occur on the outer margins of the Killingworth dome (fig. 3; Rodgers, 1985).
On the basis of field occurrence, plus new geochemistry and isotopic data, we now
group lithologic units that occur within the Killingworth dome into two informally-
named complexes: (1) Killingworth complex (includes Boulder Lake, Pond Meadow,
and Hidden Lake gneisses), and (2) Middletown complex (includes Middletown and
Collins Hill Formations, and Higganum gneiss). The criteria for these groupings are
discussed below.

All orthogneisses contain 50 to 60 modal percent plagioclase, 25 to 30 percent
quartz, variable amounts of minor biotite, hornblende, K-feldspar, and magnetite, and
trace garnet (fig. 4). For example, the hornblende/biotite ratios of the Boulder Lake
and Higganum gneisses are higher than in the Hidden Lake and Pond Meadow
gneisses. The minor minerals are typical, but not always diagnostic, of individual
lithologic map units. In the western part of the study area, most primary mineralogical
and textural features have been overprinted by moderate- to high-grade metamor-
phism and deformation; in the eastern part, overprinting also includes Late Paleozoic
anatexis. Thus, the overall compositional similarity of most gneissic units and the
pervasive regional gneissosity make it difficult to distinguish the orthogneisses in the
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field. Nevertheless, our study indicates that whole-rock compositions and zircon age
data largely survived high-grade metamorphism. As a result, we employ these character-
istics in subdividing the lithologies and interpreting the geologic evolution of their
protoliths.

Geochemistry

A total of 35 new samples from five units within the Killingworth dome (Killing-
worth and Middletown complexes) were collected for geochemical analysis (fig. 3,
table 1). Analytical procedures for determination of concentrations of major elements
and selected trace elements are described in the Appendix. This new data set supports
the findings of Webster and Wintsch (1987) and offers additional perspectives because
it includes analyses of trace elements not reported in the previous study. The data
reported here are considered separately from the results in Webster and Wintsch
(1987) because the data sets were collected by different analytical methods using
different standards.

Orthogneisses of the Killingworth dome vary considerably in major-element
composition, ranging from about 64 to 77 weight percent SiO,, (table 1, figs. 5 and 6).
Lithologic nomenclature for both the orthogneisses and metavolcanic rocks of the
Middletown Formation is determined using standard procedures (figs. bA and 5B,
respectively). These diagrams involve use of alkali element concentrations that may
have been susceptible to remobilization during metamorphism and/or anatexis.
Nevertheless, we suggest that the clustering of data characterizing individual units
indicates that such metasomatic effects are limited. Normative compositions indicate
that the igneous protoliths of these rocks largely varied from tonalite to trondhjemite
(fig. bA). Felsic rocks of the Middletown Formation differ from the Killingworth
orthogneisses in displaying exclusively trondhjemitic compositions. The Middletown
Formation also is distinctive in that it contains a bimodal lithologic association
including rocks of both rhyolitic and andesitic affinity (fig. 5B), reflecting bimodality
in the original magmatic compositions. The three mafic samples are widely distributed
structurally and geographically around the complex, suggesting that rocks of this
composition constitute an important component of the Middletown volcanic stratigra-
phy. As noted by Webster and Wintsch (1987), geochemical trends exhibited by most
of the orthogneisses likely reflect the effects of primary magmatic processes. However,
all rocks have experienced high-grade metamorphic conditions, and the southern half
of the Killingworth complex is pervasively migmatitic. In some rocks, the high
metamorphic grade is shown by patchy zones of tonalite with a subhedral granular
(magmatic) texture interrupting an older wispy gneissic fabric (Wintsch and others,
2005). In other rocks, younger migmatitic textures are associated with an increase in
modal K-feldspar. Migmatization is typical of all rocks of the southern part of the
Killingworth dome. Although care was taken in collecting samples to avoid the effects
of local migmatization, geochemical evidence of this anatexis is apparent from the
scattered compositional data obtained from a small number of samples. This is
illustrated by the relatively high normative orthoclase (Or) content of two samples (fig.
5A), decoupling of Na,O and K,O (table 1), and considerable variation in TiO, (fig.
6A) in the Hidden Lake gneiss at the high end of its silica range. Similar effects are
exhibited by alkalies in some samples from the Higganum and Boulder Lake units.
Such local variation notwithstanding, the preponderance of data from these samples
defines coherent clusters and trends (fig. 6), supporting the compositionally-based
distinction of lithologic units proposed by Webster and Wintsch (1987).

In spite of local variation in alkali contents that results in anomalous data on
variation plots, the majority of geochemical data indicate that differences in aluminos-
ity [expressed as aluminum saturation index = molar (Al,O3/(CaO + Na,O + K,0)
(fig. 6D)] between the dominantly metaluminous Boulder Lake gneiss and other
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TaBLE 1
Geochemical analyses of samples from the Killingworth and Middletown complexes

Field No. 14G 14H 14] 14P 15F 1BWS.11.01 14L 15C 15D
Hidden Hidden Hidden Hidden Hidden Hidden Pond Pond Pond

Unit Lake Lake Lake Lake Lake Lake Meadow Meadow Meadow
SiO, 68.0 66.8 69.2 66.2 70.1 70.6 75.1 72.4 72.5
Al,O4 17.5 16.6 15.4 16.4 14.8 13.8 12.7 14.1 14.3
Fe,05* 2.32 3.65 3.34 3.90 3.16 2.88 2.98 3.33 345
MgO 0.72 1.39 1.17 1.52 1.09 0.69 0.73 0.70 0.60
CaO 4.12 4.75 4.12 5.20 3.10 1.73 2.28 3.44 3.47
Na,O 4.26 3.39 3.29 3.07 3.09 2.17 3.46 3.16 3.85
K,O 1.59 1.53 1.54 1.50 3.02 5.69 1.21 0.96 0.90
TiO, 0.21 0.38 0.29 0.40 0.34 0.51 0.23 0.17 0.19
P,05 0.08 0.21 0.12 0.18 0.16 0.17 0.08 0.09 0.09
MnO 0.04 0.05 0.05 0.05 0.06 0.03 0.08 0.08 0.06
LOI 0.59 0.51 0.46 0.64 0.41 0.49 0.69 0.76 0.37
Total 99.43 99.26 98.98 99.06 99.33 98.76 99.54 99.19 99.78
Rb 61 51 39 49 89 132 78 50 40
Ba 988 1098 1662 916 1589 4073 385 201 188

Sr 573 655 536 555 433 375 83 96 120
Tht 3.12 2.91 5.13 4.49 15.40 61.90 4.97 3.57 3.85
U 1.21 0.73 1.35 0.68 1.52 1.76 2.26 1.29 0.61
Zr 86 62 61 71 106 342 73 58 73
Hf 2.13 2.56 2.11 2.80 5.11 8.36 3.26 2.26 2.76
Nb 13 4 2 2 7 1 1 2 2
Ta 1.56 0.48 0.30 0.14 0.70 0.11 0.24 0.24 0.45
Ni 1 7 9 9 4 4 7 6 6
Zn 34 50 38 59 51 46 48 45 42
Cr 7 7 9 10 12 8 5 4 7
Sc 3.62 3.79 6.44 8.15 5.86 3.18 11.40 11.50 6.52
La 12.20 14.40 18.20 19.30 49.50 103.00 17.50 14.20 13.10
Ce 18.00 2440  30.20 32.00 90.20 181.00 32.50 26.80 25.00
Nd 6.92 7.94 10.30 10.50 31.00 52.70 15.00 12.70 11.30
Sm 0.98 1.22 1.68 1.65 4.09 6.63 3.71 2.63 2.19
Eu 0.42 0.42 0.49 0.50 0.89 1.16 0.57 0.54 0.56
Gd 1.03 0.93 1.43 1.57 3.13 3.80 3.84 2.57 2.02
Th 0.14 0.12 0.18 0.17 0.36 0.30 0.61 0.38 0.23
Ho 0.18 0.12 0.24 0.20 0.40 0.28 0.82 0.69 0.25
Tm 0.06 0.05 0.09 0.06 0.15 0.06 0.45 0.37 0.07
Yb 0.38 0.26 0.52 0.37 0.90 0.36 2.96 2.46 0.48
Lu 0.06 0.04 0.08 0.05 0.13 0.06 0.45 0.38 0.08
Y 5 4 5 6 11 10 20 16 4

peraluminous units is not a manifestation of local migmatization. Instead, these
differences likely are a reflection of igneous processes, including both source-related
characteristics and possible differentiation. The metaluminous Boulder Lake rocks
(fig. 6D), characterized by relatively low silica contents and high concentrations of
compatible major elements (figs. 6A-C, F), are the least compositionally evolved of the
intermediate to felsic gneisses. In contrast, the Pond Meadow and Higganum gneisses
display the most evolved compositions, with SiO, contents in excess of 70 weight
percent. The Hidden Lake gneiss, intermediate in SiO, content between the Boulder
Lake and Pond Meadow gneisses, plots apart from the trend defined by the other units
in FeOt (total iron expressed as FeO) (fig. 6E) and the feldspar-compatible trace
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TaBLE 1
(continued)
Field No. 15E 15P 15R  3BS8.11.01 15G 15Q 15K 15L 15M

Pond Pond Pond Pond Pond Pond  Boulder Boulder Boulder
Unit Meadow Meadow Meadow Meadow Meadow Meadow  Lake Lake Lake

SiO, 71.9 77.0 732 71.1 76.4 70.4 74.3 63.8 66.6
AlLO; 13.9 12.0 14.2 14.9 12.2 14.8 13.0 153 15.1
Fe,O5* 3.66 2.19  2.63 3.40 2.76 4.36 2.17 6.65 5.73
MgO 1.17 0.51 0.71 0.81 0.41 0.87 0.56 237 195
CaO 3.70 1.69  2.90 3.55 1.66 3.83 1.72 6.15  4.67
Na,O 3.28 3.67 382 3.92 3.74 3.45 3.05 2.60 2.73
K,0 1.20 1.67 1.27 1.08 1.17 1.14 3.56 1.55 1.68
TiO, 0.28 0.12  0.21 0.22 0.16 0.25 0.20 048 0.42
P,0; 0.10 0.07  0.09 0.09 0.07 0.11 0.16 0.11 0.10
MnO 0.08 0.03  0.04 0.06 0.09 0.11 0.04 0.12 0.10
LOI 0.41 047 054 0.44 0.56 0.45 0.32 0.34 0.30
Total 99.68  99.42 99.61 99.57 99.22  99.77 99.08  99.47 99.38
Rb 58 52 56 44 41 55 106 63 70
Ba 173 175 242 221 254 228 1105 284 373

Sr 150 83 131 123 85 135 160 187 191
Tht 7.52 575 447 3.61 6.20 5.84 34.50 8.97 17.60
U 1.26 2.10  0.88 2.70 1.37 1.40 1.78 1.17  2.45
Zr 58 107 62 54 75 62 130 108 94
Hf 2.73 483 249 2.23 3.02 1.90 4.32 3.05 337
Nb 3 3 7 3 13 2 10 4 5
Ta 0.50 0.14  0.49 0.47 0.80 0.58 0.28 039 1.28
Ni 9 3 5 5 8 4 5 10 4
Zn 47 39 31 53 38 44 23 57 45
Cr 18 6 7 15 7 8 9 15 10

Sc 10.40 847  6.26 7.99 11.40 14.60 4.53  22.80 21.80
La 16.00 19.10  9.55 11.20 17.80 16.30 48.50  23.00 17.90
Ce 31.90  40.70 22.80 22.50 3790  36.90 87.50  45.60 43.20
Nd 1520  20.60  9.51 10.10 19.10 15.30 32.70 19.30 15.20
Sm 3.30 482 233 2.11 4.28 3.34 6.19 3.87 3.58
Eu 0.61 0.69  0.57 0.57 0.68 0.67 0.98 0.78 0.74
Gd 3.07 6.41 2.51 1.94 4.30 3.14 5.10 355 335
b 0.51 1.11 0.37 0.23 0.66 0.45 0.57 0.51 0.56
Ho 0.70 227  0.44 0.27 0.77 0.82 0.51 0.70 0.83
Tm 0.29 1.18  0.14 0.09 0.24 0.46 0.20 035 043
Yb 1.75 7.84  0.82 0.56 1.44 3.13 1.13 221 287
Lu 0.27 1.20  0.13 0.08 0.20 0.49 0.17 033 043
Y 15 49 8 6 18 20 15 19 23

elements Sr and Ba (figs. 6G and 6H, respectively), and thus is unlikely to share a
common petrologic lineage. In contrast, the Higganum gneiss and felsic Middletown
Formation exhibit similarities in trace-element concentrations that suggest a petro-
logic relationship between these units. Systematic decrease in CaO and Sr with
increasing silica content for all Ordovician units (figs. 6B and 6G) points toward a
petrologic origin in which differentiation of plagioclase feldspar was important.

Geochronology

With the lithologic differences found by Webster and Wintsch (1987) confirmed
here, we determined the age of each unit of the Killingworth dome. In addition, we
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TaBLE 1
(continued)

Field No. 15N 15S 15T 4BS8.11.01 14A 14B 14M 14N HA-1-02
Boulder Boulder Boulder Boulder

Unit Lake Lake Lake Lake Higganum Higganum Higganum Higganum Higganum
SiO, 66.0 67.4 64.3 67.6 71.5 75.6 72.2 72.3 71.7
ALO; 14.9 14.6 15.5 15.0 134 12.1 13.6 13.3 134
Fe,O5* 5.77 5.77 6.10 5.22 5.34 3.86 4.46 421 4.86
MgO 1.91 1.14 2.18 1.64 1.06 0.87 1.23 1.41 1.06
CaO 4.73 6.17 5.48 435 4.23 1.76 2.85 1.75 3.81
Na,O 2.85 2.90 3.09 3.05 3.61 4.37 4.57 4.39 3.50
K,O 2.32 0.49 1.50 1.78 0.49 0.55 0.17 1.52 0.82
TiO, 0.41 0.42 0.44 0.42 0.37 0.17 0.40 0.28 0.28
P,Os 0.11 0.15 0.15 0.11 0.10 0.07 0.12 0.09 0.10
MnO 0.10 0.15 0.13 0.09 0.11 0.08 0.09 0.09 0.10
LOI 0.49 0.34 0.28 0.16 <0.01 <0.01 0.06 0.50 0.25
Total 99.59 99.53 99.15 99.42 100.21 99.43 99.75 99.84 99.88
Rb 82 4 74 87 10 10 2 113 21
Ba 537 129 325 348 90 67 81 164 113

Sr 188 273 199 185 89 99 165 100 89
Tht 8.27 253 12.20 9.48 1.03 0.88 3.66 0.39 1.50
U 2.62 1.15 1.98 0.86 0.81 0.86 1.65 6.77 0.85
Zr 85 58 87 95 93 98 82 74 51
Hf 3.09 1.90 2.67 3.52 3.44 3.27 2.52 2.82 2.38
Nb 2 2 4 8 3 0 2 7 0
Ta 0.42 0.17 1.03 0.70 0.20 0.17 0.21 0.76 0.25
Ni 9 6 0 6 5 2 3 4 4
Zn 36 124 41 41 67 35 30 40 56
Cr 10 4 7 18 6 16 4 4 15

Sc 19.60 24.70 22.50 18.20 35.70 8.68 16.50 22.60 17.00
La 20.80 6.50 30.20 26.40 391 3.05 12.50 2.17 4.58
Ce 38.80 22.30 56.00 50.20 9.35 6.58 27.80 4.18 10.70
Nd 16.90 11.80 23.40 22.80 6.74 5.15 13.60 3.00 6.91
Sm 3.79 3.95 4.76 4.64 2.86 1.56 3.81 0.99 2.46
Eu 0.78 1.04 0.93 0.83 0.67 0.65 0.81 0.36 0.55
Gd 3.54 5.10 4.40 4.08 3.99 2.02 4.18 1.11 3.19
Th 0.46 0.83 0.63 0.53 0.75 0.39 0.72 0.22 0.61
Ho 0.75 1.28 0.88 0.70 1.27 0.72 1.14 0.34 1.10
Tm 0.41 0.68 0.39 0.28 0.60 0.40 0.51 0.16 0.58
Yb 2.57 4.53 2.40 1.57 3.90 2.69 3.46 1.01 3.66
Lu 0.39 0.67 0.36 0.22 0.61 0.45 0.54 0.14 0.58
Y 19 25 18 18 28 16 27 7 25

dated granitic gneiss from the Clinton dome (fig. 3). The geochronology results are
described below in chronological order, from oldest to youngest. Isotopic data for
zircon are shown on Tera-Wasserburg concordia plots; ages are calculated by determin-
ing the weighted average of selected ’°Pb/***U ages. Isotopic data (uncorrected for
common Pb) from titanite are shown on a Tera-Wasserburg concordia plot and are
regressed to calculate a lower intercept age. Geochronologic techniques, including a
discussion of the age of our titanite standard (determined by thermal ionization mass
spectrometry), are described in the Appendix.

Clinton Granite Gneiss.—The Clinton Granite Gneiss of Lundgren (1964) and
Lundgren and Thurell (1973) occurs structurally below the Killingworth dome in the
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TaBLE 1
(continued)
Field No. 14D 14E 14F 14K 15B 14C  2BS8.11.01 16BS11.11.02
Middle- Middle- Middle- Middle- Middle- Middle- Middle- Middle-
Unit town town town town town town town town
SiO, 56.8 73.3 554 54.8 73.7 76.2 74.3 72.5
AlO; 14.9 12.8 15.6 15.2 12.2 12.5 12.2 13.1
Fe,O5* 12.3 3.73 8.40 12.6 4.40 3.48 4.47 2.55
MgO 5.38 2.17 6.62 4.13 1.79 0.48 1.24 1.48
CaO 3.02 2.23 6.65 6.71 1.96 1.41 1.60 3.24
Na,O 5.64 4.28 5.54 3.98 4.62 4.68 4.63 5.24
K,0 0.15 0.17 0.13 0.41 0.16 0.53 0.35 0.16
TiO, 0.80 0.24 0.51 0.91 0.38 0.19 0.37 0.51
P,Os 0.22 0.10 0.12 0.10 0.12 0.08 0.10 0.17
MnO 0.27 0.05 0.16 0.18 0.06 0.12 0.05 0.06
LOI 0.12 0.42 0.55 0.12 0.09 0.22 0.08 0.14
Total 99.60 99.49 99.68 99.14 99.48 99.89 99.39 99.15
Rb 8 9 4 11 5 9 8 2
Ba 50 36 58 22 51 79 88 58
Sr 61 119 200 119 111 85 132 141
Tht 0.50 0.35 0.44 1.00 4.79 1.08 448 4.27
U 0.23 0.38 0.13 0.43 1.58 1.01 1.87 1.33
Zr 27 28 30 40 92 53 79 110
Hf 1.00 0.94 0.94 1.26 3.31 2.37 2.81 3.38
Nb 1 0 0 0 2 1 2 3
Ta 0.11 0.11 0.06 0.13 0.19 0.24 0.20 0.23
Ni 18 3 25 26 3 0 3 2
Zn 124 29 93 117 30 54 37 32
Cr 14 7 123 14 6 5 12 12
Sc 43.70 18.80 35.80 39.20 14.90 11.90 11.40 17.80
La 2.26 1.97 2.88 3.75 15.70 4.01 14.00 13.70
Ce 4.71 4.44 7.09 9.78 33.80 8.70 28.20 33.40
Nd 4.17 2.64 4.40 6.07 18.00 5.29 15.80 18.80
Sm 1.77 1.17 1.56 2.16 4.79 1.85 4.00 5.54
Eu 0.70 0.46 0.60 0.64 0.92 0.57 0.85 1.35
Gd 2.32 1.77 2.08 2.54 5.06 2.02 5.03 6.22
Th 0.44 0.33 0.34 0.51 0.89 0.44 0.77 1.06
Ho 0.70 0.58 0.59 0.78 1.31 0.80 1.23 1.78
Tm 0.34 0.33 0.32 0.39 0.67 0.37 0.62 0.82
Yb 2.12 2.08 1.93 2.47 4.53 2.45 4.24 5.29
Lu 0.31 0.31 0.29 0.35 0.66 0.36 0.65 0.79
Y 18 13 13 18 30 14 21 39

* total iron expressed as Fe,O4
T elements in italics analyzed by instrumental neutron activation (INA) techniques; all others
analyzed by X-ray fluorescence (XRF)

Clinton dome along Long Island Sound (figs. 2 and 3). Itis a tan- to cream-weathering
granitic gneiss, with 0.5 to 1.0 cm equant grains of K-feldspar, quartz, and plagioclase,
accompanied by minor biotite. A weak gneissosity is defined by local wispy biotite-rich
folia present in most outcrops. The contact between the Clinton Granite Gneiss and
the structurally higher Boulder Lake gneiss to the north is a ductile fault (fig. 3).
Although both rocks are shown on the Bedrock Geologic Map of Connecticut
(Rodgers, 1985) as Neoproterozoic, it has long been suspected that the fault is a
terrane boundary along which intrusive Ordovician rocks of the Killingworth dome are
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Fig. 5. Geochemical plots of whole-rock data from the Killingworth dome. (A) Plot of normative
anorthite (An) vs albite (Ab) vs orthoclase (Or) for gneisses of the Killingworth and Middletown complexes.
Lithologic field boundaries from Barker (1979). All normative data were calculated using Fe2" /Fe (total) =
0.9. (B) Plot of total alkalies (Na,O + K,0) vs SiO, for rocks of the Middletown Formation in the study area,
with field boundaries from Le Maitre and others (1989). All data are expressed in weight percent. Dashed
line separating alkalic and subalkalic fields from Irvine and Baragar (1971).

juxtaposed against Neoproterozoic Gondwanan basement rocks (Wintsch and others,
2005). A new interpretation for this contact is presented in the Discussion section
below.
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Zircons from the Clinton Granite Gneiss (sample 5BS8.11.01; locality 1, fig. 3) are
subhedral to euhedral, and medium brown. Some grains are prismatic [average
length-to-width ratio (1/w) = 3-4, whereas others are more stubby (1/w = 1-2)]. Most
grains are fractured and contain numerous opaque inclusions. All zircons show fine,
concentric, oscillatory zoning in cathodoluminescence (CL) (fig. 7A). Only a few
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Fig. 7. Digital images (transmitted light and CL) of representative zircons and Tera-Wasserburg
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(A-B) Clinton Granite Gneiss (sample 5BS8.11.01); (C-D) Higganum gneiss (sample Ha-1-02); (E-F) Pond
Meadow gneiss (sample 52305-1).

grains have very small, dark, unzoned overgrowths. Fourteen of 17 U-Pb analyses by
sensitive high resolution ion microprobe (SHRIMP) yield an age of 605 * 3 Ma (fig.
7B), interpreted as the time of crystallization of the granite protolith. Two younger
analyses from cores are probably due to minor Pb loss. One analysis on the dark (in
CL) outermost portion of a grain (probably an overgrowth) yields an age of about
552 Ma.

Higganum gneiss.—The Higganum gneiss (“western gneiss” of Webster and Wintsch,
1987) crops out along the western margin of the Killingworth dome (fig. 3). Rocks of



south-central Connecticut: Implications for the tectonic evolution 77

this unit are pale to medium gray-weathering calc-alkaline tonalitic and trondhjemitic
gneisses (Webster and Wintsch, 1987), with subordinate amphibolite and biotite schist.
The strongly gneissose fabric of the Higganum has destroyed primary structures;
however, conformable layering of amphibolite and schist within the gneiss suggests an
extrusive origin.

Zircons from a tonalitic sample of Higganum gneiss (sample Ha-1-02; locality 2,
fig. 3) are prismatic, subhedral to euhedral, light brown to colorless, and contain
numerous opaque inclusions. In CL, these grains show oscillatory zoning that is
parallel to the crystallographic c-axis of the grains but is not concentric (fig. 7C). Also
present are very small overgrowths that are black and unzoned in CL. The zircons
contain relatively high concentrations of uranium (mostly 600 — 800 ppm) and have
relatively high Th/U (0.2 - 0.3, table 2), indicative of magmatic origin. U-Pb SHRIMP
data (9 of 12 analyses) indicate an age of 459 = 4 Ma (fig. 7D), interpreted as the time
of crystallization of the volcanic protolith. The three slightly younger ages probably are
due to minor Pb loss.

Pond Meadow gneiss.—The Pond Meadow gneiss (“eastern gneiss” of Webster and
Wintsch, 1987) occurs on the southern, western, and northern flanks of the Killing-
worth dome (fig. 3). Itis a pale-gray weathering tonalitic and trondhjemitic gneiss, and
is the most sodic and least mafic of all Killingworth units (table 1; Webster and
Wintsch, 1987). The gneiss is poorly to moderately foliated, coarse-grained, and
commonly migmatitic (Wintsch and others, 2005), suggesting that an anatectic event
was superimposed on an earlier orthogneiss.

Zircons from the Pond Meadow gneiss (samples 52305-1 and 3BS8.11.01; localities
3 and 4, respectively, fig. 3) occur as two morphologic types. Both populations are
prismatic and euhedral. Most grains from sample 52305-1 are medium-brown and
contain numerous cracks and opaque inclusions. CL images show that these grains are
composed primarily of concentric, oscillatory-zoned cores (many of which are bro-
ken), overgrown by dark, unzoned rims (fig. 7E). In contrast, most grains from sample
3BS8.11.01 are colorless and composed of very small, partially resorbed cores and
broad, patchwork-zoned mantles (fig. 8A). We dated both populations, with the intent
of determining: (1) the age of the igneous protolith by analyzing the oscillatory-zoned
cores, and (2) the age of anatexis/metamorphism by analyzing the broad, patchwork-
zoned mantles.

Two analyses of oscillatoryzoned cores from sample 52305-1 yield *’°Pb/***U ages
of ~456 to 462 Ma (Th/U of about 0.3, table 2), interpreted as the approximate time
of igneous emplacement (fig. 7F). Two analyses of overgrowths from this sample yield
ages of ~335 and ~285 Ma (Th/U < 0.02), interpreted as times of metamorphism.
Several other analyses, with intermediate ages (about 418 — 448 Ma) and high,
igneous-type Th/U (0.24 — 0.44), probably result either from analysis of mixed core
and rim, or Pb loss from highly cracked grains. These dates have no age significance.

Patchwork-zoned mantles from zircons in sample 3BS8.11.01 have low Th/U
(<0.04), indicative of metamorphic origin. Ten analyses yield a weighted average age
of 335 = 2 Ma (fig. 8B). Three analyses are slightly younger (~325 and 300 Ma) and
one analysis is slightly older (~345 Ma). In addition, one oscillatory-zoned core yielded
an age of about 460 Ma. We conclude from results from both samples that the Pond
Meadow gneiss crystallized at about 460 Ma and was metamorphosed to high-grade,
probably anatectic conditions at about 335 Ma. We see no evidence for a metamorphic
event older than about 335 Ma. Limited data suggest subsequent metamorphic zircon
growth as young as about 300 Ma.

Boulder Lake gneiss.—The belt of Boulder Lake gneiss, named by Lundgren and
Thurell (1973) for rocks in the Clinton quadrangle, has been extended eastward into
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the Essex quadrangle (Wintsch, 1994). It occurs south of the Pond Meadow gneiss and
north of the Clinton Granite Gneiss (fig. 3). The Boulder Lake is a medium- to
dark-gray, weakly foliated, generally unlayered, medium-grained tonalitic pluton char-
acterized by the common occurrence of mafic and calcsilicate inclusions (Lundgren
and Thurrell, 1973). Primary igneous structures are not preserved where strain is high,
such as along its southern fault contact with the Clinton Granite Gneiss (Wintsch and
others, 2005). Whole-rock compositions show the protolith to be zoned in normative

J- N. Aleinikoff and others—Ages and origins of rocks of the Killingworth dome,

Sample 3B58.11.01, Locality 4

Sample 4BS8.11.01, Locality 5

100 pm

" j00um

Fig. 8. Digital images (transmitted light and CL) of representative zircons and Tera-Wasserburg
Concordia plots (with insets showing weighted averages of **°Pb/?%U ages) for rocks of the Killingworth
dome. (A-B) Pond Meadow gneiss (sample 3BS8.11.01); (C-D) Boulder Lake gneiss (4BS8.11.01); (E-F)
Turkey Hill belt of Monson Gneiss (1BS8.11.01)
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anorthite content, with a more sodic interior, and more calcic margin (Wintsch and
others, 1990).

Zircons from the Boulder Lake gneiss (sample 4BS8.11.01; locality 5, fig. 3) are
prismatic, euhedral, and light brown. Most grains show fine concentric, oscillatory
zoning in CL (fig. 8C), and some grains have narrow dark or white (in CL), unzoned
overgrowths. U contents of Boulder Lake zircons are moderate (150 — 400 ppm, table
2); Th/U is 0.2 to 0.4, typical of igneous origin. Eleven of 16 analyses of the
oscillatory-zoned portions of the grains yield an age of 456 * 6 Ma, interpreted as the
time of crystallization of the tonalitic protolith (fig. 8D). Two analyses are older (478
and 495 Ma). Another core, with an irregular rounded boundary and oscillatory
zoning truncated at the interface with the igneous mantle, yielded an age of 1.33 Ga,
indicating possible Grenville inheritance. Several ages younger than 450 Ma probably
are due to Pb-loss, as these were obtained from oscillatory-zoned mantles. Three
metamorphic overgrowths yield an age of ~312 Ma.

Turkey Hill belt of Monson Gneiss.—The Turkey Hill belt of Monson Gneiss (Lund-
gren, 1963) occurs in a narrow, north-northwest-trending belt of orthogneiss that
crops out on the east side of the Killingworth dome in the eastern part of the study area
(fig. 3). Rodgers (1985) showed this belt as a continuous unit that extends north into
Massachusetts toward rocks mapped as Monson Gneiss, whereas Webster and Wintsch
(1987) grouped these rocks with their “eastern gneiss.” These medium- to coarse-
grained rocks include granitic gneiss, tonalitic gneiss, amphibolite, and dunite (Wintsch,
1994). The rock sampled for geochronology is a tan, strongly foliated, medium- to
coarse-grained, granitic gneiss. Although originally correlated with other plagioclase
gneisses in the area (Rodgers, 1985), this belt of rock was shown by Wintsch (1994) not
to be part of the Killingworth complex. Consequently, we dated this sample of Monson
Gneiss, but do not include this lithology in our geochemical study.

Zircons from the Turkey Hill belt of Monson Gneiss (sample 1BS8.11.01; locality
6, fig. 3) are euhedral and medium brown; most contain numerous cracks. CL images
show fine oscillatory zoning in broad cores and coarse oscillatory zoning in the outer
portions of the grains (fig. 8E). Many grains are invaded by wisps of white (in CL)
material, suggestive of subsequent metamorphic dissolution and replacement. The
zircons have moderately high U contents (600 — 2100 ppm) and Th/U of 0.3 to 0.6
(table 2). Twelve of 20 analyses form a coherent group with an age of 451 = 5 Ma (fig.
8F), interpreted as the time of crystallization of the igneous protolith. One analysis is
older (~486 Ma) and may reflect derivation of this gneiss from slightly older Ordovi-
cian source rocks possibly related to the Bronson Hill terrane. Younger ages (~410 —
435 Ma) probably are due to Pb loss from damaged, fractured grains, and thus are
considered to be geologically meaningless.

Middletown Formation.—The Middletown and Collins Hill formations of Rodgers
(1985) crop out on the outer margins of the Killingworth dome, except on the
southeast side (fig. 3). These map units include biotite schist, plagioclase gneiss,
anthophyllite gneiss, amphibolite, and calcssilicate schist (Bernold, 1976), a lithologic
package suggesting a volcanic-sedimentary protolith. The Middletown Formation is
considered to be primarily metavolcanic, whereas the Collins Hill Formation is mostly
of sedimentary origin (Lundgren, 1979). These two units are interlayered; distinction
between the two formations is based on proportion of inferred igneous or sedimentary
components. On the west side of the Killingworth dome, the Middletown Formation is
structurally above the Higganum gneiss with a gradational contact. The Higganum is
primarily a felsic rock with lesser amounts of amphibolite and schist, whereas the
Middletown is primarily an amphibolite with lesser amounts of meta-diorite and schist.
The protoliths of both units probably were volcanic. Anthophyllite gneiss of the
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Middletown Formation is medium-gray, strongly foliated, strongly lineated, well-
layered, medium- to coarse-grained plagioclase gneiss. The occurrence within the
anthophyllite gneiss of a minor population of rounded zircon grains interpreted as
detrital in origin supports the suggestion of Lundgren (1979) that the protolith of the
anthophyllite gneiss was an extrusive rock. Collectively, the Middletown and Collins
Hill formations and the Higganum gneiss constitute our Middletown complex.

Zircons from the anthophyllite gneiss (samples 2BS8.11.01 and 16BS11.11.02;
localities 7 and 8, respectively, fig. 3) have a very unusual morphology. Almost all grains
are dark brown and anhedral with irregular, amoeboid shapes. In CL, they show dark,
mottled textures with sparse, very dark spots irregularly overgrown by pale rims (fig.
9A). In back-scattered electron (BSE) imaging, most grains contain small, randomly
distributed, very bright spots identified as thorite (using XRF energy-dispersive analy-
sis). The white (in CL) rim material commonly invades the grains. Consequently, there
are very few pristine, homogeneous areas large enough to accommodate a SHRIMP
analysis without contamination by an adjacent zone. We suggest that the unusual
anhedral, mottled grains are primarily igneous in origin, with discontinuous metamor-
phic overgrowths. A second population of zircon (less than 1% of the total) also occurs
in the anthophyllite gneiss. These grains are roughly equant, rounded, light brown to
colorless, and have a variety of types of oscillatory zoning, all of which are truncated at
grain boundaries (fig. 9A). As shown by the U-Pb age data below, we interpret these
rounded grains to be detrital in origin.

By imaging in both CL and BSE, and examining thousands of grains during five
separate SHRIMP sessions, we were able to obtain sufficient U-Pb data to have
confidence in assigning an age to this rock. The anhedral, mottled grains have high U
contents (800 — 3600 ppm) and igneous-type Th/U ratios of 0.2 to 0.6 (table 2). The
light-colored (in CL) overgrowths have lower U (mostly 800 — 1200 ppm) and very low
Th/U (0 - 0.04) typical of zircons of metamorphic origin. Rounded, oscillatory-zoned
grains interpreted as detrital have moderate U contents (100 — 300 ppm) and Th/U of
0.2 to 0.6 typical of igneous origin. Isotopic data from 67 analyses (5 analytical sessions)
from all grain types yield a broad spectrum of ages (fig. 9B). Thirteen analyses (from 4
sessions) of homogeneous core zones result in a coherent group of data with an age of
449 * 4 Ma (fig. 9C). Six overgrowths yield ages of about 350 to 320 Ma; one other
overgrowth is about 270 Ma. Many more analyses yielded intermediate ages, and
probably represent the result of mixing of Ordovician core regions with Carboniferous
overgrowths. Zircons interpreted as detrital in origin have much older ages, between
about 0.9 to 1.3 Ga (fig. 9B).

Titanite from the anthophyllite gneiss occurs as light-brown to yellowish, anhedral
grains. BSE imaging shows that many are complexly zoned, with dark (that is, relatively
low-U) cores and mantles overgrown by white to light gray (that is, relatively high-U)
rims (fig. 9D). A few cores display oscillatory zoning that reflects crystal faces. Titanite
cores contain about 20 to 135 ppm U, whereas the rims contain about 100 to 290 ppm.
All isotopic analyses indicate the presence of a significant common Pb component
(table 2). Thus, U-Pb ages are determined by calculating regressions through the
isotopic data (uncorrected for common Pb) to determine concordia intercept ages of
304 £ 9 and 249 = 4 Ma for the cores and rims, respectively (fig. 9E). We suggest that
these ages record the times of titanite growth during high-grade, and locally anatectic,
episodes of Alleghanian metamorphism.

Hidden Lake gneiss.—The Hidden Lake gneiss is located in the core of the
Killingworth dome (fig. 3). These rocks contain relatively calcic plagioclase (Mikami
and Digman, 1957), low mafic mineral content and shallow-dipping foliations (Lund-
gren and Thurrell, 1973), and distinctively high Al,Og, Sr, and Ba contents (figs. 6G
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sample 1BW8.11.01, Locality 9
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Fig. 10. Digital images (A, transmitted light and CL) of rngresentative zircons and Tera-Wasserburg
Concordia plot (B, with insets showing weighted averages of *"°Pb/?**U ages) for Hidden Lake gneiss
(sample 1BW8.11.01).

and 6H; Webster and Wintsch, 1987). This unit is typically composed of light- to
medium-gray, weakly foliated and generally unlayered, medium- to coarse-grained
tonalitic gneiss and granofels. Chemical and modal analyses confirm that the Hidden
Lake gneiss is a calc-alkaline meta-tonalitic pluton, zoned with an increasing normative
anorthite content toward the core, and low amphibole content (fig. 4; Webster and
Wintsch, 1987).

Zircons from the Hidden Lake gneiss (sample 1BW8.11.01; locality 9, fig. 3) are
generally euhedral and prismatic, with few inclusions. All grains show fine concentric,
oscillatory zoning in CL; many grains have dark, unzoned tips (fig. 10A) that locally
invade deep into the cores. The oscillatory-zoned portions contain moderate amounts
of U (about 200 — 400 ppm) and relatively high Th/U (0.5 — 0.8, table 2) typical of
magmatic zircons, whereas the tips have higher U-contents (mostly 400 — 700 ppm)
and have much lower Th/U (0.09 — 0.14) typical of metamorphic zircons (Hoskin and
Schaltegger, 2003). Eleven analyses of the oscillatory-zoned interiors of these grains
yield an age of 339 £ 3 Ma (fig. 10B), interpreted as the time of crystallization of the
igneous protolith of this gneiss. Overgrowths yield a range of ages, including 325 * 3
Ma (6 analyses) and ~315 and ~300 Ma (1 analysis each), dating times of metamor-
phic overprinting. This metamorphism and associated deformation produced a mod-
erate foliation and compositional banding that dips gently north-northwest.

Summary.—Igneous protoliths of three orthogneisses in the Killingworth dome
(Higganum, Pond Meadow, and Boulder Lake), crystallized in the Middle to Late
Ordovician (approximately 455 — 460 Ma). Due to the strong metamorphic overprint
and occurrence of interlayered amphibolite of indeterminate origin, it is unclear
whether the protoliths of the Higganum and Pond Meadow gneisses were intrusive or
extrusive. The homogeneous character and abundant xenoliths within Boulder Lake
gneiss suggest that it is plutonic in origin. The Turkey Hill belt of Monson Gneiss
(probably intrusive) and Middletown Formation (probably extrusive) are slightly
younger (Late Ordovician, about 450 Ma). Hidden Lake gneiss, in the core of the
Killingworth dome, was emplaced in the Mississippian (339 * 3 Ma). The Pond
Meadow gneiss was thoroughly migmatized at about this time, as shown by the
occurrence of extensive zircon overgrowths dated at 335 *+ 2 Ma. The Clinton Granite
Gneiss, crystallized at about 605 Ma, and represents Gondwanan basement structurally
below, and in fault contact with, the Boulder Lake gneiss.
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Zircon overgrowths in several samples record late Paleozoic thermal events at
about 325, 315, 300, and 270 Ma. Ages of titanite in the Middletown anthophyllite
gneiss corroborate high-grade metamorphic conditions at about 300 Ma and 250 Ma.

Pb, Nd, and Sr Isotopic Data

Samples collected for whole-rock chemical analysis were also analyzed for Pb, Sr,
and Nd isotopes (tables 3 and 4). Procedures for isotopic analysis are discussed in the
Appendix. Two analyses of Sr isotopes corrected to impossibly low initial values,
probably due to preferential loss of radiogenic %Sr from a high Rb/Sr phase such as
biotite during late Paleozoic metamorphism. Thus, all Sr isotopic data are considered
to possibly have been affected by metamorphism and are not discussed further.
However, because the estimated amount of loss of radiogenic *’Sr is less than 1 percent
of the total Sr, concentrations of Sr used for trace element discrimination diagrams
and discussions of geochemical and petrologic processes are representative of the rock
chemistry.

Pb isotopic data for whole-rock samples from five units of the Killingworth and
Middletown complexes plot near and above the average growth curve of Stacey and
Kramers (1975) (fig. 11A). Fields of data for Pond Meadow, Boulder Lake, and Hidden
Lake gneisses, and all but one analysis of the Middletown Formation mostly overlap.
Note that sample 14] (Hidden Lake gneiss, table 3) has anomalously high Pb isotopic
ratios and has been excluded from all plots. The field of Pb isotopic data for the
Higganum gneiss is distinctly more radiogenic in 207ph /20%Pb, as is one analysis of
anthophyllite gneiss of the Middletown Formation. Only the intermediate to felsic
rocks (SiO, between about 55 and 76%) within the Middletown were analyzed for
geochemistry and isotopic ratios; mafic rocks (thatis, amphibolites) were not analyzed.

Nd isotopic data from the five sampled lithologies have a wide range (fig. 11B).
Most samples of the Ordovician Boulder Lake and Pond Meadow gneisses have
relatively low initial €y, values between about -5.5 and -1.6; the Mississippian Hidden
Lake gneiss has similar values of -4.3 to -2.8 (table 4). These low initial £y values partly
overlap data from Neoproterozoic basement rocks of the Gander Zone (about-4 to +2
at 450 Ma) and partly overlap into the field of Laurentian (Grenville) crust (about-8 to
-4 at 450 Ma). Isotopic data from samples of Ordovician Middletown Formation and
Higganum gneiss have much higher initial ey4 values of about +0.9 to +5.2 (table 4).
These higher values mostly overlap the field of Nd data from the Avalon Zone (fig.
11B).

Initial eyq values for Neoproterozoic gneisses of the Clinton and Lyme domes are
relatively low (-2.3 to +0.9, table 4), plotting within the field of Gander zone data.
Neoproterozoic gneiss samples 15W and 15X from the Selden Neck block (fig. 3) have
significantly higher initial €y, values of about 3.9 and 4.6, respectively, and plot within
the field of data for the Avalon Zone (fig. 11B).

DISCUSSION

Geochronology and Geology

On the basis of whole-rock geochemistry, Webster and Wintsch (1987) subdivided
the rocks of the Killingworth dome into four units (fig. 3). This subdivision is
supported by our more recent geochemical data set. U-Pb geochronology shows that
ages of three units (Pond Meadow, Boulder Lake, and Higganum gneisses) are about
455 to 460 Ma, whereas the Hidden Lake gneiss in the core of the dome crystallized
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Fig. 11. Pb and Nd isotopic data from rocks of the Killingworth dome. (A) Initial Pb isotopic
compositions of whole-rock samples from the Killingworth and Middletown complexes, corrected to the
crystallization age of their igneous protoliths. Curve is average crustal Pb evolution of Stacey and Kramers
(1975). (B) Initial £y versus age for whole-rock samples of the Killingworth and Middletown complexes, and
samples of Neoproterozoic basement rocks from southern Connecticut. Fields of Avalon zone and Gander
zone from Kerr and others (1995); Laurentian (Grenville) field compiled by Samson and others (2000).

Depleted mantle evolution curve from DePaolo (1981).
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about 340 Ma. Nd and Pb isotopic compositions suggest that the Boulder Lake, Pond
Meadow and Hidden Lake magmas (now grouped as the Killingworth complex) were
derived from similar crustal sources while the Higganum and Middletown magmas
(now grouped as the Middletown complex) were derived from different sources.

The nature of the contact between the Killingworth and Middletown complexes is
a matter of controversy. On the east side of the Killingworth dome, Rodgers (1985)
shows this contact as a stratigraphic boundary, implying that the Middletown Forma-
tion was deposited on plagioclase gneisses of the dome. Mapping by Wintsch (1994) at
the southeast end of the belt of Middletown Formation, in the north-central part of the
Essex 7.5’ quadrangle, suggests a ductile fault between Middletown and rocks now
called Pond Meadow and Boulder Lake gneiss. Additional evidence for a fault contact
between the Middletown and Killingworth complexes is: (1) the southeast-trending
straight boundary between the Middletown and Hidden Lake gneiss in the southeast-
ern Haddam quadrangle (fig. 3), (2) truncation of chemical zoning within the Hidden
Lake gneiss by the straight contact (Webster and Wintsch, 1987), and (3) contrast in
degree of metamorphic overprint between the pervasively migmatized Pond Meadow
gneiss and the strongly foliated and recrystallized Higganum gneiss and Middletown
Formation (only recrystallized). Because the Hidden Lake gneiss intruded these rocks
atabout 340 Ma, and shows no evidence of intruding into the Middletown, we consider
the contact to be a post-340 Ma fault. Similarly, Lundgren (1979) mapped a thrust fault
contact separating a small body of amphibolite (interpreted as Middletown Forma-
tion) from the adjacent Pond Meadow gneiss in the north-central part of the Haddam
quadrangle. Thus, we conclude that the Killingworth complex and Middletown
complex (including the Higganum gneiss) were juxtaposed after 340 Ma (age of zircon
overgrowths in the Pond Meadow and new magmatic zircon in the Hidden Lake
gneiss). The age of titanite in the Middletown anthophyllite gneiss (about 300 Ma) may
date the time of faulting.

Petrogenesis and Magmatic Sources

Nearly all rocks of the Killingworth dome exhibit geochemical characteristics
indicative of an origin within a magmatic arc or arcrelated system. All rocks are
magnesian according to the criteria of Frost and others (2001) (fig. 6F), and exhibit
calc-alkaline affinity (fig. 12). Nearly all Killingworth rocks are characterized by
compositions that are slightly Mg-poor relative to lavas from the mature Cascades arc
(Carmichael, 1964). The Hidden Lake gneiss is distinct from other Killingworth
gneisses in defining a compositional trend that is nearly coincident with the Cascade
rocks. Mafic samples of the Middletown Formation plot separate from associated felsic
varieties of the Middletown (fig. 12), defining a possible trend characterized by slight
Mg enrichment relative to the Cascade lavas.

All felsic rocks from the Killingworth dome are characterized by a combination of
relatively low Rb and Nb + Y compared to other granitoids worldwide, and thus display
compositional similarity to granitoids from volcanic-arc tectonic settings (fig. 13A;
Pearce and others, 1984). Island-arc affinity is also indicated by relatively low concentra-
tions of Ta and Yb (fig. 13B). However, differences in Rb concentrations (which are
consistent within units, suggesting relative immobililty on the scale of individual
samples) in the rocks studied define two groups. Felsic rocks of the Middletown
Formation and most of the Higganum gneiss exhibit Rb depletion whereas all other
gneisses display relative enrichment. Low Rb concentrations of the Higganum and
Middletown rocks correspond to compositions that are characteristic of relatively
immature arc suites with minimal involvement of continental crust in magma genesis,
such as the Kermadec Islands in the southwest Pacific (Smith and others, 1988) and
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Fig. 12. AFM plot of (Nay,O + Ky0) vs FeO, vs MgO for gneisses of the Killingworth dome. Coordinates
are calculated using weight percent of the element oxides. Mafic samples of the Middletown Formation are
labelled with “m”. Solid line separating fields of tholeiitic and calc-alkaline series from Irvine and Baragar
(1971). Compositions of Cascade lavas (dashed line) from Carmichael (1964).

mid-Oligocene plutonic rocks of the Cordillera de Talamanca in Costa Rica and
Panama (Drummond and others, 1995). In contrast, Forster and others (1997) noted
that higher Rb concentrations at comparable Y + Nb values, compositional features
exhibited by felsic gneisses of the Killingworth complex (fig. 13A), are characteristic of
more mature island arcs or evolving island arc-continental arc systems such as the Late
Miocene Talamanca intrusive suite (Drummond and others, 1995) which, like the
Killingworth gneisses, also displays modest Ta enrichment (fig. 13B). Four of the six
data points for the Hidden Lake gneiss plot at lower Rb values than the moderately
enriched Boulder Lake and Pond Meadow gneisses (fig. 13A) and thus were likely
derived from compositionally distinct sources.

Petrologic affinity of the Killingworth rocks to arc systems is supported by
moderate decoupling of large-ion lithophile (LIL) and high-field strength (HFS)
elemental concentrations (Winter, 2001). Especially noteworthy is enrichment, rela-
tive to mid-ocean ridge basalt (MORB), in LIL elements K, Rb, and Ba (as well as Th),
slight depletion in Ta and Nb, and MORB-like abundances of HFS elements Ce
through Yb, except Ti and Y (fig. 13C). Normalized elemental concentrations of
samples from the Middletown Formation and Higganum gneiss are lower than values
for gneisses of the Killingworth complex, and are closer to MORB values. As a result, we
suggest that the observed differences reflect petrologic processes and are not the result
of alteration. Overall, the Hidden Lake gneiss is similar to some of the other gneisses
but s distinguished compositionally by extreme values that fall at either the high or low
end of the Killingworth range (fig. 13C). Arc affinity for the Killingworth complex
rocks is further indicated by the similar pattern that is characteristic of the calc-alkaline
Miocene intrusives from Talamanca (fig. 13C).

The units of the Killingworth and Middletown complexes also can be distin-
guished using a combination of Nd and Pb isotopic data (fig. 14). This type of plot
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Fig. 13. Geochemical plots of whole-rock data from the Killingworth dome. (A) (Y + Nb) vs Rb.
Compositional field of Late Miocene granitoids from the Cordillera de Talamanca of Costa Rica and Panama
(29 samples from Drummond and others, 1995) plotted for comparison. Diagram after Pearce and others
(1984). (B) Yb vs Ta. Compositional field of Late Miocene granitoids from the Cordillera de Talamanca of
Costa Rica and Panama is plotted for comparison (5 samples from Drummond and others, 1995). Diagram
after Pearce and others (1984). (C) Plot of average compositions of gneisses from the Killingworth complex
and both felsic and mafic rocks of the Middletown Formation normalized to mid-ocean ridge basalt (MORB)
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(initial £x4 versus 2°7Pb/2°*Pb) is valuable because it uses two source-sensitive discrimi-
nants (Tomascak and others, 2005). Higganum gneiss and Middletown Formation
(including both low and high SiO, lithologies, table 1) have relatively high initial ey,
(range of about +1 to +6), whereas Hidden Lake, Boulder Lake, and Pond Meadow
gneisses have lower values of about -9 to -1. This difference in €y4 supports the Pb
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isotopic data and several geochemical discriminants that suggest that the Higganum
and Middletown magmas were derived from sources that differed from those of the
Killingworth complex. In addition, the higher &y, values for the Higganum and
Middletown imply a more primitive source component, whereas the negative €y
values for the Hidden Lake, Boulder Lake, and Pond Meadow gneisses indicate an
older, more evolved crustal source.

To evaluate potential sources for the units of the Killingworth dome, we compare
data from nearby samples of Neoproterozoic basement rocks, including samples of
felsic orthogneiss from the Clinton dome in the Essex quadrangle (samples 15H, 15],
5BS; table 3, fig. 3) and Lyme dome in the Old Lyme quadrangle (OL-290, and
OL-293; table 3), and two samples of felsic gneisses interpreted to be of extrusive and
intrusive origin, respectively (Wintsch and others, 1990), from the Selden Neck block
(samples 15W and 15X; table 3, fig. 3). Pb isotopic data from samples from the Clinton
and Lyme domes plot above the average growth curve (Stacey and Kramers, 1975)
whereas data from samples from the Selden Neck block are distinctly less radiogenic,
plotting below the average growth curve (fig. 15A). Four of five analyses from Clinton
and Lyme dome rocks overlap Pb isotopic data for Gander terrane basement gneisses
rocks in New Brunswick (fig. 15A; Ayuso and Bevier, 1991).1 Samples 15W and 15X

This zone or belt was called “Southern Group” by Ayuso and Bevier (1991). It was originally interpreted
as “Avalonian” in origin, in recognition of its very different isotopic composition compared to Laurentian (or
Grenville) rocks to the west. These rocks can be traced northeast to Cape Breton Island, New Brunswick, and
Newfoundland. The belt has been given a number of names, including Bras D’Or, Miramichi, Western
Avalonia, Eastern Central Mobile Belt, and many local terrane names. Confusion arises when consulting
older literature that refers to these rocks as Avalonian in origin. It is now known that in Newfoundland, the
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have similar Pb isotopic ratios to Silurian-Devonian granitic rocks interpreted as having
been derived from Neoproterozoic basement of the Avalon terrane in New Brunswick
and Newfoundland. Unfortunately, there is no comgarable data set for Neoprotero-
zoic basement rocks of the Avalon terrane. The 2°’Pb/?*'Pb ratios of Paleozoic
granitoids of Avalon (and samples 15W and 15X) are lower than in Paleozoic granitic
rocks in the Gander terrane (Kerr, 1997).

Potential source rocks for the magmas of the Killingworth and Middletown
complexes can also be evaluated on the gy, versus 2°’Pb/?*'Pb plot (fig. 15B).
Whole-rock data from samples of Gander terrane in southern Connecticut have
relatively low €y4 values and relatively high 2°”Pb/2**Pb. Data from 4 (of 5) samples
overlap the field of Gander basement (data from Ayuso and Bevier, 1991; Kerr and
others, 1995), whereas samples 15W and 15X from the Selden Neck block have higher
€nq values and lower 2°7Pb/?0*Pb reflecting more primitive sources. These data
confirm that gneisses of the Clinton and Lyme domes belong to the basement of the
Gander terrane, and that samples 15W and 15X from the Selden Neck block belong to
the Avalon terrane. The combined field of data for Boulder Lake, Pond Meadow, and
Hidden Lake gneisses plots between fields of data for Gander basement and Lauren-
tian (Grenville) crust and above isotopic data for rocks of the Bronson Hill terrane of
northern New Hampshire (Lathrop and others, 1996; Moench and Aleinikoff, 2003).
Higganum gneiss and Middletown Formation plot to the right of and slightly below the
data field for Gander crust, on a trajectory toward model mantle at 450 Ma (fig. 15B).

We suggest that all units of the Killingworth dome have mixed sources. The two
volcanic magmas (Higganum and Middletown of the Middletown complex) are the
result of mixing of Gander and primitive (that is, mantle) components. The three
plutonic units (Boulder Lake, Pond Meadow, and Hidden Lake of the Killingworth
complex) probably were derived from a mixture of Neoproterozoic Gander rocks and
a less radiogenic component. Laurentian (Grenvillian) rocks have lower 207py, /204py,
and &yq4 values, and now occur relatively close to the Killingworth dome. However,
consideration of paleogeographic location indicates that the Gander terrane origi-
nated far from Laurentia, across the Iapetus ocean. We discuss other possible sources
below in the context of Paleozoic tectonic reconstructions.

Provenance of Detrital Zircons

Isotopic evidence suggests that the Killingworth complex was derived from a
mixture of Gander basement and less radiogenic material that has isotopic characteris-
tics similar to Laurentian (Grenville) rocks. However, it is now known (on the basis of
paleomagnetic data and identification of faunal realms; Harper and others, 1996; Mac
Niocaill and others, 1997) that Gander formed as a peri-Gondwanan terrane. Tectonic
models (van Staal and others, 2004; Valverde-Vaqureo and others, 2006), suggest that
Gander accreted to the Laurentian margin in the Silurian (~430 Ma) during the
Salinic orogeny, implying that Gander would not have received Laurentian sediments
until late in its accretionary history, well after creation of the Killingworth complex. In
southern New England, accretion of Gander to Laurentia may have occurred some-
what earlier, perhaps beginning in the Late Ordovician (but several m.y. after
emplacement of the Killingworth complex magmas), on the basis of isotopic composi-
tions of plutonic rocks in western Connecticut (Sevigny and Hanson, 1993, 1995).

Dover fault separates Avalon sensu stricto (to the southeast) and Gander (to the northwest) terranes, both of
which contain Neoproterozoic crystalline basement rocks (van Staal and others, 1996). This discontinuity
has been traced southwest (compare, Whalen and others, 1996; Pe-Piper and Piper, 1998). Regardless of
original name, the term Gander will be used throughout this paper to refer to Neoproterozoic rocks (and
derivatives thereof) that have high 2*’Pb/2**Pb and negative initial £y, values. The term Avalon (Barr and
White, 1996; Barr and others, 2002) will be restricted to Neoproterozoic rocks (and derivatives thereof) with
low 2°’Pb/2°*Pb and positive g4 values.
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Fig. 15. Pband Nd isotopic data from rocks of the Killingworth dome and nearby Neoproterozoic rocks.
(A) Fields of initial Pb isotopic compositions of whole-rock samples of the Killingworth and Middletown
complexes, plus Pb isotopic data (corrected to 450 Ma) from whole-rock samples of Neoproterozoic
basement rocks of southern Connecticut. Also shown are fields of potential sources: Gander basement,
corrected to 450 Ma, from New Brunswick (Ayuso and Bevier, 1991), Grenville basement (compiled in Ayuso
and Bevier, 1991), granitic rocks from the northern portion of the Middle Ordovician Bronson Hill arc, NH
(Moench and Aleinikoff, 2003), fields of initial ratios of Paleozoic plutons of Maine and New Brunswick
(Central and Southern Groups, Ayuso and Bevier, 1991), and model mantle (Zartman and Haines, 1998).
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Mesoproterozoic material is common in the Gander terrane. For example,
quartzite within the Neoproterozoic metasedimentary Old Lyme gneiss of the Lyme
dome (Walsh and others, 2007) contains a large population of Mesoproterozoic
(about 0.9 — 2.1 Ga) detrital zircons. These ages are similar to inheritance ages in
igneous zircons from the Neoproterozoic Dry Hill Gneiss, Massachusetts (Tucker and
Robinson, 1990), and ages of detrital zircons from Neoproterozoic Westboro Forma-
tion of the Boston basin (Thompson and Bowring, 2000) and in our sample of
anthophyllite gneiss (figs. 9A and 9B) of the Middletown Formation. Mesoproterozoic
ages of detrital zircons have also been found in sedimentary rocks of Avalon and
Gander terranes in New Brunswick and Nova Scotia (Barr and others, 2003; Reusch
and others, 2004). Possible non-Laurentian, peri-Gondwanan sources for Mesoprotero-
zoic zircons include Amazonia, Oaxaquia, and Baltica (Ortega-Gutierrez and others,
1995; Thompson and Bowring, 2000, and references therein). On the basis of a
number of criteria (including detrital zircon age populations, fauna identification, and
paleomagnetic data), Nance and Murphy (1996) and van Staal and others (1996)
conclude that the most likely provenance for Mesoproterozoic material in Gander
terrane rocks is Amazonia. Pb isotopic compositions from Amazonian rocks (Tohver
and others, 2004; Loewy and others, 2004, and references therein) are consistent with
this interpretation.

Metamorphism

One intriguing aspect of this study is the apparent lack of evidence for the
Devonian Acadian orogeny in rocks of the Killingworth dome. In contrast to rocks of
central and northern New England where geochronologic evidence for the Devonian
Acadian orogeny is well documented (Eusden and Barreiro, 1988; Spear and Harrison,
1989; Tucker and Robinson, 1990), we find no evidence of Devonian metamorphism
in the Killingworth dome. Geochronologic data from zircon and titanite from rocks of
this study show that overgrowths on Ordovician magmatic zircons are all younger than
Devonian, and formed nearly continuously between about 340 and 270 Ma. Titanite in
anthophyllite gneiss of the Middletown Formation formed at about 300 and 250 Ma.
These data are consistent with other U-Pb and argon isotopic results and modeling
suggesting that while tectonic loading began in the Late Mississippian, peak metamor-
phic temperatures were not achieved until the Middle Permian, and were quenched to
<~500°C by early Triassic (Wintsch and others, 2003). A similar lack of evidence for
Acadian overprinting was noted by Aleinikoff and others (2002) in the Glastonbury
gneiss nearby to the north (fig. 2), and in Ordovician plutonic rocks of western
Connecticut (Sevigny and Hanson, 1995). In contrast, Wintsch and others (2007) show
that Acadian metamorphism is recorded in Gander cover terranes just east of the
Killingworth dome in southern Connecticut. For example, the Canterbury and East-
ford granitic gneisses were emplaced into metasedimentary rocks of the Merrimack
terrane at about 414 * 3 and 379 * 4 Ma, respectively, and metasedimentary rocks
of the Tatnic Hill Formation (Putnam-Nashoba terrane) were partially melted at
~400 Ma.

A detailed explanation for the lack of evidence for the Acadian remains elusive.
The absence of Devonian metamorphic zircon and titanite suggests that the grade of
metamorphism at that time was too low to form new mineral overgrowths. This is more

Fig. 15 (continued). (B) Fields of initial £y versus 2°”Pb/2**Pb of whole-rock samples from the Killingworth
and Middletown complexes, plus isotopic data from whole-rock samples of Neoproterozoic basement rocks
of southern Connecticut. Nd data for fields of Central and Southern Groups from R. A. Ayuso (personal
communication, 2006), Gander basement from Kerr and others (1995), Bronson Hill granitic rocks from
Lathrop and others (1996), model mantle from DePaolo (1981). Pb data from references in figure 14A.
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likely than an alternative explanation that such overgrowths were obliterated by
high-grade Alleghanian metamorphism. We consider this latter scenario to be unlikely
because metamorphic zircon generally contains lower concentrations of minor and
trace elements than magmatic zircon (Hoskin and Schaltegger, 2003). As a result,
metamorphic zircon should be even less metamict and thus less soluble or reactive
than magmatic zircon during subsequent high-grade events. Nevertheless, it is possible
that these rocks escaped high-grade Acadian metamorphism because they were
sheltered from Acadian deformation, perhaps sequestered in a tectonic reentrant (for
example, Lin and others, 1994). We speculate that the rocks of the Killingworth dome
and Glastonbury gneiss were structurally high, and not buried to mid-crustal depths
until the early Alleghanian orogeny in the Late Carboniferous.

Nature of the Boulder Lake gneiss-Clinton Granite Gneiss Contact

The contact of the Ordovician Boulder Lake gneiss and Neoproterozoic Clinton
Granite Gneiss is a ductile fault (Wintsch and others, 2005) (fig. 3). Because the rocks
of the Killingworth and Clinton domes were previously considered to belong to the
Bronson Hill and Avalon terranes, respectively, this contact was interpreted as a
terrane boundary. However, isotopic data presented herein result in a new interpreta-
tion suggesting that rocks of the Killingworth complex and Clinton dome both are
parts of the Gander terrane. Thus, this fault separates two igneous complexes of
Neoproterozoic and Late Ordovician ages. Anatectic foliation in the Boulder Lake
gneiss probably formed at 312 * 4 Ma (age of overgrowths, fig. 8D). These high grade
metamorphic conditions may have persisted into the Early Permian on the basis of ages
of overgrowths (as young as about 300 Ma) from related rocks of the Killingworth
complex (table 1). Because high grade (>~600° C.) foliation associated with the fault
cross-cuts the anatectic foliation in the Boulder Lake gneiss (Wintsch and others,
2005), the time of juxtaposition of the Clinton Granite Gneiss and the Boulder Lake
gneiss is therefore constrained to be younger than ~300 Ma. A minimum age of
faulting is provided by cooling ages of ~260 Ma in amphiboles from the Boulder Lake
gneiss (Wintsch and others, 2003), at which time the rocks were being uplifted and had
cooled to ~500°C.

Tectonic Speculations

Regional correlations.—Ayuso and Bevier (1991) used Pb isotopic compositions of
Paleozoic felsic plutons to identify three lower crustal provinces in the northern
Appalachians. Their ‘northern’, ‘southern,” and ‘central’ groups we now recognize to
relate to Laurentian, Ganderian, and Mesoproterozoic+Ganderian mixtures, respec-
tively. The Pb isotopic compositions and €4 values of the Killingworth complex are
similar to isotopic ratios in plutonic rocks of their “Central Group” (figs. 15A and 15B).
Isotopic evidence suggests that these rocks are mixtures from Neoproterozoic Gander
sources and a less radiogenic component, now thought to be from Mesoproterozoic
detritus of peri-Gondwanan origin. Rocks of similar isotopic characteristics extend far
to the northeast into New Brunswick (Whalen and others, 1996, 1998; Samson and
others, 2000), Nova Scotia (Pe-Piper and Piper, 1998), Cape Breton Island (Barr and
Hegner, 1992), and Newfoundland (Kerr and others, 1995; Whalen and others, 1997).
All of these magmas are considered to have been derived from peri-Gondwanan (that
is, non-Laurentian) crust (compare, O’Brien and others, 1996; Barr and White, 1996),
containing Neoproterozoic basement and Paleozoic sedimentary cover and intrusive
rocks.

Tonalitic gneisses of similar Ordovician age as rocks of the Killingworth and
Middletown complexes occur to the north in central Massachusetts (Tucker and
Robinson, 1990). Like the Killingworth rocks, their low €4 values (Four Mile gneiss,
Bull and Robinson, 1994) lead us to conclude that these Massachusetts magmas were
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derived from Ganderian crust. Rocks of the Middletown complex are distinct from the
Killingworth complex in their geochemical and isotopic signatures. However, data
from R. A. Ayuso (personal communication, 2006) indicate a strong similarity between
the Middletown complex and rocks of the “Southern group” of Ayuso and Bevier
(1991; figs. 15A and 15B). The isotopic data suggest that the source of these Middle-
town rocks is a mixture of Gander basement (relatively low initial €y4 and relatively
high 2°’Pb/2°*Pb) plus a primitive (mantle) component (high initial £y and low
27Pb/2**Pb). A model of multiple sources is consistent with interpretations of the
origins of Paleozoic granitic rocks of the Gander zone in New Brunswick and
Newfoundland, considered to be derived from Neoproterozoic basement and various
amounts of mantle and metasedimentary (crustal?) components (Whalen and others,
1996, 1997; Kerr, 1997).

Rocks of the Killingworth dome have previously been included within the Bron-
son Hill terrane (Williams, 1978; Hibbard and others, 2006), primarily due to similari-
ties in age and structure with Oliverian domes, and apparent continuity of the belt
throughout New England. Interpretations of the tectonic origin of the Bronson Hill
terrane, however, remain contentious, including differing opinions about subduction
zone polarity and paleogeographic location during arc formation. The arc rocks have
been subdivided into two age groups: ~470 to 485 Ma (Shelburne Falls arc), and ~440
to 455 Ma (Bronson Hill arc) (Karabinos and others, 1998) with differing tectonic
origins. Rocks of the Killingworth dome belong to the younger age group, similar to
tonalitic rocks on strike to the north in Massachusetts (Tucker and Robinson, 1990). In
the most recent regional compilation, Hibbard and others (2006), in agreement with
many earlier studies (Osberg, 1978; Lyons and others, 1982; Tucker and Robinson,
1990) conclude that the Bronson Hill terrane (from Connecticut to at least northern-
New Hampshire, and possibly as far northeast as New Brunswick and Newfoundland)
formed as a peri-Gondwanan arc system built on Gander basement. In all these
tectonic models, rocks of the Killingworth dome (including both the Killingworth and
Middletown complexes) are considered part of the Bronson Hill arc, regardless of the
crust (Laurentia, Gander, Avalon, or intervening Iapetan oceanic crust) upon which
the arc formed.

Redefining of the Bronson Hill terrane.—An evaluation of our isotopic data and
previously published data call into question the grouping of all “Bronson Hill” rocks
into a single lithotectonic terrane. Middle to Late Ordovician and Devonian plutons of
the Bronson Hill terrane in northern New Hampshire (fig. 16) have Pb isotopic
compositions (Moench and Aleinikoff, 2003; Tomascak and others, 2005) that plot
below the average growth curve (Stacey and Kramers, 1975), similar to Laurentian
(Grenville) basement rocks (fig. 15A). We conclude that these magmas were derived
from Laurentian crust. Lead isotope compositions of para-autochthonous mid-
Ordovician intrusive rocks in western Connecticut, just east of Cameron’s Line (for
example, Brookfield and Beardsley plutons; Sevigny and Hanson, 1993, 1995), suggest
that they are also of Laurentian origin. We consider them to be the southern extension
of the Laurentia-derived Bronson Hill magmatic arc identified in northern New
Hampshire (fig. 16).

In contrast, isotopic ratios of rocks of the Killingworth complex are more
radiogenic than those derived from Laurentia. Thus, along the “Bronson Hill terrane”
between northern New Hampshire and southern Connecticut there appears to be a
fundamental boundary separating Laurentian and Ganderian lower crustal blocks.
This boundary, called the Red Indian line in Newfoundland, was originally delineated
on the basis of contrasting faunal assemblages (Williams and others, 1988). It has been
traced west-southwest through mainland Canada (van Staal, 1994) and into Maine (van
Staal and others, 1998; Dorais and Paige, 2000). In New Hampshire, Moench and
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Fig. 16. New interpretation of the location of the Ordovician Iapetan suture (Red Indian line (RIL),
Williams and others, 1988) between rocks of Laurentian and Ganderian affinity in southern New England.
(A) Simplified map of New England and part of New Brunswick showing distribution of Gander and Avalon
terranes (modified from Hibbard and others, 2006). RIL in Maine is modified from Moench and Aleinikoff
(2003) to accommodate isotopic data from Tomascak and others (2005). RIL is dotted where speculative in
southern New England. In this model, the Laurentia-derived Bronson Hill terrane of northern and western
New Hampshire is interpreted to occur in western Connecticut. Rocks of the Killingworth dome (Killing-
worth and Middletown complexes) are interpreted here to be of Ganderian origin. White-lettered labels
with black background in A and B are plutons with Pb isotopic values indicative of Ganderian source
components that occur west of the RIL (see text for additional explanation). Abbreviations: BM (Black
Mountain pluton), CD (Clinton dome), DH (Dry Hill Gneiss of the Pelham dome), HB (Hartford basin), KD
(Killingworth dome), LD (Lyme dome), MG (Massabesic Gneiss). Polygons show locations of previous
studies: 1—Ayuso and Bevier (1991), 2—Tomascak and others (2005), 3—Moench and Aleinikoft (2003),
4—Lathrop and others (1996), 5—J. N. Aleinikoff (unpublished data, 1990), 6—Bull and Robinson (1994),
7—Sevigny and Hanson (1995), 8 —Sevigny and Hanson (1993). (B) Inset showing plutons of western
Connecticut dated and analyzed for initial Pb isotopic compositions by Sevigny and Hanson (1993, 1995).
Abbreviations: CL. (Cameron’s Line), BE (Beardsley orthogneiss), BR (plutons of the Brookville Plutonic
Series), NT (Newtown gneiss), PG (Pumpkin Ground orthogneiss).
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Laurentia in the Silurian (Valverde-Vaquero and others, 2006). (B) Middle Carboniferous. Terrane
abbreviations: BH (Bronson Hill), CM (Central Maine), M (Merrimack), P-N (Putnam-Nashoba).

Aleinikoff (2003) present two possible trajectories of the Red Indian line extending
southwest into northern Massachusetts, to the east and west of the Neoproterozoic Dry
Hill Gneiss of the Pelham dome. Our new interpretation suggests that the Red Indian
line traces to the west, on a trend toward western Connecticut.

We conclude that the Ordovician Laurentia-Gander boundary (the Red Indian line)
lies approximately under the Hartford basin between the Beardsley gneiss to the west, and
Killingworth complex rocks to the east (fig. 16). If this interpretation is correct, then the
southern portion of the “Bronson Hill terrane” of figure 1 requires reassignment; it would
be correlative with other Ganderian margin arcs, such as the Victoria arc of Newfoundland
(Valverde-Vaquero and others, 2006). In the postMiddle Ordovician, Gander wedged
farther westward into Laurentia, as shown by the increasing 2*’Pb/?*'Pb ratios (that is,
increasing Gander component) of Late Ordovician to Devonian plutons (Newtown and
Pumpkin Ground gneisses of western Connecticut, Sevigny and Hanson, 1993, 1995; Black
Mountain pluton of southeastern Vermont, J. N. Aleinikoff, unpublished data) located
west of the Red Indian line (fig. 16).

Ordovician tectonic settings of the Killingworth and Middletown complexes.—We con-
clude that the Killingworth complex was formed in a magmatic arc environment on, or
adjacent to, the western margin of the Gander terrane above an east-dipping subduc-
tion zone on the east side of Iapetus (fig. 17A). Contemporaneously, intermediate to
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felsic, and mafic magmas of the Middletown complex were generated in a different
tectonic setting according to trace-element and isotopic data. *’Pb/?**Pb and ey
isotopic values suggest that the Middletown complex is the result of mixing of Gander
basement with a less radiogenic, more primitive component such as oceanic crust or
mantle, without a significant older crustal component (fig. 15B). These data are
consistent with an origin for the Middletown complex in a back-arc setting (fig. 17A).
There is insufficient evidence at present to determine modes of origin, such as
fractional derivation from more primitive magmas or partial melting of earlier
underplated mantle-derived material, for these largely felsic rocks.

The proposed tectonic setting for the Killingworth and Middletown complexes is
nearly identical to the model of Valverde-Vaquero and others (2006) for rocks of the
Victoria arc and Exploits subzone within the Gander zone of Newfoundland. Correla-
tive units have been traced to the British Isles and maritime Canada (Valverde-Vaquero
and others, 2006, and references therein). We suggest that these zones can now be
extended to southern New England. At about the same time (in the Middle to Late
Ordovician), arc rocks of the Bronson Hill terrane were being formed above a
west-dipping subduction zone on or adjacent to Laurentia (Sevigny and Hanson, 1995;
Karabinos and others, 1998; Kim and Jacobi, 2002)

Late Paleozoic tectonic setting.—In the Mississippian, the Hidden Lake pluton was
emplaced and the Pond Meadow gneiss was partially melted. We speculate that this
magmatic event was brought about by renewed collision of the Avalon terrane (fig. 17B)
during the assembly of Pangea. This shortening event may have led to delamination and
subsequent slab break-off of Avalonian lithospheric mantle under the Gander terrane
farther to the west, resulting in asthenospheric upwelling that heated the lower crust, and
caused remelting of the Killingsworth complex. Initially, this heat melted the root of the
former arc, producing the Hidden Lake pluton. Continued heating led to partial melting
of Ordovician arc rocks, as exemplified by local migmatization in the Pond Meadow gneiss.
In addition, *°’Ar/*’Ar cooling ages of ~340 Ma from amphiboles of the Putnam-Nashoba
terrane record the early stages of exhumation of these rocks over the Avalon terrane in the
east (Wintsch and others, 1992, 1993). The Mississippian event at about 340 Ma is
somewhat cryptic because it is ~40 m.y. earlier than final assembly of Avalon with
amalgamated Laurentia+Gander in the Pennsylvanian (Wintsch and others, 2003, 2005;
Walsh and others, 2007). This latter event is the beginning of the Alleghanian orogeny in
this area and is recorded by titanite (~300 Ma) from the Middletown complex (fig. 9E); it
may also represent the time of thrust emplacement of the Middletown over the Killing-
worth complex, which must have occurred after migmatization of the Pond Meadow gneiss
and emplacement of the Hidden Lake gneiss (~340 Ma).

CONCLUSIONS

The Killingworth dome of southern Connecticut exposes Middle to Late Ordovi-
cian (about 455 — 460 Ma) and Mississippian (about 340 Ma) tonalitic to trondhjemitic
orthogneisses, here named the “Killingworth complex.” These rocks are flanked by the
Middle to Late Ordovician (about 450 — 460 Ma) “Middletown complex”, which
includes the Higganum gneiss (formerly considered part of the Killingworth complex)
and Middletown and Collins Hill Formations.

Geochemical and isotopic data suggest that rocks of the Killingworth complex
originated in a volcanic-arc tectonic setting and were derived primarily from Gander
terrane sources that likely included Neoproterozoic basement of Gander and older
crustal material. Published paleomagnetic and paleontologic data indicate that this
Mesoproterozoic material could not have been derived from Laurentia, but was
originally derived from a peri-Gondwanan terrane such as Amazonia. Rocks of the
Middletown complex were likely derived from a mixture of Gander basement and a
more primitive source, probably in a back-arc setting. Although on strike with similar
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rocks of the Bronson Hill terrane in northern New England, the Killingworth and
Middletown complexes appear to have originated on or adjacent to Gander terrane.
Rocks of the Bronson Hill terrane occur in western Connecticut.

Final juxtaposition of the Killingworth and Middletown complexes occurred after
Mississippian migmatization of the Pond Meadow gneiss and crystallization of the
Hidden Lake gneiss, during the Alleghanian orogeny in the late Pennsylvanian or early
Permian. We have found no evidence for the Acadian orogeny in the Killingworth or
Middletown complexes, suggesting that these rocks remained relatively shallow, or
remote from the Laurentian margin, until the Alleghanian.
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APPENDIX

ANALYTICAL METHODS

Whole-rock Analyses

Major- and trace-element concentrations were determined by X-ray fluorescence (XRF) and instrumen-
tal neutron activation analysis of whole-rock powders in the analytical facilities of the U.S. Geological Survey
(USGS), Denver. Elemental oxide abundances of SiOy, TiO,, Al,Os, total Fe as Fe,Og4, MgO, CaO, Na,O,
Ky0, P,O5 and MnO were determined by wavelength-dispersive x-ray fluorescence (WD-XRF). To obtain loss
on ignition (LOI), a 0.8 g portion of each sample was ignited at 925° C for 45 minutes and re-weighed to
measure loss. Each sample was then fused with lithium borate flux to create a homogeneous pellet for
analysis.

The precision of the major- and minor-elemental determinations is typically less than or equal to 1.0
relative percent, based on replicate analysis of prepared standards, whereas accuracy is less than or equal to 2
percent. A full description of the WD-XRF technique is given in Taggart and Siems (2002). X-ray
fluorescence analysis of Rb, Sr, Y, Zr, Nb, Ba, Ce, and La was performed using an energy-dispersive detector.
These concentrations are precise to =10 percent. Accuracy of all geochemical data was assured by
calibration to a suite of internationally accepted standards.

Abundances of thirty-three major, minor, and trace elements, including 11 rare-earth elements (REE),
were determined by instrumental neutron activation analysis (INAA). Samples of about one gram were
irradiated in the USGS-TRIGA reactor at a flux of 2.5x10'? for eight hours. Three sequential counts at 7 days,
14 days, and 65 days after the irradiation were made on both coaxial and planar germanium detectors. A
summary of the INAA procedure used at the USGS is given in Budahn and Wandless (2002). Precision and
accuracy for most of the elements determined range from 1 to 5 percent, including La, Yb, Hf, Ta, Rb, Th,
and U. Only five elements have precision errors of greater than 10 percent (Ho, Tm, W, Sb, and Au) based
on counting statistic errors. Accuracy is based on replicate analysis of USGS standard reference materials,
including BHVO-1.

SHRIMP U-Pb Geochronology of Zircon and Ttitanite
U-Pb geochronology of zircon was performed using the U.S. Geological Survey/Stanford University
sensitive high resolution ion microprobe-reverse geometry (SHRIMP-RG). Titanite from one sample was
dated using the SHRIMP II at the Research School of Earth Sciences, Australian National University. About
10 kg of rock were collected for each sample dated. Zircon (and titanite, where present) was extracted using
standard mineral separations techniques, including crushing, pulverizing, Wilfley table, magnetic separator,
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and heavy liquids. Individual grains were hand picked, mounted in epoxy, ground to half-thickness to expose
internal zones, and polished using 6 pm and 1 pm diamond suspension. All grains were imaged digitally in
transmitted and reflected light. Using the scanning electron microscope, zircons were imaged in cathodolu-
minescence (CL), whereas titanites were imaged by back-scattered electrons (BSE).

Following the methods of Williams (1998), SHRIMP analysis consisted of excavating a pit about 25 to 35
pm in diameter and about 1 wm in depth, using a primary oxygen beam at a current of about 4 nA. The
magnet cycled through the mass stations 6 times per analysis. Raw data were reduced using Squid 1 (Ludwig,
2001) and plotted using Isoplot 3 (Ludwig, 2003). Instrument fractionation for **°Pb/#**U ages was
corrected using zircon standard R33 (419 = 1 Ma; Black and others, 2004) or titanite standard BLR-1
(1047.1 = 0.4 Ma; see below). Uranium concentrations are believed to be accurate to =20 percent. U-Pb
data are plotted on Tera-Wasserburg concordia plots to visually identify coherent ages groups. Weighted
averages of individual *°°Pb/?**U ages were calculated to obtain an age for each sample. For titanite, lower
intercept concordia ages were calculated through data that were uncorrected for common Pb, using the
Isoplot 3-D linear regression (Ludwig, 2003).

TIMS U-Pb Geochronology of Titanite

Titanite standard BLR-1 was dated by thermal ionization mass spectrometry (TIMS). A number of
translucent brown fragments visually free of alteration were picked and half of the fragments abraded for 3
hours to smooth ellipsoids in an alumina-ceramic vortical abrader. Six individual fragments (three abraded,
three unabraded) were ultrasonicated in double-distilled acetone, rinsed in high-purity HyO, spiked and
dissolved at 220°C for 96 hours in 29M HF and 7M HNOy; samples were subsequently dried, redissolved in
6M HCl at 180°C for 24 hours and then converted to 1.1M HBr for ion exchange chemistry. Details of mass
spectrometry and data reduction are stated in the footnotes to table Al.

Five of six fragments yielded essentially equivalent isotope ratios defining a precise inverse variance
weighted mean *°°Pb/***U age of 1047.1 + 0.4 Ma (20, MSWD 0.56) (fig. A1), including tracer calibration
uncertainty (Schoene and others, 2006). A sixth fragment exhibits lower isotope ratios and younger ages; in
retrospect, this unabraded fragment did have a slightly hackly texture on one surface, which might indicate
that it was originally adjacent to a fracture, and subject to a very minor amount of surface-correlated Pb loss.
For the cluster of five equivalent fragments, the slightly elevated MSWD statistics for the weighted mean
207pp, /235y (1048.0 = 0.7 Ma; 20, MSWD 2.8) and 207pt, /206p}, (1049.9 = 1.3 Ma; 20, MSWD 2.9) ages are
due to a small dispersion in 2°’Pb/?**U ratios. The cluster of data appears slightly discordant, although it lies
within the concordia error envelope defined by the decay constant uncertainties of Jaffey and others (1971).
This slight degree of discordance (0.26%) is consistent with the regular bias manifested by other high quality
zircon and xenotime data sets reported by Schoene and others (2006), which was attributed to a small
systematic error in one or more of the currently utilized U decay constants (most likely that of 2*°U; see also
Mattinson, 2000). For the purposes of its use as a SHRIMP standard, BLR-1 titanite has an apparently
uniform 2°°Pb/?**U ratio of 0.17636 * 0.000067 (20).

Determination of Pb, Sr, and Nd Initial Isotopic Ratios

Whole-rock fractions were analyzed for Pb, Sr, and Nd isotopes. These splits were spiked with
205ph 238U236Y230Th, S7Rb-**Sr, and '*?Sm-'""Nd-enriched tracers and were digested in PFA-teflon screw-
cap bombs with HF, and HNOg for a minimum of 48 hours at approximately 120°C. Lead was first isolated
using anion exchange in 0.5N HBr medium. Uranium and thorium were separated together using anion
exchange in 7N HNO3 medium. Rubidum, strontium, and a rare-earth-element fraction were isolated using
cation exchange in 2.5N HCI medium. Samarium and neodymium were separated from the rare-earth
fraction using cation exchange in 0.2M n-methyllactic acid. Blanks for the procedure were on the order of 50
pg (Pb), 15 pg (U+Th), 40 pg (Rb), 300 pg (Sr), 50 pg (Sm), and 300 pg (Nd).

Mass spectrometry for Pb was performed using either a VG Sector 54 7-collector thermal ionization mass
spectrometer or a VG54R single-collector mass spectrometer. Mass fractionation for Pb during mass
spectrometry was monitored by replicate analyses of NIST standard SRM-981. Rubidum, Sr, Sm, and Nd were
all analyzed using a VG 54R single-collector mass spectrometer. Rubidum was run using a triple Re filament
technique. Strontium was run using a single oxidized Ta filament. Strontium isotopic data were normalized
to ¥Sr/%8Sr = 0.1194. Seventeen analyses of the NIST standard SRM-987 run during the course of this study
yielded a mean ®’Sr/®°Sr = 0.710251 = 0.000008 (20,,). Samarium and Nd were run using a triple filament
technique with a Re ionizing filament and Ta sample filaments. Neodymium isotopic data were normalized
to "°Nd/***Nd = 0.7219. Eleven analyses of the La Jolla Nd standard run during the course of this study
gave a mean '**Nd/'**Nd = 0.511860 * 0.000009 (27,,).
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Fig. Al. Concordia plot of TIMS data for titanite SHRIMP standard BLR-1. Shaded gray band
represents Concordia including uncertainties in decay constants. Discordant gray-filled error ellipse
excluded from age calculation.

Initial isotopic ratios were calculated using ages determined by zircon U-Pb geochronology. This
method presumes that the rocks remained closed to isotopic re-equilibration. In some cases, impossible
initial Sr ratios were calculated, indicating that the presumption of isotopic closure was not achieved. For this
reason, Sr data are shown in tabular form only.
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