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ABSTRACT. Experimental standard partial molal volumes, heat ca-
pacities, and entropies as well as apparent standard partial molal
enthalpies and Gibbs free energies of mono- and dicarboxylic acids and
their anions at low temperatures and pressures are used to generate
correlations for predicting the same properties at high temperatures
and pressures for 59 carboxylic and 18 hydroxyacid species with the
revised Helgeson-Kirkham-Flowers (HKF) equation of state. Predicted
equilibrium dissociation constants are compared with experimental
values from the literature and tabulated as functions of pressure and
temperature for 25 carboxylic acids and nine hydroxyacids. Close
agreement between indegendent‘ predictions and experimental data
supports the generality of the computational techniques and the accu-
racy of predicted data. These results allow incorporation of a wide
variety of organic acids into quantitative interpretations of geochemical
processes.

i INTRODUCTION

Aqueous carboxylic acids, acid anions, and metal-carboxylate com-
plexes are integral to many geochemical processes in the atmosphere,
soils, seawater, sedimentary basins, and hydrothermal systems. The
carboxylic acids are commonly subdivided (Thurman, 1985) into volatile
fatty acids (monocarboxylic acids with 1-5 carbon atoms per molecule),
nonvolatile fatty acids (monocarboxylic acids with >5 and usually up to
about 20 carbon atoms per molecule), dicarboxylic acids (with two
carboxyl groups), aromatic acids (derivatives of benzene or other aro-
matic hydrocarbons), and hydroxyacids (carboxylic acids which also
possess hydroxyl groups). In surface waters, carboxylic acids make up 5
to 8 percent of the dissolved organic carbon, with usually more than half
this amount accounted for by the nonvolatile fatty acids (Thurman,
1985). Volatile fatty acids are typically at lower concentrations than
nonvolatile fatty acids in surface waters but at considerably higher
concentrations in oil-field brines and other sedimentary basin fluids
where concentrations of volatile fatty acids approach 10,000 ppm (see
below). Thermodynamic data for several members of each of these
groups of aqueous carboxylic acids were reviewed in the present study,
and the results described in this paper provide a set of consistent data,
equations, and parameters to calculate the thermodynamic properties of
77 aqueous carboxylic acids species at temperatures and pressure through-
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out the crust of the Earth. Correlations found among the properties of
these various groups of acids allow predictions for hundreds of other
organic acids involved in geochemical processes.

The geochemical distribution of carboxylic acids.—In the atmosphere,
concentrations of carboxylic acids range up to several ppb in the gas
phase (Norton, 1985; Graedel, Hawkins, and Claxton, 1986; Andreae
and others, 1987, 1988; Rosenberg and others, 1988; Dawson and
Farmer, 1988; Puxbaum and others, 1988; Keene and others, 1989).
Concentrations of carboxylic acids are generally <3 ppb in uncontami-
nated cloud water, fog, and precipitation, but can be up to 5 ppm in
polluted environments.! Numerous photochemical reactions that con-
sume or produce these acids have been proposed for the atmosphere.?
Sources for atmospheric carboxylic acids other than photochemical reac-
tions include the oceans (Graedel and Weschler, 1981), tobacco smoke
(Sakuma and others, 1983; Guerin, 1991), automobile exhaust (Grosjean,
1989), and direct emissions from vegetation (Nicholas, 1973; Keene and
Galloway, 1986; Talbot and others, 1990; Jacob and Wofsy, 1990; Servant
and others, 1991) which appear to be a major source of formic, acetic,
and propanoic acids to the atmosphere over rainforests. Plants and their
degradation products are also thought to be the source of organic acids in
soils (Robinson, 1980; Thurman, 1985), and many investigators® have
shown increases in mineral solubility and rates of dissolution in the
presence of organic acids at low temperatures.

Although organic acids in sediments and pore waters may be derived
directly from planktonic and nektonic organisms (Lewis, 1969; Jeffries,
1972), benthic bacteria are known to produce and consume carboxylic
acids during anaerobic fermentation of organic matter in marine sedi-
ments?, where the combined concentration of formic, acetic, and buta-
noic acids may be as high as 150 ppm. Metabolic processes may also be
involved in the origin and consumption of carboxylic acids found in
rivers, where concentrations of volatile fatty acids can reach 500 ppb and

! Meyers and Hites (1982), Keene, Galloway, and Holden (1983), Norton, Roberts, and
Huebert (1983), Likens, Edgerton, and Galloway (1983), Kawamura and Kaplan (1984,
1990, 1991), Kawamura, Steinberg, and Kaplan (1985), Keene and Galloway (1984, 1986),
Weathers and others (1988), Winiwarter and others (1988).

2 Su, Calvert, and Shaw (1980), Duce and others (1983), Chameides and Davis (1983),
Atkinson and Lloyd (1984), Jacob (1986), Jacob and Wofsy (1988), Talbot and others (1988,
1990), Moortgat, Veyret, and Lesclaux (1989a,b).

® Gruner (1992), Graham (1941), Schalscha, Appelt, and Schatz (1967), Ong, Swanson,
and Bisque (1970), Huang and Keller (1970, 1971, 1972a,b,c), Huang and Kiang (1972),
Lind and Hem (1975), Schnitzer, Khan, and Kodama (1976), Graustein, Solﬁns, and
Cromack (1977), Antweiler and Drever (1983), Surdam, Boese and Crossey (1984), Stumm
and others (1985), Manley and Evans (1986), Mast and Drever (1987), Hedlund and
Ohman (1988), Bennett and others (1988), Bevan and Savage (1989), Stoessell and Pittman
(1990), Hinman (1990), Wogelius and Walther (1991), Fein (1991a,b), Wieland and Stumm
(1992).

4 Boon, Leeuw, and Burlingame (1978), Van Vleet and Quinn (1979), Barcelona
(1980), Sansone and Martens (1981, 1982), Shaw and others (1984),Gelwicks, Risatti, and
Hayes (1989), Shaw and McIntosh (1990), Pronk and others (1991).



498 Everett L. Shock—Organic atids in hydrothermal solutions:

nonvolatile fatty acids range from 5 to > 500 ppb?, in lakes, where total
concentrations are generally < 200 ppb (Allen, 1968; Winfrey and
Zeikus, 1979; Hama and Handa, 1980; Matsumoto, 1981; Cappenburg
and others, 1982), in raginwater (Herlihy, Galloway, and Mills, 1987), in
lacustrine sediments (Smith and Oremland, 1983), and in groundwater
(Cooper, 1962; Lamar and Goerlitz, 1966), as well as in sewage effluent,
where concentrations reach 1000 ppm (Chian and DeWalle, 1977; Barce-
lona, Lijestrand, and Morgan, 1980). Excluding polluted systems, carbox-
ylic acid concentrations in natural fresh water rarely exceed 1 ppm
(Thurman, 1985). Concentrations of carboxylic acids in surface seawater
are generally low® and apparently maintained at concentrations <1 ppm
by rapid bacterial consumption (Wright and Hobbie, 1966; Hobbie,
Crawford, and Webb, 1968).

In contrast, concentrations of carboxylic acids and acid anions up to
10,000 ppm are reported in oil-field brines at temperatures to at least
194°C". High concentrations of organic acids (up to ~500 ppm) are also
reported for hot springs in diverse geological settings (Shvets and Se-
letskiy, 1968; Shvets, 197 L; Kawamura, Nissenbaum, and Gagosian 1992)
and in pore fluids from hydrothermally altered sediments at seafloor
spreading centers (Martens, 1990). Hydrous pyrolysis experiments often
produce carboxylic acids from source rocks at elevated temperatures and
pressures®. It is not yet known the extent to which these compounds are
generated by the experimental conditions or whether they are simply
extracted from organic matter in the source rocks which can contain
organic acids (Seifert, 1972; Robin and Rouxhet, 1978; Cooles, Macken-
zie, and Parkes, 1987; Jaffe, Albrecht, and Oudin, 1988a,b). Similar
ambiguities (see Shock and Schulte, 1990) attend reports of carboxylic
acids extracted from Murchison and other carbonaceous chondrites®.
Nevertheless, as a result of these analyses of natural samples and labora-
tory experiments numerous geochemical processes including diagenesis

.

5 Mueller, Larson, and Ferretti (1960), Lamar and Goerlitz (1966), Williams (1968),
Stauffer and Maclntyre (1970), Matsumoto, Ishiwatari, and Hanya (1977), Hullett and
Eisenreich (1979), Matsumoto (1981), Telang, Korchinski, and Hodgson (1982). .

6 Williams (1961), Blumer (1970), Shah and Wright (1974), Wright and Shah (1975},
Williams (1975), Meyers (1976, 1980), Zsolnay (1977), Wangersky and Zika (1978), Billen
and others (1980), Matsumoto (1981), Hunter and Liss (198%}, Steinberg and Bada (1984).

7 Lochte, Burnam, and Meyer (1949), Gullikson, Caraway, and Gates (1961), Zinger
and Kravchik (1970), Dickey, Collins, and Fajardo (1972), Willey and others (1975),Caroth-
ers and Kharaka (1978), Surdam, Boese, and Crossey (1984), Workman and Hanor (1985),
Lundegard (1985), Hanor and Workman (1986), Kharaka and others (1986, 1987), Means
and Hubbard (1987), Fisher (1987), Barth (1987a,b, 1991), Land, Macpherson and Mack
(1988), MacGowan and Surdam (1988, 1990a,b), Fisher and Boles (1990), Moldavanyi
(1990), Connolly and others (1990), Abercrombie (1991), Land and Macpherson (1992).

8 Kawamura and Ishiwatari (1985), Kawamura and others (1986), Barth and others
(1987), Lundegard and Seriftle (1987), Barth, Borgund, and Hopland (1989), Thornton
and Seyfried (1987), Eglinton, Curtis, and Rowland (1987), Seewald, Seyfried, and Thorn-
ton (1990), Barth and Bjorlykke (1993).

° Yuen and Kvenvolden (1973), Lawless and others (1974), Peltzer and Bada (1978),
Lawless and Yuen (1979), Yuen and others (1984), Peltzer and others (1984), Shimoyama
and others (1986).
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of sediments, maturation of organic matter, generation of natural gas,
and hydrothermal transport of metals have been reassessed!®.

KINETIC AND THERMODYNAMIC DATA FOR CARBOXYLIC ACIDS

Over the past decade, several investigators have studied the kinetics
of reactions involving carboxylic acids (Kharaka, Carothers, and Rosen-
bauer, 1983; Palmer and Drummond, 1986; Drummond and Palmer,
1986; Schleusener and others, 1987, 1988; Crossey, 1991; Bell and
Palmer, 1994), and it has been shown that the rate of decarboxylation of
acetic acid is dependent not only on temperature but also on the presence
of minerals and the composition of the reaction vessel. Results summa-
rized by Palmer and Drummond (1986) and Drummond and Palmer
(1986) show that acetic acid persists in metastable states for geologic time
spans at conditions in sedimentary basins. Other carboxylic acids are also
metastably preserved in the subsurface, and it has been shown that ratios
of acetic and propanoic acids are consistent with homogeneous meta-
stable equilibrium at petroleum reservoir conditions (Shock, 1988, 1989,
1994a). As a result, it has been proposed that ratios of carboxylic acids in
sedimentary basin brines can be used as tracers of the redox conditions
that prevail in petroleum reservoirs and source rocks (Shock, 1988, 1989,
1990, 1994a; Helgeson and Shock, 1988; Helgeson, Knox, and Shock,
1991; Helgeson and others, 1993).

Much of the thermodynamic data for aqueous carboxylic acids is
summarized in tables presented below. There are numerous other stud-
ies yielding complementary values of compressibility, enthalpy of solu-
tion, enthalpy of dilution, solubility, activity coefficients, diffusion coefh-
cients, and other properties for these same acids'’. These data are
supplemented by studies of these acids in mixed solvents!?, electrolyte

% Surdam, Boese, and Crossey (1984), Crossey, Frost, and Surdam (1984), Lunde-
gard, Land, and Galloway (1984), Giordano (1985, 1990), Surdam and Crossei' (1985),
Crossey, Surdam, and Lahann (1986), Sverjensky (1986), Giles and Marshall (1986),
Edman and Surdam (1986), Drummond ané Palmer (1986), Mast and Drever (1987),
Lundegard and Land (1986, 1989), Lundegard and Senftle (1987), Surdam and Mac-
Gowan (1987), Hennet, Crerar, and Schwartz (1988), Shock (1988, 1989), Surdam and
others (1989), Shock and Sverjensky (1989), Bevan and Savage (1989), Giles and deBoer
(1989, 1990), Lundegard and Kharaka (1990), MacGowan and Surdam (1990a,b), Stoessell
and Pittman (1990), Land and Macpherson (1992), Harrison and Thyne (1992), Shock and
Koretsky (1993, 1995), Helgeson and others (1993), Shock (1994a).

! Reyher (1888), Richards and Gucker (1925), Ramsperger and Porter (1926), Rich-
ards and Mair (1929), Bury and Davies (1932), Campbell and Campbell (1934), Edsall
(1935), Ralston and Hoerr (1942), Waring (1952), Crawford and Magill (1954), Hansen,
Miller, and Christian (1955), Ives and Prasad (1970b), Lindenbaum (1971), Chawla and
Ahluwalia (1975), Hgiland and Vikingstad (1976), Mandal and others (1978), Harris,
Thompson, and Wood (1980), De Lisi and others (1981), Gomez, Font, and Soler (1986),
Apelblat (1986), Noulty and Leaist (1987), Strong and others (1988), Semmler and Irish
(1988), Dobrogowska, Hepler, and Apelblat (1990), Apelblat and Manzurola (1990), Benoit,
Louis, and Frechette (1991), Fischer and Warneck (1991), and Basaran and others (1991),
among others.

1ZSchwartzenbach (1933), Harned and Embree (1935), Eisen and Jofte (1966), Chueh
(1974), Arnett and others (1976), Sahay and others (1981), Choudhury and Ahluwalia
(1982a), Papadopoulos and Avranas (1990), Bender, Heintz, and Lichtenthaler (1991).
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solutions!'?, D,O and studies of deuterated acids'¢, and studies of the pure
acids and carboxylate salts!®.

In addition to the aqueous organic acids considered below, thermo-
dynamic data for many others are available at or near 25°C and 1 bar.
These measurements include heat-capacities, densities, heats of solution,
heats of dilution, and dissociation constants!'®. Similar thermodynamic
studies have been conducted on a wide variety of halogenated carboxylic
acids which are generally anthropogenic and may persist as contami-
nants in many aqueous systems!”. Other investigators, motivated in part
by practical needs in the battle against corrosion during the steam
generation of electricity, have determined thermodynamic properties of
organic acids and their reactions in the vapor phase!®.

Experimental data for organic acids in solution and in the vapor
phase are used extensively in theoretical advances and in development of
empirical correlations that allow estimation of thermodynamic proper-
ties that have not been measured!®. The present communication falls into
the latter category with particular attention paid to estimation of data at
high temperatures and.pressures. Various theoretical methods have
been applied to extend the available thermodynamic data, especially
equilibrium constants for dissociation reactions, to elevated temperatures
and pressures (Lindsay, 1980; Smith, Popp, and Norman, 1986; Hennet,
Crerar, and Schwartz, 1988; Shock and Helgeson, 1990; DeRobertis and

13 Kolthoff and Bosch (1982a,b, 1932), Larsson and Adell (1931a), Larsson (1932),
MacDougall and Blumer (1933), Kaye and Parks (1934), Harned and Hickey (1937a,b),
Morrison (1944), Kilpatrick and Eanes (1953), Stern and others (1979), Backlund and
others (1981), Willard, Sullivdn, and Kim (1982), Carmona and Garcia-Ramos (1985),
Bonner (1988), Esteso and others (1989a,b,c), Biedermann and Molin (1989), Mesmer and
others (1989), Gilkerson and Mixon (1990).

14 Glasoe and Long (1960), Streitweiser and Klein (1963), Glasoe and Hutchinson
(1964), Gary, Bates, an% Robinson (1965), Paabo, Bates, and Robinson (1966), Snell and
Greyson (1970).

15 Martin and Andon (1982), Franzosini, Plautz, and Westrum (1983), Domalski, Evans,
and Hearing (1984), Bernardo-Gil, Esquivel and Ribeiro (1990), Domalski and Hearing
(19906), Ngeyi, Malik, and Westrum (1990), Fukai, Matsuo, and Suga (1991), among others.

16 1ves, Linstead, and Riley (1933), Jeffrey and Vogel (1936, %939),Baker, Dippy, and
Page (1937), Dippy and Lewis (1937a), German, Jeffrey, and Vogel (1937), Saxton and
Waters (1937), Hartman (1938), Kilpatrick and Morse (1953), Dippy, Hughes, and Laxton
(1954), Howell and Fisher (1958), Eden and Bates (1959), Klingenberg, Thole, and Lingg
(1966), Ong, Douglas, and Robinson (1966), Ojelund and Wadso (196%), Bottei and Joern
(1968), Purdie, Tomson, and Riemann (1972), Strong, Blubaugh, and Cavalli (1981),
Diebler, Secco, and Venturini (1984), Strong and others (1985), Perez-Camino and others
(19857), Morawetz and Choi (1986), among many others.

" Kurz and Farrar (1969), Teng and Lenzi (1975), Bonner and Prichard (1979),
Bonner (1982), Strong, Van Waes, and Doolittle (1982), Strong, Brummel, and Lindower
(1987), Samploi, Marziano, and Tortato (1989), Tamaki, Ohara, and Watanabe (1989),
Strehlow and Hildebrandt (1990), Hu and others (1991), Helgeson (1992).

18 Ramsperger and Porter (1928), Fredenhagen and Liebster (1932), Bedrosian and
Cheh (1974), C:ﬁis-Van Ginkel and others (1978), DeKruif and Oonk (1979), DeKruif and
Blok 81982), DeWit and others (1983), Panagiotogoulos, Willson, and Reid (1988).

19 Butler and Ramchandani (1935), Butler (1937), Kirkwood and Westheimer (1938),
Westheimer and Kirkwood (1938), Hepler (1965), Hgiland (1974b), Hine and Mookerjee
(1975), Nichols and others (1976b), Zana (1977), Cabani, Cont, and Matteoli (1978),
Cabani and Gianni (1979), Cabani and others (1981), Blandamer, Burgess, and Duce
(1981), Gianni, Mollica, and Lepori (1982), Taft (1983), Oldham (1987), Shock and
Helgeson (1990), Helgeson (1992).
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others, 1990; Harrison and Thyne, 1992). Nevertheless, the available
experimental and predicted data are insufficient for performing calcula-
tions that include the wide variety of organic acids found in geologic
fluids. Lack of data also inhibits examination of the effects of changes in
pH and oxidation state on the distribution of organic acids in aqueous
solution during geochemical processes.

It is the purpose of this paper to present a summary of the available
experimental standard partial molal thermodynamic data for aqueous
mono- and dicarboxylic acids and acid anions and describe methods used
to estimate these data at elevated temperatures and pressures. These
methods allow prediction of dissociation constants over wide ranges of
temperature and pressure encountered in geochemical processes. Re-
sults of regression of experimental data are used to construct correlation
algorithms to estimate equation of state parameters for the revised
Helgeson-Kirkham-Flowers (HKF) equation of state (Helgeson, Kirkham,
and Flowers, 1981; Tanger and Helgeson, 1988; Shock and others, 1992)
and are consistent with correlations, parameters, and data reported by
Shock and Helgeson (1988, 1990), Shock, Helgeson, and Sverjensky
(1989), Sassani and Shock (1990, 1992), Shock (1992b, 1993, 1994b,
1995), Shock and Koretsky (1993, 1995), Schulte and Shock (1993),
Shock and McKinnon (1993), Shock and others (1995), Willis and Shock
(1995), Haas, Shock, and Sassani (1995), and Sverjensky, Shock, and
Helgeson (1995).

STANDARD PARTIAL MOLAL DATA AT 25°C AND 1 BAR

Numerous investigators have measured thermodynamic properties
of aqueous carboxylic acids and/or carboxylate electrolytes at 25°C and 1
bar. In addition, many determinations of thermodynamic properties for
dissociation reactions have been determined at the same temperature
and pressure. Some of these data are included in compilations?. Because
a majority of data on aqueous carboxylic acids and acid anions are
collected at 25°C and 1 bar, these data are reviewed in this section.
Correlations among these data are also described and used to estimate
values that have not been measured. Data at other temperatures are
reviewed below in the context of regression with the revised-HKF equa-
tion of state. The discussion of data at 25°C and 1 bar begins with a review
of data for standard partial molal volumes (V°) and heat capacities (CY).

V° and Cp.—Values of V° and C§ taken from the literature for
aqueous carboxylic acids and acid anions at 25°C and 1 bar are summa-
rized in table 1. The first entry of either V° and C3 for each species in table
I corresponds to the value adopted in the present study. Most of the data
selected in the present study comes from recent experimental studies in
which the authors have compared their measurements with results

20 Dippy (1939), Bjerrum, Schwarzenbach, and Sillén (1957), Kortiim, Vogel, and
Andrussow (1961), Larson and Hepler (1969), Christensen, Hansen, and Izatt (1976),
Serjeant and Dempsey (1979), Cabani and others (1981), and H(z)lland (1986)



TABLE 1

Standard partial molal volumes and heat capacities of aqueous carboxylic acid species at
25°C and 1 bar from experimental measurements

Species pralt C;"

formic acid 34.69%%, 34.78, 35.0% 22.84f 190!, 21.5,
- 16.97% , 20220

acetic acid 52.01°, 51.98, 51.3%, 40.56°, 39.4%F 42 0,

propanoic acid

n-butanoic acid

51.93%, 51.94% | 51.833b
51.66% | 51.8b2
67.98, 67.6%, 67.8%2

84.61°, 84.68, 83.9%, 84.52%

38.0% | 36.82" | 43.8%,
39.9%%

60.5%, 56.0', 58.87,
63.1%k | 59,320 | 61 432
80.5%f 75,57, 84.852k |
78.9%"

n-pentanoic acid 100.58 103.3%F

n-hexanoic 116.55¢

2-methylpropanoic 79.8f, 99.92°

2-methylbutanoic 100.58

3-methylbutanoic 100.58

2,2-dimethylpropanoic 100.58 99.7¢

benzoic acid 98.771, 98.82l 88.9h

formate 26.16%, 26.27%¢ | 26.0°%,, 22,01, -21.0%, -14.24
26.26%, 25712, 26.17%

acetate 40.5', 40.6°, 40.34,5% 40.46% 6.21, 042 , 7.6%
40.4%F | 40.68% , 40.42%, 40.29% | 39.86%Y

propanoate 54.95, 54.0% , 54.6°T '54.82v2% | 53,938V 309/, 31.6¢

n-butanoate 70.3%%9, 70.4% | 70.43Y, 69.52% 44.5

n-pentanoate 86.31X, 86.25%,86.1% 70.3

n-hexanoate 102.21X, 101.69Y, 101.5%

n-heptanoate 116.91Y

n-octanoate 133.8%, 133.25% 128.5, 132.6%

n~decanoate 165.19" 175.5, 174.72%

n-dodecanoate 196.1* 210.8¢

2,2-dimethylpropanoate 83.8%f

benzoate 87.03™ 51.41™, 50.9°

p-toluate 100.122™ 65.5%

phenylacetate 101.72% 63.9%

phenylpropanoate 117.93% 77.4%

phenylbutanoate 133.514 ° 92.0%"

phenylpentanoate 149.65% * 111.4%

oxalic acid 49.43%, 49.12" 27

malonic acid 66.827, 67.22" 38.4%, 0.2

succinic acid 82.44%, 82.94", 82.67°% , 82.75%" 53.37, 53.8° )

glutaric acid 98.98", 99.14", 98.05% 64.17, 64.8%, 37.2%

adipic acid 115.15%, 115.66" 80.1°, 80.3°

pimelic acid 131.93", 131.78% 98.0°8

H-oxalate’! 42,36, 42,325

H-malonate™! 57.079

H-succinate’! 69.999

H-glutarate ™! 85.884

H-adipate’l 102.09!

H-pimelate™! 117.70!

oxalate? 30.3Q9, 30.24¥

malonate™ 38.434

succinate™ 56.329V

glutarate™ 72.20%Y

adipate™® 88.469Y

pimelate2 104.064

suberate’ 119.83Y

subacate™ 151.13Y
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of earlier studies. In general, there is considerable close agreement
among experimental determinations of V° and Cg for aqueous carboxylic
acids and electrolytes at 25°C and 1 bar. Typical uncertainties associated
with experimental techniques as well as those attending the extrapolation
of data to the standard state are evaluated by Shock and Helgeson (1988,
1990). These authors also provide an account of the uncertainties arising

Table 1 footnote: 2 cm® mol~!, ® cal mol~! K~!, ¢ Hgiland (1986), ¢ Cabani and others
(1981), © Allred and Woolley (1981), fKonicek and Wadso (1971), 8 Palma and Morel
(1976), P Guthrie (1977), ' Desnoyers and Ichhaporia (1969),§ Calculated from the value of
ACP for the acid dissociation reaction given by Larson and Hepler (1969), together with the
selected values of ACS for the aqueous acid glven in the table (see text), * Calculated from
the value of V° for the aqueous sodium salt given by Hgiland (1986), together with the value
of V° for Na* taken from Shock and Helgeson (1988), ! Shock and Helgeson (1990) from
regression of data for standard molal properties as functions of temperature, ™ Calculated
from the property of the aqueous sodium electrolyte given by Desnoyers and others (1973),
together with the property of Na* taken from Shock and Helgeson (1988), " Hgiland
(1975), P Calculated from the value of V° for the aqueous potassium salt given by Hgiland
(1975), together with the value of Ve for K+ taken from Shock and Helgeson (1988),
4 Calculated from the value of V° for the aqueous sodium electrolyte given by Hgiland
(1975), together with the value of V° for Na* taken from Shock and Helgeson (1988),
" Sijpkes and others (1989), * Nichols and others (1976a), t Calculated from the value of V°
or CJ of the sodium electrolyte given be De Lisi, Perron and Desnoyers (1980) together with
the value of V° or C" of Na* from Shock and Helgeson (1988), * Calculated from the value
of V° or C" of the sodium electrolyte given by Rosenholm, Grigg and Hepler (1986)
together w1th the value of V° or C° of Na* from Shock and Helgeson (1988), ¥ Calculated
from V° for the aqueous sodium efectrolyte given by Sakurai (1973), together with V° for
Na* taken from Shock and Helgeson (1988), ¥ Calculated from Ep_for the aqueous sodium
electrolyte given by Perron and Desnoyers (1979), together with C? for Na* from Shock
and Helgeson (1988), * Daniel and Cohn (1936), ¥ Riiterjans ancr others (1969), * King
(1969), * Redlich and Nielson (1942), 2 Wirth (1948), * Wagman and others (1982),
ad Calculated from CS for the aqueous sodium electrolyte from Riiterjans and others (1969)
together with C° for Na* from Shock and Helgeson (1988), 2 Millero (1971), # Calculated
from the value for V° of the aqueous potassium electrolyte from Palma and Morel (1976),
together with V° for K* from Shock and Helgeson (1988), *¢ Lo Surdo, Shin, and Millero
(1978), *h Manzurola and Apelblat (1985), 3 Kawaizumi, Noguchi and Miyahara (1977),
4 Apelblat and Manzurola (1989), 2 Cohn and Edsall (1943) al Read (1981), 2™ Calculated
from the value of V° from the aqueous sodium electrolyte given by Perron and Desnoyers
(1979), together with V° for Na* from Shock and Helgeson (1988), 2" Ackermann and
Schreiner (1958), 3 Kresheck and Benjamin (1964), 24 Calculated from the value of V° for
the aqueous sodium electrolyte given by Ostiguy and others (1977), together with V° for the
Na* from Shock and Helgeson (1988),  Calculated from the value offg for the aqueous
sodium electrolyte given by Ostiguy and others (1977), together with C for Na* from
Shock and Helgeson (1988), » Calculated from the value of V° for the aqueous sodium
electrolyte given by Leduc and Desnoyers (1973), together with V° for Na* from Shock and
Helgeson (1988), 2 Vasil'ev and others (1977), 2 Calculated from V° for the aqueous
sodium electrolyte given by Lucas and Le Bail (1976), together with V° for Na* from Shock
and Helgeson (1988), 2 Calculated from V° from the aqueous sodium electrolyte given by
Watson and Felsing (1941), together with V° for Na* from Shock and Helgeson (1988),
¥ Calculated from data for the sodium electrolyte given by Choudhary and Ahluwalia
(1982b) at 20° and 30°C together with the value of G; for Na* Shock and Helgeson (1988),
2x Calculated from data given by King (1969), ® Calculated, from data for the sodium
electrolyte given by King (1969), together with V° for Na* from Shock and Helgeson (1988),
22 Makhatadze and Privalov (1990), 2 Makhatadze, Medvedkin, and Privalov (1990).
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from correlations among standard partial molal properties and equation
of state parameters and provide algorithms which minimize uncertainty
in estimated data.

Despite the wealth of experimental measurements at 25°C and 1 bar
summarized in table 1, it is evidént that volumetric and calorimetric
measurements for many aqueous carboxylic acids are lacking. In the
absence of experimental data, estimates can be made by taking advantage
of the systematic behavior among the members of the various families of
aqueous carboxylic acids, and through analogies drawn to other families
of aqueous organic compounds. For example, it can be seen in figure 1A
that values of V° for aqueous monocarboxylic acids and monocarboxylate
anions correlate with the number of moles of carbon in one mole of the
compounds (nn). The correlations indicated in figure 1A are consistent
with

Ve =1587+ 21.0 (1)
for the neutral monocarboxylic acid molecules, and
Ve =1381+ 7.0 (2)

for acid anions.
Similar correlations for V° of aqueous dicarboxylic acids as well as
their monovalent and divalent acid anions are shown in figure 1B. In the

A}

Monocarboxylic acids Dicarboxylic Acids

200 150
acids
175} 1251
- 150 —~  100F -1 anions
s 125 ]
[«]
£ E ) ]
- »
£ 100 £
[7) 3] ]
~ ~ 50 R
° 75 [ \
1> acid anions > 25 ]
50 1 -2 anions
25 1 0 ]
A B
0 X ) ' L .25 L L L
0 2 4 8 10 i2 2 4 6 8
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Fig. 1. Standard partial molal volumes of (A) aqueous monocarboxylic acids and
monocarboxylate anions and (B) aqueous dicarboxylic acids, as well as monovalent and
divalent dicarboxylate anions at 25°C and 1 bar from table 1, plotted against the number of
moles of carbon in their stoichiometric formulas (n). The correlation curves are given by eqs
(1) through (5).
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case of the aqueous dicarboxylic acid species shown in figure 1B, the
correlations are given by

Ve=1581n+ 19.6 (3)

for the neutral acid molecules,

Ve=158n+ 6.8 4)
for the monovalent anions, and
Ve=1581—- 6.4 (3)

for the divalent anions. .
Analogous correlations for the more limited Cg data from table 1 are
shown in figure 2. The correlations in figure 2A are consistent with

Cs=21.2n— 22 (6)
for aqueous neutral monocarboxylic acid species, and
C=21.2n - 37.2 (7)

for the acid anions. The slopes of the correlation lines in figure 2A are
identical to those for a wide variety of aqueous organic species including
n-alkanes, n-alkylbenzenes, primary amines, and primary alcohols, as
well as the monocarboxylic acids and acid anions found by Shock and

Monocarboxylic Acids ’ Dicarboxylic Acids
200 175 T T T
175} F
150 Eqn (8)
150 125F
—
< 125} i "y 100f
o X
- 100} E = 75
3 2
E 75 ] = 50
— «Q
© & (&)
o 50 acid anions ~ 2
Y i 1 o
o 0 Dicarboxylic Acids ]
25 ® Diols
= ] 0 F A Diamines 3
25 A 50 B
-50 ‘ . L -75 L t
0 2 4 6 8 10 12 2 4 6 8
n n

Fig. 2. Standard partial molal isobaric heat capacities at 25°C and 1 bar of (A) aqueous
monocarboxylic acids and monocarboxylate anions from table 1 and (B) aqueous diamines,
diols and dicarboxylic acids from Nichols and others (1976a), plotted against the number of
moles of carbon in their stoichiometric formulas (n). The correlation curves correspond to
eqs (6) through (9).



506 Everett L. Shock—Organic acids in hydrothermal solutions:

Helgeson (1990). In each case of homologous groups of monofunctional
aqueous organic compounds the slope of the C versus 1 plot is 21.2. This
is equivalent to saying that the increment in Cp attending the addition of a
CHj;, group to an aliphatic aqueous organic compound is 21.2 cal mol~!
K~1, This also appears to be the case for difunctional compounds such as
diamines and dialcohols (diols) as shown in figure 2B where both ho-
mologous groups are consistent with

Cp=21.21 - 3. (8)

It should be noted that these data plotted in figure 2B are for a,w-di-
amines and a,»-diols which are analogous in structure to the dicarboxylic
acids considered in the present study. Although the dicarboxylic acids
withn < 5 do not fall on the parallel correlation shown in figure 2B and
given by

Cp=21.27 - 47, (9)

those with 1 < 6 do. The distribution of data in figure 2B is consistent
with the notion that long-chain dfcarboxylic acids (n < 6) will have Cp
values consistent with eq (9) and a CHj; increment consistent with all
other aliphatic aqueous organic compounds. It also follows that interac-
tions between the carboxyl groups and surrounding water dipoles are
strong enough so that the short-chain dicarboxylic acids have values of
C; which diverge from this trend. Divergence of this type is observed for
monofunctional compouhds as well (see, for example, formic acid and
formate in fig. 2A), but the effect is usually observed forn < 2 or 3.

Direct calorimetric measurements leading to values of Cg for dicar-
boxylate anions were not found in the present study. Nevertheless, values
of Cg can be calculated from heat capacity of dissociation (ACgp) data. As
described below, most values of ACp come from fits of dissociation
constants at elevated temperatures. It was assumed in this study that
ACg, values for malonic acid reported by Kettler, Wesolowski, and
Palmer (1992) are good approximations for dicarboxylic acids withn > 3
as well. These values of ACp j, (see table 3 below) were used to estimate
values of Cg for the anions of succinic, glutaric, adipic, and pimelic acid
using values of C; for the acids from table 1. The same values ACp were
used to evaluate the offset in correlations of the type shown in figure 2B
which leads to the following expressions

Ce=21.21 — 91.0, (10A)
and
=21.21 — 150.8, (10B)

which were used in this study to estimate Cg for the mono- and divalent
anions of suberic, azelaic and sebacic acid.
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Values of V° for benzoic acid, benzoate, and p-toluate are listed in
table 1. The value of V° for the p-toluate ion was adopted as a close
approximation of V° for m-toluate and o-toluate. If it is also assumed that
the volume of dissociation (AVS) for toluic acids is the same as that for
benzoic acid adopted in this study (—11.7 cm® mol~1), V° of p-toluic acid
would be 111.8. This value was adopted in this study and also used for
o-toluic and m-toluic acids. As shown below, values of V° for benzoic acid
and benzoate from table 1 can be used to predict values of log K for
benzoic acid which compare closely with experimental measurements at
elevated pressures and temperatures. Similar accuracy is expected for
the toluic acids. .

Standard partial molal isobaric heat capacities of dissociation (ACg )
of the toluic acids are given by Strong and others (1980) who calculated
values of AC , from derivatives of their closely spaced measurements of
log K from 0° to 100°C. The only experimental value of C; for the
aqueous acid species or the anions is that for p-toluate from Perron and
Desnoyers (1979) listed in table 1. Using the value of ACpD for p-toluic
acid from Strong and others (1980) yields 103.8 cal mol~! K-! for
aqueous p-toluic acid. As described below, analogies between the toluic
acids and the xylenes were used in this study to estimate values of S° for
the toluic acids. This approach was also used to estimate C3 values for
o-toluic and m-toluic acids. The difference in C§ between p-xylene (110.4
cal mol~! K1) (Shock, 1995) and p-toluic acid is —6.6 cal mol~! K~1. If it is
assumed that this difference accompanies the removal of a methylene
group and its replacement by a carboxyl group, then values of C§ for
aqueous o-toluic and m-toluic acids can be estimated from the values of
Cp for the corresponding xylenes from Shock (in preparation) (125.0 and
128.6 cal mol~! K~! for ortho- and meta- xylene respectively).

AGf, AH fand §°.—There is a limited variety of aqueous carboxylic
species for whlch values of the standard partial molal Gibbs free energy of
formation (AG°) and standard partial molal entropy (S°) are available
from experlmental measurements. These data are compiled in table 2,
together with values of the standard partial molal enthalpy of formation
(AH?) for which the coverage of neutral monocarboxylic and dicarboxylic
acids species is somewhat more inclusive. In contrast to properties of
individual carboxylic acid species, there are numerous reports of stan-
dard state thermodynamic properties of dissociation reactions at 25°C
and 1 bar as summarized in table 3. As in the cases of tables 1 and 2, the
first entry in table 3 for each property of an acid corresponds to the value
adopted in the present study. Many of the reaction properties at 25°C
and 1 bar adopted in the present study were taken from the critical
review of Larson and Hepler (1969) who assessed the uncertainty in the
experimental data. In a few cases, more recent studies have provided new
experimental data and comparisons to earlier results. Notable among
these more recent studies are the papers by Strong and coworkers on
benzoic and toluic acids and those of Kettler and coworkers on dicarbox-
ylic acids.



TaBLE 2
Standard partial molal Gibbs free energies of formation, enthalpies of formation

and entropies of aqueous carboxylic acid species at 25°C and 1 bar from
experimental measurements

Species AG R AR §°b
formic acid -88982.°  -88860 - -101680.°  -101650 38.9¢ 387
acetic acid 94760.°  -94670] -116100°  -116040 427 425
9621055  .94280.! -115980.4
-94220.%
propanoic acid -1224709
n-butanoic acid -1279504
n-pentanoic acid -133690.9
n-hexanoic acid -139290.4
n-heptanoic acid -145080.9
n-octanoic acid -1510504
benzoic acid -56130%  -57950.° -85070.% 55.1
o-toluic acid -92640.:
m-toluic acid -95410.
p-toluic acid ) -96190.k ) )
formate -83g62.f  -83740J -101680.f  -101630J 2177 216
acetate -88270°  -881904 - -116160.2 2065 204
-89720° -
benzoate -52250.°. .
oxalic acid -168640.1 -194860P  -195580." 440"
malonic acid ‘ -207870.™
succinic acid 177800  -178510.° 2180005  -217930.¥ 62.3
glutaric acid 2234400 -221240.™
-222270°
adipic acid -229750."
pimelic acid -2337204
suberic acid . -237760.
azelaic acid -240700.7
H-oxalate -166907.° -195600.° 35.7¢
H-succinate -172780.°
oxalate -161100.° -197200.° 10.9°
succinate 1643804 -165090.¢ 217350 19.50

2 cal mol™!, P cal mol~! K~', ©“Wagman and others (1982), ¢ Calculated from AH® of solution
(liguid — aqueous) given by Abraham (1984) and AH? of the liquid from Stull, Westrum, and Sinke
(1969), ¢ Parks and Huffiann (1932), f Calculated from data for the acid species accepted in the
present study and dissociation properties selected from those listed in table 3 (see text), € Shock and
Helgeson (1990) from regression of log K data as a function of temperature, * Calculated from the
acaépted values for $° and AGY together with values of S° of the elements from Cox, Wagman, and
Medvedev (1989), ' Calculated from data for the anion accepted in the present study and values of
the dissociation reaction selected from those listed in table 3 (see text), | Miller and Smith-Magowan
(1990), * Calculated from hydration reaction (g — aq) property given by Strong, Neff, and Whitesel
(1989) together with data for the gas from Stull, Westrum, and Sinke (1969),! From regression of the
log K data in the present study (see text), ™ Calculated from AHO(s — aq) given by Apelblat (1990)
and AE‘,’ of the solid from Domalski (1972), » Calculated from AH® (s — aq) given by Nichols (1976)
and AH} of the solid from Domalski (1972), P Calculated from AH® (s — aq) given by Apelblat and
Manzurola (1989) and AH‘; of the solid from Domalski (1972), 4 Calculated from AH® (s — aq) given
by Apelblat and Manzurola (1989) and AHY of the solid from Stull, Westrum, and Sinke (1969),
" Calculated from AH® (s — aq) given by Apelblat and Manzurola (1990) and AHy of the solid from
Stull, Westrum, and Sinke (1969), * Calculated from AG® of hydration given by Butler and
Ramchandani (1935) together with A(_}f‘-’ (g) from Wagman and others (1982), ! Calculated from AG®
of hydration given by Wolfenden (1976) together with AGF () from Wagman and others (1982),
“ Calculated from AG® of hydration given by Fredenhagen and Liebster (1932), together with AG?
(g) from Wagman and others (1982)," Calculated from AH® (s — aq) given by Apelblat (1986), ané
AH of the solid from Domalski (1972).
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Values of AH}’ for aqueous monocarboxylic acids from table 2 are
shown in figure 3, together with values of AH for the corresponding
anions calculated as described below. The correlation lines in figure 3 are
given by

AHy = —5670. 7 — 105500. (11)
for the neutral acids, and
AHp = —5670. 1 — 106000. (12)

for the anions. As in the case of aqueous monocarboxylic acids, values of
AHY are available for several aqueous dicarboxylic acids as listed in table 2.
These data are also plotted against n in figure 3 where it can be seen that
the higher homologues define a correlation corresponding to

AHp = —5670. 1 — 192000. (13)

The slopes of these correlations are identical to those for many homolo-
gous series of aqueous organic compounds found by Shock and Helgeson
(1990) including: n-alkanes, n-alkylbenzenes, primary amines, primary
alcohols, ketones, methyl alkanoates, and amino acids. These same
authors identified correlations involving S° for many of the same homolo-
gous series and proposed the following expressions which describe the
limited data for monocarboxylic acids

= 6.771 + 29.3, (14)

and anions
S°=6.71 + 5.1, (15)

respectively. These correlations were adopted in the present study to
estimate values of S° at 25°C and 1 bar for the many aqueous monocar-
boxylic acids that have not been studied experimentally. Values of S° for
neutral aqueous acid species were used together with the AH/ values in
table 2 and values of S° for elements from Cox, Wagman, and Medvedev
(1989) to calculate values of AG“

Egs (14) and (15) are predlcated on the assumption that aqueous
monocarboxylic acids and their anions behave like other homologous
series of aqueous organic compounds (Shock and Helgeson, 1990). In the
case of the dicarboxylic acids, values of S° are available for only the oxalic
and succinic species. It is likely that S° values of the oxalic acid species
diverge from the trend defined by the higher homologues for reasons
mentioned above. Therefore, reliable correlations can not be constructed
by considering data for both oxalic and succinic acids. Instead, only the
succinic acid data were used to constrain correlations employed in the
present study. Values of §° for oxalic and succinic acid species from table
2 are shown as solid symbols in figure 4. The lower-most line in this figure



TABLE 3
Standard molal thermodynamic properties of dissociation for aqueous carboxylic
acids at 25°C and 1 bar taken from the literature®

Acid AGp AHP ASES ACY, v
formic 5120.524.c¢ 0 -17.2¢ 4154 -8.9¢b
5123.4m 218 -17.4% -35.dm -9.2bf
5117.°€ 10.9 -17.3fdm -8.0%8
st10.f -804 -17.19 -6.0%
51401 -40f -8.5%
5100.5% -13.4
5096.% -130.%
.12'“
acetic 64805 -100.5f<y 22.18f 370 1130
6 490.f.m,bb.br,bv,bx,cn.cu.cw,cx .21.0% -55.7% o1t .2°b
6460.cm.db -190. -21.9% 339 -11.6%
6489.8 -70.0d -12.5%8
649514 98.by 9200
6454.°8 -20.%® -11.5%
6500.% -12.1%
6470.0mby -10.6%
-12.20%
propanoic 6650.5:5.ap.ibb,bx -160.° 22.9° -33° -13.0b¢
66429 -200.f -22.84 3770 -12.0%
6645.2 2250 -23.0f 12,9
66702 . -g0M -13.7%8
6634 .5k -140.%®
-1708Y
n-butanoic 6580.%:bb -680.° 24.3° -36.° -13.7%
6575.5 -640 fichdb 245 -30.6"
6550.05.¢% -698.5 - 2428
6570.5% -730.%
-690.4i
-1209
n-pentanoic 6610, -690.5f -24.5%ef 338
6606.%4 -660.%4 -24.4% 320
6630.1 -720°
66450
6550.5
n-hexanoic 6630.faf -600.° -24.2° 318
6550.ibs -670.Faf -24.5046ba 99 gu
6657.% 64009 3309
6660.% -644.8
n-heptanoic 6675.50ba 610555 24,3 3304
663027 . 2444
65505
n-octanoic 6680.5° -620.2650 24,5259
66702
6677.5
fn-nonanoic 6760.50
n-dodecanoic 724552 :
2-methylpropanoic 6620.f -770.f -24.8%F 31° -14.9%
6610.° -780.° 2470 -28.8" 132
6630.1b 775.8 -36.04
-1010.44
-750.59
2-methylbutanoic 65902 -1240.2%9 -26.136%
3-methylbutanoic 6520540 -1190° -25.9° -30.8
6523.2f -1090.%f -25.68f 270
6517.04 -1168.% 257 2304
-1150.%
2-methylpentanoic 6563,2000 -1280.360a 262800 b
3-methylpentanoic 6610.° -700.° 24589 33t -17.1%
6597.59 -1120.260a -25.92fba -33ba
6617.3F
4-methylpentanoic 6610.2659 6202 243 2809
-610.%8 -24,2%
2,2-dimethylpropancic  6870.260Y -720.52f 25,55 -33.ba
6860.509 -690.54 -25.4°
6890.1bb -25.3%
2,2-dimethylbutancic ~ 6877.3f 620360 -25.28f

673029 24ba



TABLE 3 (continued)

Acid AGR AHP ASEE ach, avg?
2.2-dimethylpentancic ~ 6774.%9 990,54 -26.1% 31k
2-ethylbutanoic 648104 -1970.09 -28.4%
benzoic 5730.50pReB0bY g1 -18.9° 372 1177
5729 918 -19.0i -39 -11.09%
5726.%1 46 -18.93% 37.9° -10.6"
5724.%Y 110.%8 -19.1%f -30.6'
5749.m 105.Y -19.4 47.8%
5736.9% 150.9 -18.74% 358
5737.22.¢ 118.%
5755.9 24X
57469 0.0°f
5722.5¢ -67.%¢
5700.56¢ 1008
5758.%4 904
5712.5%
o-toluic 53177 -14325 22.63Y 3129
5330.50b.dd -1400.5% -22.8° -31°
5284.% -1022.%2 2247 3312
5300 22b 2238 -21.24%
-1500.% 1720
2294
m-toluic 5809.Y 427 19.34Y -41.5Y
5780.° 70.e-nad.0e 19.2%%ad -33°
5785.% 1200.2 15.3% 14220
582532 -204.%0 20.1% 342
5800,3b2¢ 91.% 19.75%¢
5830,2bde -19.22%
p-toluic 5958 88 -19.69Y 383
5920.5% 300.5% -18.9%% 370
5950.22 1100.28 16278 3542
594520 22422 -11.8%® -39.8¢
5960.%° -134,2¢ -20.24%¢
5970.9¢ 24,24 -19.0¢
phenylacetic 5880.bb<28 -880.° 22.7° 25° -12.73%
588222 -13.6%®
5871.%
5910.9f .
phenylpropanoic 6360.50
6365.
oxalic (1) 1743 980" 9.1 39.F -6.72%¢
1700.8¥ -1020.64b -8.4f
1710.2%f -800.F -9.20.db
1730.°
1620.bm
1820.%
1680.°
o)) 58351 -1625F -25.1808 -60.5 -11.912¢
5846.% -1659.4 -24.8° -57°
5650.2% -1600.f -24.9f
5820.c40f -1570. -24.6%
5886.9 -1500.%
5870,
5760.bm
5660.1
malonic (1) 3890, 20.° -13.00bedk g1 e -10.06%
3891 4k 24 4 -12.9¢ -44 9%
3880.f 40.f -12.0%
3883.5¢ 29090
3950.2h 17.b¢
3875.9
3940.Pm
3820.°048
3920.°8
[0)) 77739k -1226.% -30.28 ,-59.8% -18.55P¢
7770.85b¢ -1150.5f 299%fbe 59¢
775080 -1161.%0 -30.0%" -58.1%¢
77678 -1139.%¢ -29.2%
7740, 2akam 92090

77208



TABLE 3 ‘(continued )

AGP AHP

ASp

ACHp avg

succinic (1)

2

glutaric (1)

)

adipic (1)

2)

pimelic (1)

)

suberic (1)

2)

azelaic (1)

@

sebacic (1)
)

phthalic (1)

)

isophthalic (1)
(2)

7780.5F

7730.98

7760.8

77919

7830.bm -
5740.56anby 760,520
5720.28bm 680.1
57439 800.40
5730.P48

5650.92

7690.55bp.6v 40.°
7480.8 -40.f
7670.P 107.b?
7740.2 60.9°
7706.%

7700.8

7600.%

5920.° -120.540
5910.%% -100.2%
5660.°1 40
587042

5895.92

7390.F -5802:db
73952 -600.2%
7400.% -770.°
7100.% .
7710.92

6020.¢ _300.¢.af.db
6030.nf,ng,da

6017.c¢

6025.24.d8

7380.e.ag.ce,da,dg _640.e,dh
7395.2f -600.2F
7406.%4

6120.°% | -300.4f
6135.42 -330.90
6080.*

7400.° -900.54f
74102 930,90
7405.98

7620.

6150.° -390.5:4b
616098 .

6170.9

7370.¢ -600:%
739042 -640.90
7500.9

6170.bm

6210_bn.da

62002

7360.5m

7390Vbn,dg

7500.92

6000.5%

6280.92

7120.2%

764092

4020.° -640.540
40219

423Q,%

7381.5 -500.5.4b
7370.%

7280.°m

314022

6360.%

v

-16.79%
-17.0f
-16.6%

25.7°
25.9f
-26.1%P
-25.6%

-20.3%db
202
-19.14

-26.79
212
-26.4%

-21.5=’db
215

-26.9540
278

216540
228

-27.9540
.28.3f

_21.9e,db

-26.9%4°

-15.6°
-16.4

26.4°
-26.9

328 -12.86%°

528 -13.58%¢
-13.17%°

12,19

-12.5¢%

-22°

-70.°
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was drawn through the value for succinate by assuming that the slope of
S° versus n would be the same as that for monocarboxylic acids and
corresponds to

Se=6.71-17.3. (16)

There is considerable confidence in declaring that the slopes of linear
correlations of S° versus n for monovalent anions and neutral aqueous
acids will parallel the divalent anion line. This stems from the observation
that the ASp values listed in table 3 approach constant values for both
dissociations with increasing n. This is demonstrated in figure 5, where
values of ASp from table 2 are plotted. It can be seen that the first
dissociation reactions approach ASp = —21.6 cal mol~! K~! with increas-
ing n and that values of ASj, for the second dissociation approach —27.0
cal mol~! K~! with increasing n. As a consequence, parallel lines are
shown in figure 4 for the monovalent anions and neutral acid species.
Also shown as open symbols are values of S° for these species calculated

2 The subscript D refers to the dissociation reaction, P cal mol~!, ¢ cal mol~! K71,
d ¢m® mol~!, ¢ Larson and Hepler (1969), f Smith and Martell (1989), ¢ Harned and Ehlers
(1933a), " Banerjee, Sen Gupta, and Siddhanta (1958), i Lloyd, Wycherley, and Monk
(1951), 1 Strong, Kinney, and Fischer (1979), k Brockman and Kilpatrick (1934), ! Saxton
and Meier (19%4), m Dippy and Williams (1934), ® Smolyakov (1967), P Jones and Parton
(1952), 9 Travers and otﬁers (1975), " Kettler, and Palmer, and Wesolowski (1991), ¢ Matsui,
Ko, and Hepler (1974b), t Smolyakov and Primanchuk (1966), * Cottrell and others (1948),
v Fernandez and Hepler (1959), ¥ Leung and Gruenwald (1970), * Read (1981), ¥ Strong
and others (1980), ? Everett and Wynne-Jones (1939), 2 Wilson and others (1967), 2 Sen-
gupta and others (1978), * Bolton, Fleming, and Hall (1972), 2 Zawidski, Papée, and
Laidler (1959), 2 Matsui, Ko, and Hepler (19§4a), af Martell and Smith (1977), ¢ Topp and
Davies (1940), 2 Nair (1965), @ Hamer, Burton, and Acree (1940), 3 Gelles and Nancollas
(1956), 2k Cannan and Kibrick (1938), ? Stock and Davies (1949), 2™ Davies (1935), 2" Pinch-
ing and Bates (1950a), * Harned and Ehlers (1933b), 2a Harned and Embree (1934a),
a" Hala and Okdc (1962), » Muzaffaruddin, Salahuddin, and Malik (1963), 2 Vosburgh and
Beckman (1940), 2 Pinching and Bates (1948), ® Clayton and Vosburgh (1937), 3 McAu-
ley and Nancollas (1961), * Martell and Smith (1982), @ Niazi and others (1990), * Fischer,
Mann, and Vaughan (1961), " Clark and Ellis (1960), ®» Dippy $1938), b¢ Das and Ives
(1961), ¥ Canady, Papée, and Laidler (1958), > Hgiland (1975), ® Distéche and Distéche
(1965), ®¢ Hamann and Lim (1954), ®® Owen and Brinkley (1941), % Redlich and Bigeleisen
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Fig. 3. Standard partial molal enthalpies of formation at 25°C and 1 bar for aqueous
(A) monocarboxylic acids, (B) monocarboxylate anions, and (C) dicarboxylic acids from
table 2, plotted against the number of moles of carbon in their stoichiometric formulas (n).
The correlation curves are given by eqgs (11), (12), and (13).
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from values of AS}, taken from table 3 and values of S° for divalent anions
estimated with eq (16). The offsets between the correlation lines in figure
4 are constrained to equal the constant values of ASy approached at
higher values of n. The correlation lines are given by

S°=6.7n+ 19.7 (17)
for monovalent species and
S° =671+ 41.3 (18)

for neutral acid species. It is therefore required that the predicted
correlation lines are closely consistent with the calculated values of S° for
the higher homologues of the dicarboxylic acids species as shown in
figure 4. _ .
Values of S° estimated with eq (18) together with values of AH? for
neutral acid species from table 2 and/or estimated with eq (15) were used
to calculate AGy for the neutral acid species. These values were combined
with selected values of AGy for the two dissociation reactions from table 3 to
evaluate AG? for the acid anions. In the case of sebacic acid, values
of 6200 cal mol~! and 7400 cal mol~! for the first and second dissociation
reactions were estimated in this study based on data for the other higher

Dicarboxylic acids
125 T r T r

acids

100
monovalent anions

S° (cal mol 'K'")

Fig. 4. Standard partial molal entropies of aqueous dicarboxylic acids and dicarboxyl-
ate anions at 25°C and 1 bar plotted against the number of moles of carbon in their
stoichiometric fomulas (7). The solid symbols for oxalate and succinate represent data taken

from table 2, the open circles represent values of $° calculated from the values of AS§ from
table 3 and values of §° for divalent anions estimated with eq (16). Open squares represent
values calculated with ASjS values from table 8 and S° for divalent anions shown in the figure.
Correlation curves are given by eqs (16), (17), and (18).
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Dicarboxylic acids
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Fig. 5. Standard partial molal entropies of dissociation of aqueous dicarboxylic acids at
25°C and 1 bar from table 3, plotted agdinst the number ?moles of carbon in their
structural formulas (n). Horizontal lines correspond to limiting values exhibited by the
higher homologues (see text). .

homologues. Values of AG? for anions from table 2 or calculated as
described above were combined with values of S° estimated with eqgs (16)
and (17) and values of S° of the elements from Cox, Wagman, and
Medvedev (1989) to calculate the values of AHf for monovalent and
divalent anions.

Thermodynamic data for some aromatic acids are given in tables 1,
2, and 3. The most complete set of data is for benzoic acid. Although
Strong, Nefl, and Whitesel (1989) evaluate AG°, AH®, and AS° for solid
solubility and gas hydration reactions of toluic acids, only Values of AH}’ of the
solids are available from " _experiments (Stull, Westrum, and Sinke, 1969).
Therefore, other means of obtaining values of S° and AG}’ for the aqueous
toluic acids were sought in the present study. Values of S° for the neutral toluic
acid species were estimated from the properties of aqueous xylenes given by
Shock (1995) after making the following observations. First, the difference
between intercepts of S° versus n correlations for alkanes (intercept = 12.8 cal
mol~! K~!, Shock and Helgeson, 1990) and carboxylic acids (eq 14) is 16.5 cal
mol~! K~!. This value can be used to estimate S° for benzoic acid from the
corresponding correlation of §° versus n for alkylbenzenes

S°=6.7n+56.3 (19)

given by Shock and Helgeson (1990)2! by adding 16.5 to the intercept to

21 Note that the intercept for alkylbenzenes listed in table 5 of Shock and Helgeson
(1990) is in error and should be 36.3.



standard molal thermodynamic properties of carboxylic acids 517

yield
S°=6.71 + 52.8. (20)

In the case of alkylbenzenes, nn corresponds to the number of carbons in
the alkyl chain attached to the benzene ring. As a consequence, 1 for
benzene equals zero, and n for benzoic acid should also equal zero.
Therefore, eq (20) yields an estimate of 52.8 cal mol~! K-! for §° of
aqueous benzoic acid which is similar to the value obtained experimen-
tally by Strong, Nefl, and Whitesel, (1989) (55.1 cal mol~! K-1) listed in
table 2. This close agreement supports the usefulness of this type of
estimation procedure for phenylcarboxylic acids. However, it does not
permit accounting for other substitutions around the benzene ring.

The second assumption is based on the observation that the three
toluic acids differ from benzoic acid in that a methyl group is present in
the ortho-, meta-, or para-positions. Therefore, these acids can be consid-
ered to be the three possible carboxylic acid forms of toluene, which
reveals the origin of their name. Alternatively, the differences in the
standard partial molal properties of benzoic acid and toluene can be
considered to stem from the combined effects of replacing the methyl
group in toluene with the carboxyl group in benzoic acid. In the case of
S°, the difference between the corresponding properties of aqueous
toluene and benzoic acid is 10.6 cal mol~! K~! which 1s closely consistent
with the difference between values estimated with egs (19) and (20). It
was assumed in this study that the same value would characterize the
differences in S° between the three toluic acids and the three aqueous
xylenes, which are the three possible dimethyl benzene compounds.
Values of S° for ortho-, meta-, and para-xylene (47.3, 48.7, and 47.7, cal
mol~! K~!, respectively) were adopted from the regression of solubility
data reported by Shock (in preparatlon) These values and the assump-
tions outlined above permit estimation of S° values for the toluic acids
corresponding to 57.9, 59.3, and 58.3 cal mol~! K-! for ortho-, meta-,
and para-toluic acids respectively. These values, together with values of
AHf from table 2, allow calculation of AG? for these acids, which can be
combined with dissociation reaction data from table 3 to evaluate the
corresponding properties of the anions. Values of AG° AH , and S°, as
well as values of V° and G adopted in this study for aqueous monocar-
boxylic, dicarboxylic, and aromatic acids, are listed in table 4, together
with values of equation of state parameters obtained as described in the
next section.

RETRIEVAL AND ESTIMATION OF EQUATION OF STATE PARAMETERS

Once experimental measurements on aqueous solutions of carbox-
ylic acids and carboxylate salts have been extrapolated to the standard
state (see app. 1), the data can be regressed for equation of state
parameters with appropriate expressions of the revised-HKF equation of
state. Accurate evaluation of conventional and effective Born coefficients
(w and o, respectively) from experiments is only possible through
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regression of standard state data obtained at temperatures >150°C
(Shock, Helgeson, and Sverjensky, 1989). The available data for aqueous
carboxylic acids and carboxylate salts at these temperatures are severely
limited, requiring estimation of values of the conventional and effective
Born coefhcients for many species of interest. In the present study,
estimation procedures outlined by Shock and Helgeson (1988) for aque-
ous anions and Shock (1995) for neutral aqueous organic compounds
were used. In the case of carboxylate anions, values of o were calculated
with eqs (A-26) and (A-27) in app. 1, with values of r. estimated from the
standard partial molal entropies of the ions at 25°C and 1 bar, and the
relation

zX(mY — 100)
o =—— (21)

€,
J S° - aq,

where o, is equal to 72 for monovalent and 141 for divalent anions (Shock
and Helgeson 1988). Values of w. for HCOOH, CH3COOH and
CoH;COOH were obtained through simultaneous regression of equilib-
rium dissociation constants at temperatures up to 350°C and calorimetric
and volumetric measurements up to ~130°C. Values of . for the
remainder of the neutral aqueous carboxylic acid species were estimated
from values of S° and the relation

w. = 661.98 §° — 58740. (22)

which is obtained from ¢orrelations described by Shock (1995) involving
aqueous hydrocarbons and carboxylic acids.

Values of w and w, allow calculation of the solvation contributions to
the standard partlal molal volumes (AVY and heat capacities (ACPS) of
aqueous organic compounds and electrolytes composed of organic an-
ions. Values of AV{calculated with eqs (A-10) and (A-17) can be combined
with values of V° to evaluate AV with the first identity of eq (A-5). In cases
where data are collected at several temperatures, a plot of AV against
1/(T — 8) yields values of ¢ and & (see eq A-11). Although few investiga-
tors have measured V° values at temperatures other than 25°C for
aqueous carboxylic acids and carboxylate electrolytes, several sets of data
were regressed with this procedure to obtain values of ¢ and £ in this
study. Values of o and £ for the anions were obtained by subtracting the
corresponding values for Na* taken from Shock and Helgeson (1988)
from the results for the electrolytes. These values are listed in table 5, and
the regression plots from which these values were obtained are shown in
figure 6.

Standard partial molal heat capacity data for solutions of the sodium
salts of formate, acetate, and propanoate were regressed in an analogous
manner by Shock and Helgeson (1990), and those results were adopted
in this study. In the regression of Cg data, values of ACg; obtained with
eqgs (A-14) and/or (A-18) allow evaluation of ACPn which can in turn be
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TABLE 5
Volumetric data at 25°C and 1 bar for aqueous carboxylic acids and acid anions,
together with equation of state parameters obtained by regression

Species vea AV o? £ x 1072
acctic acid 52.01 51.64 57.01 -3.72
propanoic acid 67.9 67.53 76.14 -5.58
formate 26.16 29.37 31.80 -1.83
acetate 40.5¢ 44.0¢ 46.43¢ —1.83¢
propanoate 54.95 57.98 60.10 —1.80
butanoate 70.3 73.1 76.68 —=3.10
heptanoate 116.91 118.99 128.87 —6.46
decanoate 165.19 166.51 180.98 —-9.72
benzoate 87.03 89.7 98.98 —6.32
oxalate 30.30 37.82 44.60 —4.80
succinate 56.32 63.52 69.27 —-4.12
2 cm® mol~1, b cm3 K mol-1, ¢ Shock and Helgeson (1990).

regressed with eq (A-16) to obtain values of ¢, and c,. Constraints on the
appropriate value of w, for formic, acetic, and propanoic acids come from
the temperature dependence of Cf data and from regression of high
temperature dissociation_constants. Regression results can be depicted
graphically by plotting AC} , versus 1/(T — 0)2, which is done in figure 7
for Na-decanoate, formic acid, acetic acid, and propanoic acid. The heat
capacity data for Na-decanoate reported by DeLisi, Perron, and Desnoy-
ers (1980), which were regressed in the present study, are shown in
figure 7 and can be compared with data reported by Choudhury and
Ahluwalia (1982a) which they calculated from finite differences of heat of
solution measurements. The considerable uncertainty which can be
encountered in this approach precluded regression of the latter data in
this study. Heat capacity measurements for propanoic acid reported by
Makhatadze and Privalov (1990) shown in figure 7 were regressed in this
study to obtain the parameters listed in table 6. Note that these data are
on average about 5 cal mol~! K~! more positive than the values reported
by Ackermann and Schreiner (1958). By analogy to the propanoic acid
results, the trend of the data reported by Ackermann and Schreiner
(1958) for formic acid was used to evaluate the cy parameter (solid line in
fig. 7), but the ¢, parameter was adjusted (dashed line) to represent the
Cg value at 25°C reported by Konicek and Wadsé (1971). All values of |,
Cs, ®, and/or w, obtained by regression of data for carboxylic species are
listed in table 6.

In the absence of experimental data covering a range of tempera-
tures, species-dependent equation of state parameters for ions as well as
neutral acid molecules can be estimated from correlations. Values of ¢
and AV{ from table 5 are plotted in figure 8 together with corresponding
values for aqueous inorganic ions from Shock and Helgeson (1988),
dissolved gases and boric acid from Shock, Helgeson, and Sverjensky
(1989), and aqueous hydrocarbons from Shock (in preparation). It can be
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TABLE 6
Standard partial molal heat capacities at 25°C and 1 bar and values of the ¢;, ¢,

and o, equation of state parameters obtained from regression of experimental
data in the present study unless otherwise indicated.

Species (O oy hx 107t ¢ X 1073
formic 22.8 26.1 -3.1 ~-0.33
acetic 40.56 42.076 —1.5417 -0.15
propanoic 60.5 62.97 -1.19 ~0.15
formate —22.0¢ 17.04 —12.44 1.30034
acetate 6.24 26.3¢ —3.86 1.31824
propanoate 30.94 52.34 —-4.2d 1.22764
decanoate 175.0 181.64 -1.81 0.5372¢

2 cal mol~!' K~!,* cal K mol~!, ¢ cal mol~!, 4 Shock and Helgeson (1990), € Estimated as
discussed in text.

seen that a single correlation fits all the data from Nd*3 in the lower
left-hand corner to decanoate in the upper right-hand corner. This
correlation is given by

o = 1.07143AV: + 3.0, (23)
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which was used extensively in the present study to estimate values of o for
aqueous carboxylic acids and anions.

Values of o from table 5 or estimated with eq (23) were used to
calculate values of the a, parameter from the relation

)
Y+ P’
and values of a, estimated from the correlation presented by Shock and
Helgeson (1988) and given by

o=a +

(24)

I/°
n

a; = 1.3684 x 10‘2( ) + 0.1765. (25)

41.8393

In turn, values of a, were used to estimate values of a, with the correlation
expression

a, = —4.134a, — 27790. (26)
250 i 1 L 1 'R ] L A L 2 L A [
decanoate
200 B
toluene
2 1507 + benzene heptanoate }
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© 0 boric acid -
H S methane
2
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-100 —
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! .y 3 -1
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Fig. 8. Correlation of o with AV for aqueous ions (open circles), dissolved gases (open
squares), hydrocarbons (solid squares), and carboxylic acid species (solid circles). Curve
corresponds to eq (23).
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(Shock and Helgeson, 1988), which were then used together with values
ofay, ay, V°, anclAV:at 25°C and 1 bar to evaluate a; from eq (A-5).

Values of Cp at 25°C and 1 bar and c, from table 6 are plotted in
figure 9 together with aqueous species from Shock and Helgeson (1990)
and Shock (1995), as well as the correlation line for inorganic aqueous
species from Shock and Helgeson (1988) and Shock, Helgeson, and
Sverjensky (1989). The correlation for inorganic species (lower line) is
given by

cy X 107* = 0.2037C3 — 3.9346. 27)

The steeper correlation for neutral aqueous organic species is defined by
carboxylic acids and several aqueous hydrocarbons and alcohols evalu-

200 T T
decanoate
butane
1-pentanol
150 toluene .
_— |
o 1-butanol
X benzene
100 1-propanol 1
— ethane Prop
o th
& methan ethanol
©
L. 50[ propanoate .
propanoic acid
ot
o - o
formlcﬁyacld acetic acid
0.. -l
acetate
Inorganic
Species
-50 L 1 L L 1 " 1

15 -10 -5 0 5 10 15 20
-4 -
c, x 10" (cal K mol )

Fig. 9. Correlations of ¢c; X 10~* with Cj for aqueous ions and inorganic neutral
species, hgdrocarbons and neutral organic acids, and organic anions. Correlation curves
are given by eqs (27-29).
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ated by Shock (1995) and is consistent with
¢y X 107* = 0.0988C3 — 4.961, (28)

which was used to estimate values of ¢, for neutral acid species in the
absence of experimental data. The steepest correlation in figure 9 is that
for the acid anions given by

co X 107% = 0.01212C3 — 4.106, (29)

which yields values of ¢, for carboxylic acid anions which vary only
slightly with . With the exceptions of oxalate and H-oxalate, eq (29) was
used to obtain all other values of ¢, for carboxylate anions estimated in
this study. The two oxalic acid anions are unique in that they lack C-H
bonds, and it was found that better fits of predicted and experimental log
K data were obtained by treating these species as inorganic anions and
estimating values of ¢; from eq (27).

COMPARISON OF PREDICTED AND EXPERIMENTAL EQUILIBRIUM DISSOCIATION
CONSTANTS AT HIGH PRESSURES AND TEMPERATURES

Standard partial molal properties of aqueous carboxylic acids and
acid anions at 25°C and 1 bar adopted in this study are listed in table 4,
together with parameters for the revised-HKF equation of state for each
species obtained as described in-the previous section. The data and
parameters in table 4 allow calculation of standard partial molal thermo-
dynamic data for these species, as well as reactions in which they are
involved at the elevated temperatures and pressures of geochemical
processes. Appropriate equations are summarized in app. 1. Values of
AG® at elevated tempeyatures and pressures for carboxylate anions
calculated with eq (A-25) and corresponding values for neutral acid
species evaluated with eq (A-37) can be used to calculate standard Gibbs
free energies of reaction, AG;, from

AG® = X v, AG® (30)

which, in turn, yield values of the equilibrium constant (K) from
—-2.303RT log K = AG. (31)

Comparisons of experimental equilibrium constants with indepen-
dently calculated values are made in figures 10 to 13 for monocarboxylic,
dicarboxylic, and aromatic acids. It can be seen in these figures that in
every case there is close agreement between predicted and experimental
data. This close agreement supports the validity and generality of the
methods used in this study, as well as the usefulness of the predicted
log K values listed in table 7 which can be used in the absence of
experimental data for a wide variety of geochemical calculations. It
should, perhaps, be emphasized that the curves shown in figures 10 to 13
do not represent the results of curve fitting calculations but are con-
strained by V°, C§ data, values of log K at 25°C and 1 bar, correlations
among thermodynamic data, and between parameters in the revised-
HKF equation of state. The theoretical basis of these equations as de-
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scribed in Shock and others (1992) allows accurate extrapolation to
regions of pressure and temperature where measurements have not been
made, and perhaps cannot be made with current technology, but which
are nevertheless encountered in geologic environments.

The comparisons shown in figures 10 to 13 indicate that there is a
handful of experimental studies in conflict with the majority of the other
experimental data as well as the results of the present study. For ex-
ample, the highest temperature values of log K for propanoic and
n-butanoic acids at Pgr reported by Ellis (1963) and shown in figure 10
are more negative by about 0.2 log K units than the calculated values. In
addition, there is disagreement within 0.2 log units between calculated
values and some of the high pressure measurements for acetic acid. A few
studies of dicarboxylic acid dissociation appear to be inconsistent with the
majority of measurements at low temperature as shown in figures 11 and
12. It should be noted that the trend in temperature of the data for the
first dissociation of oxalic acid reported by Nikolaeva and Antipina (1972)
is inconsistent with the other available data. This is not the case for their
second dissociation constants. Divergent temperature trends are also
noted in data from Wilson and others (1967) for the toluic acids shown in
figure 13. The curves shown in the plot for benzoic acids are independent
predictions based on the correlations described above, and it can be seen
that they are within £0.2 log K units at all temperatures and pressures.

ESTIMATED DATA FOR HYDROXYACIDS AND PREDICTED EQUILIBRIUM CONSTANTS
AT HIGH TEMPERATURES AND PRESSURES
Close agreement between predicted equilibrium constants and their
experimental counterparts in figures 10 through 13 is encouraging and
suggests that similar success could attend prediction of log K for other
organic acids. Experimental data for hydroxyacids are less abundant
than the sparse data for carboxylic acids summarized above. Nevertheless
hydroxyacids are involved in geochemical processes (Peltzer and Bada,
1981; Cardoso and Eglinton, 1983) and estimation of thermodynamic
data could be useful. Experimentally determined standard partial molal
data at 25°C and 1 bar for hydroxyacid species are listed in table 8.
Although ample V° data have been collected, values of Cg and AHp are
considerably more limited, especially for the hydroxy monocarboxylic
acids. If additional values of AH? could be estimated, together with values
of §°and Cg, then the thermodynamic properties of dissociation reactions
at 25°C and 1 bar listed in table 9 could be used to evaluate the
corresponding data for the anions.?? Estimates of these properties were
made in the present study in the following manner.

22 As in the case of the mono- and dicarboxylic acids (see above), many of the reaction
Eroperties adopted in the present study were taken from the comprehensive review of
arson and Hepler (1969). There have been remarkably few experimental studies leading
to equilibrium constants or other dissociation reaction Yroperties for hydroxyacids in the 25
yrs since that review. This point is emphasized by the log K data shown in figure 17 which
extend from 0° to 50°C for only two of the hydroxyacids. As a group, these organic
compounds have been largely ignored by experimentalists and those who analyze oil-field
brines and hydrothermal fluids.
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538 Everett L. Shock—Organic acids in hydrothermal solutions:

TABLE 8

Standard partial molal properties of aqueous hydroxyacids and anions at 25°C
and 1 bar from experimental measurements

Species ’ AHP v® folty
glycolic acid -154890.° 51.75¢
Tactic acid -164000.° 69.384
-164020.™
2-hydroxybutanoic acid 85.45¢
2-hydroxypentanoic acid 100.47¢
2-hydroxyhexanoic acid 117.264
2-hydroxyisobutanoic acid 86.78¢
2-hydroxyisopentanoic acid 100.83¢
DL-malic acid -259040.° 82.808 56.48
-259050.9 82.22f
L-tartaric acid -302750.9 83.994 60.02
» 83.45"
. 82.23f
, 83.48 77.18
citric acid -364650.4 113.608
112.44¢
114.7%,
ascorbic acid -272770.F 105.17!
glycolate 39.85
Iactate 56.25
2-hydroxybutanoate ‘ 71.61)
2-hydroxypentanoate 86.71
2-hydroxyhexanaoate 103.33
2-hydroxyisobutanoate 72.63
2-hydroxyisopentanoate 86.84/
H-tartrate 71.94)
tartrate i 58.48
: 58.78P
o-hydroxybenzoate 94.81% 46.99!
m-hydroxybenzoate 90.01% 38.84!
p-hydroxybenzoate 88.65 38.07' -

2 cal mol™!, b cm3 mol~!, < Miller and Smith-Magowan (1990), corrected in present
study 4 Hgiland and Vikingstad (1975), € Miller and Smith-Magowan (1990), f Manzurola
and Apelblat (1985), 2 Sijpkes and others (1989), ' Levien (1955), ' Apelblat and Manzurola
(1989), | Calculated from V° of the aqueous sodium electrolyte from Hgiland andViking-
stand (1975), together with V° for Na* from Shock and Helgeson (1988), k Calculated from
V? of the acqueous sodium electrolyte from Desnoyers and others (1973), together with V°
for Na* from Shock and Helgeson (1988), ! Calculated from G of the aqueous sodium
electrolyte from Desnoyers and others (1973) together with G for Na* from Shock and
Helgeson (1988), ™ Saville gnd Gundry (1959), " Mathieson and Conway (1975), P Calcu-
latecgi from the value for the aqueous potassium electrolyte given by Mathieson and Conway
(1975) and the value of V° for K* from Shock and Helgeson (1988), 4 Calculated from AH®
(s — aq) given by Apelblat (1986) and AH/0 of the solid from Domalski (1972), © Calculated
frorln A}]{O1 (12_1) aq) given by Apelblat (1990) and AH}’ of the solid from Domalski (1972),
fcal mol™" K71
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TABLE 9

Standard molal thermodynamic properties of dissociation for aqueous
hydroxyacids at 25°C and 1 bar from the literature

Acid o ° . o o
AGy AHpS AS5 ACgp AVEy
glycolic 5230.%8 52271 170.° 160.8 -16.9°  -17.08 -39.° -31.%¢ -11.9Y

5226.%° 5215F 150.2°  110.%  -17.1%¢ -17.2%
5245.2¢ 5210.24

5270J
lactic 5270.5ham 5766 2 -70.° -80.2 -17.9%8 -40° -13.13Y
2-hydroxybutanoic ~ 5200." -13.84

3-hydroxybutanoic  6000."
n-hydroxypentanoic  4900.F
o-hydroxybenzoic ~ 4060.° 4050klvat 73gen  goov 11288 -109Y -7.8%
(salicylic) 4070 4054% 15002 8.7
40213 40902
41002 4080

3760.%
m-hydroxybenzoic ~ 5560.5™! 55402 160.5¢ -18.16m -34°
5325.8° 5570.% 159.™ -18.12* -38.m

phydroxybenzoic  6250.595%% 6270™  400° 3637  -19.6° -9.8° -42°¢
62902 620024 5409 160029  -19.19F -15.4%
6190.™ 58502 30.5" 3865  -19.66° -19.72"

57307 370
malic (1) 472055% 47262 710° -13.4° 378
o)) 6950. 696720  280° 24.1° 548
6890.5k
L-tartaric (1) 4140%% 4135 740¢ -11.4° -42° -12.05Y
3440.f
) 5960.5%2f  5680. 200.° -19.3° 535 -13.46Y
D-tartaric (1) 4110.2
) 6185.% ]
citic (1) 4268.283f 42662 99728 9403  .11.0%" -31.8%
41708 42038
) 6491.28 652220 58328 4083  .19.8%% 208 44778

6492.2 6360.4
65183 6468 ) )
®) 872628 876820 80338 7543 .3 e -61.2%
8731.*“f 8705.:
8749 2 8542,

aThe subscript D refers to the dissociation reaction, P cal mol~’, ¢ cal mol~! K7,
4 ¢m® mol~?, ¢ Larson and Hepler (1969),  Topp and Davies (1940), & Smith and Martell
(1989), P Davies and Monk (1854), ! Nims (19&?), I Lloyd, Wycherley, and Monk (1951),
kBell and Waind (1951), ! Davies (1938), ™ Cottrell and others (1948), " Crutchfield,
McNabb, and Hazel (1962), P Gouveia and DeCarvahlo (1968), 9 Bell (1959), T Pal’chevskii,
Zakharyevskii, and Malinina (1960), * Wilson and others (1967), * Matsui, Ko, and Hepler
(1974a), V" Ernst, Irving and Menashi (1964), ¥ Vasil’ev and Kochergina (1967), ¥ Minnick
and Kilpatrick (1939), * Briegleb and Bieber (1951), ¥ Calculated from data in table 8,
Z Bates and Canham (1951), 2 Mattoo (1956), 2 Lown, Thirsk, and Wynne-Jones (1968),
a Lowe and Smith (1975b), 2d Hermans, Leach, and Scheraga (1963), ¢ Christensen,
Oscarson, and Izatt (1968), 2 De Robertis and others (1990), 8 Bates and Pinching (1949),
ah Litchinsky and others (1969), 2 Bjerrum and Unmack (1929), 3 Heinz (1951), # Sartori,
Costa and Camus (1952), 2! Simms (1928a,b), 2™ Nims and Smith (1936), * Larsson (1929),
2P Bell and Kuhn (1963), 22 Adell (1940b),  Abichandani and Jatkar (1938),  Christensen,
Izatt, and Hansen (1967), * Dudeney and Irving (1975).
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Correlations at 25°C and 1 bar.—Values of V° from table 8 for straight-
chain hydroxyacids and anions are plotted against 1l in figure 14 where it
can be seen that V° data for these aqueous organic species are consistent
with

V°= 1581+ 21.5 (32)
for the acids, and

Ve=158n+ 8.0 (33)

for the anions, respectively. It should be noted that the slopes of these
correlation curves are identical to those of all other V° versus n correla-
tions for homologous series of aqueous compounds (see fig. 1 above and
Shock and Helgeson, 1990). Comparison of eqs (32) and (33) with eqs (1)
and (2) shows that the effect on V° of the transformation from monocar-
boxylic species to hydroxyacid species is small and on the order of ~ 1.0
cm?® mol~1. .

As emphasized above, correlations of AHP versus 1 for homologous
series of compounds also share a common slope. By assuming that the
properties of the higher homologues would be more like lactic acid than
the first member of the series, glycolic acid (see above), the following
expression was generated using the value of AHY for lactic acid in table 8

-

AHP = —5670 i — 146990. (34)

This expression serves as a first approximation of the AHP versus n
correlation for hydroxyacids which should be tested by further experimen-
tal measurements. Note that the value of AH? for glycolic acid in table 8 is
more positive than the corresponding value calculated from eq (34),
which is completely consistent with the behavior of the first member of
many other homologous series of neutral aqueous organic compounds
(Shock and Helgeson, 1990; Schulte and Shock, 1993), as well as the
carboxylic acids shown in figures 3 and 5. Values of AG; for hydroxyacids
can be calculated from these estimates of AHY if values of S° are estimated.

In the present study, values of S° for hydroxyacids were estimated by
comparison to other aqueous organic compounds that contain the hy-
droxyl group. For example, the correlations of S° versus n found by
Shock and Helgeson (1990) for the alkanes and primary alcohols are
given by

¢« S$°=6.7n+ 12.8, (35)
and

S°=6.7n+ 23.2, (36)
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respectively. The difference in intercepts between these two curves is 10.4
cal mol~! K~1. This value compares well with the difference in S° between
phenol and benzene (10.3 cal mol~! K™!) calculated from data tabulated
by Shock and Helgeson (1990). This suggests that about 10.4 cal mol-!
K-! in §8° attends the removal of a proton and replacement with a
hydroxyl group in the transformation of a hydrocarbon into an alcohol.
This transformation also characterizes the difference between carboxylic
acids and hydroxyacids. However, in the case of the alkane to alcohol
transformation, a hydrophobic, slightly-soluble compound is converted
into one which is hydrophilic and highly-soluble. Both carboxylic and
hydroxyacids are highly hydrophilic compounds, and it would seem that
the transformation between them is less dramatic than that between
alkanes and alcohols. As a consequence, it is likely that differences in
thermodynamic properties between two analogous hydrophilic com-
pounds should be less than that between an alkane and an alcohol.
Evidence that this is the case is observed in the V° data discussed above
and can be extracted from a comparison of the properties of acetalde-
hyde and acetic acid.
In the transformation of acetaldehyde

H
0
H—C—C
| N
H
into acetic acid,
H
I °
H—C—C
| AN
OH

a hydrogen must be removed and replaced with a hydroxyl group. A
similar transformation attends the conversion of acetic acid into glycolic
acid
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Hydroxy Acids
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Fig. 14. Standard partial molal volumes of aqueous hydroxyacids and anions at 25°C
and 1 bar from table 8, plotted against the number of moles of carbon in their stoichiometric
formulas (71). The correlation curves are given by eqs. (32) and (33).

As discussed by Schulte*and Shock (1993), thermodynamic data for
aqueous aldehydes are scarce. Data for formaldehyde and acetaldehyde
summarized by these authors allow generation of the following correla-
tion expressions for aqueous aldehydes, based on the assumption that
such correlations are parallel to those for other homologous series of
organic compounds (Schulte and Shock, 1993),

S°=6.7n + 28.9 (37)
and
Ce=212n-175. (38)

The difference between the intercept value in eq (37) for aldehydes
and that for carboxylic acids (from eq 14) is 0.4 cal mol~! K-!, which, as
expected, is considerably less than that between alkanes and alcohols
obtained above. Assuming that this difference is a close estimate for the
transformation of monocarboxylic acids to hydroxyacids yields
§°=6.7n + 29.7 (39)

i

from eq (14) which was used in this study to estimate values of S° for
hydroxyacids. Because values of thermodynamic properties of dissocia-
tion tend to reach a constant value with increasing n, it was assumed that
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AS, for lactic acid from table 9 is a reasonable estimate of this constant
and corresponds to the offset between correlations of S° versus n for
hydroxyacids and acid anions. As a result, the followmg expression can be
used to estimate values of S° for hydroxyacid anions

S° =671+ 11.8. (40)

The values of S° from eq (39) together with values of $° of the elements
from Cox, Wagman, and Medvedev (1989) and values of AHp from table
8 or estimated with eq (34) were used in this study to calculate values of
AGf for hydroxyacids.

Comparison of eqs (6) and (38) demonstrates that the difference in
intercept values of the Cg versus n correlations for aldehydes and carbox-
ylic acids is 5.3 cal mol~! K~!. Once again, assuming that this difference is
a reasonable approximation for the offset between carboxylic acid and
hydroxyacid correlations, the following expression is obtained from eq

(6)
Ce=21.21 + 3.1, (41)

which was used in this study to estimate values of C3 for hydroxyacids.
Estimates for the corresponding acid anions were made from

C;=21.271 - 36.9 (42)

after taking into account the values of AGg, for glycolic and lactic acids
shown in table 9 and assuming that the value for lactic acid more
accurately represents the constant value approached by the higher
homologue for which experimental data are lacking. Values of V°, G§, S°,
AHP, and AG}’ for hydroxyacids obtained as described above were used
together with values of dissociation properties listed in table 9 to calculate
the corresponding properties of the acid anions. These data are listed in
table 10, together with equation of state parameters estimated as de-
scribed in the next section.

Regression and prediction of equation of state parameters.—Apparent
partial molal volumes of aqueous hydroxyacids and sodium salts of the
corresponding anions were measured at 25°, 30°, and 35°C by Hgiland
and Vikingstad (1975) who extracted standard partial molal volumes
from their experimental results. These data cover a narrow range of
temperature but can nevertheless be regressed for values of o and £ after
evaluating AV{. Calculating solvation contributions requires values of
and w. which were estimated in this study from eqs (A-26), (A-27), and
(22) using the values of S° estimated as described above and listed in table
10. Values of AV evaluated from the V° data given by Hgiland and
Vlkmgstad (1975_) are plotted against 1/(T — 8) in figure 15. The result-
ing values of V°, V7, o, and £ at 25°C and 1 bar are listed in table 11. These
data were used together with the equations summarized above to esti-
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mate the volumetric equation of state parameters in table 10. Values of o
and AV; are plotted in figure 16 where it can be seen that they are in close
agreement with the correlation line obtained from the data shown in
figure 8 and given by eq (23). Encouraged by this agreement, the C}
versus ¢y correlations for neutral aqueous organic compounds and or-
ganic anions shown in figure 9 and given by egs (28) and (29) were also
used in this study.

Estimation of equilibrium constants.—Data and parameters from table
10, together with eqs (30), (31), (A-25), and (A-37) allow estimation of log
K values for hydroxyacid dissociation reactions at high temperatures and
pressures. Predictions of this type are given in table 12 at several
temperatures and pressures of geochemical interest. Comparisons of
predicted and experimental log K values can be made for glycolic and
lactic acids as shown in figure 17. Agreement between predictions and
experiments is generally very close for these acids, but it should be kept
in mind that the narrow range of temperature over which experimental
log K values are available does not permit a thoroughly rigorous test of
the data and parameters in table 10 or the estimation procedures used to
obtain a vast majority of them.

CONCLUDING REMARKS

Equations, data, and parameters outlined above allow prediction of
thermodynamic properties of many aqueous organic acids and anions.
Comparisons between predictions and experimental data at elevated
temperatures and pressures show close agreement which suggests that
the values of log K in tables 7 and 12 can be used with considerable
confidence in studies of geochemical processes involving organic acids.
In addition, it should be possible to develop estimation procedures like
those described here to enable the inclusion of many more aqueous
organic species in geochemical calculations. The thermodynamic proper-
ties of aqueous organic acids summarized above provide a quantitative
foundation for a realistic consideration of the impact of metal-organic
complexes on the transport of metals and dissolved organic carbon at the
temperatures and pressures of geochemical processes (Shock and Ko-
retsky, 1993, 1995; Koretsky and Shock, 1993). These same data can be
used to examine decarboxylation and oxidation/reduction reactions
which should help reveal the reasons for the observed ratios of organic
acids in oil-field brines and hydrothermal solutions (Shock, 1988, 1989,
1990; Helgeson and Shock, 1988; Helgeson and others, 1993) and
provide the means to study the origin of organic acids through abiotic
reactions (Shock, 1990, 1992a; Schulte and Shock, 1993, 1995) as well as
during organic matter alteration and petroleum generation both in
natural environments and in the laboratory. These predictions should
also prove useful in evaluating geochemical constraints on the bioenerget-
ics of microorganisms living at elevated temperatures and pressures.
Computer files containing data and parameters listed in tables 4 and 10



58
5 glycolic acid = Na-giycoiate
s2
56
50
ss e
£
15 = '% “
<
- L]
52 “
E Haelland & Yiingstad (1975) 2 # Hellend & Vikingstad {1973}
L}
50 - 40
U.00  0.25 0.50 075 1.00 1.25 150 v.00 025 050 075 100 125  1.50
2
14T- 8) x 10° 1T- 8) x 10
7% ]
75 lactic acid Na-lactate
66
7%
" o
£ c
1> 72 3
2 15 e
n
60
70
. W Hedand & Vikingsisd (1975) 58 % Helland & Vikingstsd (1975)
v.00 0.25 0.50 0.75 1.00 128 1.50 55.00 0.25 0.50 6.75 1.00 1.28 1.50
2
14T- 8) x 10 WT-6)x 10°
88
02 2-hydroxybutanoic acid o Na-hydroxybutanoate
8
%
I 5 c 82
15w
a & b
7
a8 76
¥ Heiland & Vikingstad (1975) 74} @ Melano & Vikingsted (1975)
34
uoo 025 080 073 "": 125 .50 v.00  0.25 050 075  1.00 1.25  1.50
1(T- 6) x 10 UT- ) x 10°
108 2-hydroxypentanoic acid 100 Na-hydroxypentanoate
108 o8
%
£ 10 - £
1> [
3 '3
102 ]
%
%0 = Helland & Vikingstad (1975) 88 W Heiland & Vikingstad (1075}
08
v.00 025 0.50 075 100 125  1.50 v.00 025 0.50 075 1.00 125 1.50
2
1(T- 8) x 10 1T- 8) x 16°
iz
128 2-hydroxyhexanoic acid 120 Na-hydroxyhexanoic
128 s
116
124
£ S
1>
a 2 2 m
120 . 110
108
118} & Hellend & Viingstad (1975) 106 W Halleod & ¥ikingsted (1975}
e 108
v.00 025 050 075 1.00 125 1.50 u00 0.25 050 075 1.00 125  1.50
2
T- 8) x 10 1T ) x 10°

Fig. 15. Regression plots of AV? versus 1/(T — ®) for hydroxyacids and Na-hydroxy-
acid anion electrolytes. Symbols indicate data from Hgiland and Vikingstad (1975), but

lines represent regression results using eq (A-11).
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TaBLE 11

Volumetric data at 25°C and 1 bar for aqueous hydroxyacids, together with
equation of state parameters obtained by regression

Species Vo2 AV a* £ x 1072
glycolic 51.75 51.00 56.31 -3.72
glycolate 39.85 42.89 49.73 —4.79
lactic 69.38 68.75 74.48 —4.03
lactate 56.25 59.09 61.84 -1.95
2-hydroxybutanoic 85.45 84.92 91.87 —4.88
2-hydroxybutanoate 71.61 74.19 82.47 -5.80
2-hydroxypentanoic 100.47 100.05 108.16 —5.68
2-hydroxypentanoate 86.71 89.03 97.22 —3.74
2-hydroxyhexanoic 117.26 116.95 128.07 —7.80
2-hydroxyhexanoate 103.33 105.41 116.68 ~7.92

acm® mol~!,® cm? K mol~!.

Hydroxy Acids
150 2-hydroxyhexanoic
2-hydroxypentanoic
1251 i
. —
! — 2-hydroxybutanoic
[<]
g 1007 2-hydroxyhexanoate |
» lactic
£ 2-hydroxypentanoate
L 75 glycolic -
o 2-hydroxybutancate
501 lactate i
glycolate
25 T T T T
25 50 75 100 125 150

AV°n (em®mol™")

Fi% 16. Correlation of ¢ and AVg values at 25°C and 1 bar for hydroxyacids and anions
taken from table 11. The correlation line shown is that obtained for a wide variety of
aqueous species shown in figure (12) and corresponds to eq (23).

in a format which is consistent with the SUPCRT92 program ( Johnson,
Oelkers, and Helgeson, 1992) are available from this laboratory.
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Fig. 17. Plots oflog K against temperature for the dissociation of glycolic and lactic acid
at Pgar. Symbols represent experimental data from the references listed in the figure, but
the curves represent predictions made with the revised-HKF equations of state using data
and parameters from table 10.
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APPENDIX I
Standard state conventions

The standard state convention for aqueous ions, electrolytes, and neutral species
adopted in the present study is one of unit activity of the aqueous species in a hypothetical
one molal solution referenced to infinite dilution at any pressure and temperature. The
standard state for HyO calls for unit activity of the pure solvent at any pressure and
temperature. Any standard partial molal property of the kth aqueous electrolyte (59) is
related to the corresponding absolute standard partial molal properties of its constituent
ions by

i = 2 v (A-1)

where the subscripts k and j refer to the electrolyte and ion, respectively. The conventional
standard partial molal properties of the jth ion are defined by

1l

=5 H0ab
o = Hybs - g E (A-2)
where ,.'-.',H"bs refers to the absolute standard partial molal property of the hydrogen ion. As a

consequence, all conventional standard partial molal properties of H* are equal to 0.0 at all
pressures and temperatures. It follows from eqs (A-1) and (A-2) and the requirement for
electrical neutrality of an aqueous electrolyte that

= DB (A-3)
J

il
=)

Summary of the Revised-HKF Equation of State

The standard partial molal properties of aqueous species are expressed in the revised-HKF
equation of state in terms of structural and solvatlon contributions. A general statement of
this summation can be expressed

By = AEy + AR (A-4)

where the subscripts n and s refer to the nonsolvation (or structural) and solvation
contributions, respectively. The revised-HFK equations for the standard partial molal
volume V° and heat capacity C} are given by (Tanger and Helgeson, 1988)

Ve=Vo+ Ve

_ ag Ay 1 1 dw
Turyp it yaeitoe) T et ap), (a-5)

and

_ Co 2T ¥+ P
=c; + T - T oy ag(P— Pr) + a4 In TTPr

- v dw T 1 9w ’
+ oTX + 2T aT), ~ il 12, (A-6)
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where &, o, a), ay, as, as, €, €2, and w represent species-dependent equation of state
parameters, ¥ and 0 designate solvent-dependent parameters equal to 2600 bars and 228 K
for HyO, T and P stand for temperature and pressure, Pr signifies the reference pressure of
1 bar, and Q, Y, and X indicate the Born functions defined by

_i dlne
Q= e\ P /.~ (A7
_lalne A
Y=e aT Jp~° A-8)

and

_fay) 1 92Ine 9 1n €\?
X = 5—T—p—€ o P— ) | (A-9)

where € stands for the dielectric constant of HyO. The following identities are consistent
with eqs (A-5) and (A-6) ’

-

AV = G+ (2 - 122 A-10
s__(”Q‘+ e— aTTr (' )
AVS = +i (A-11)
n_o- T_e’
22 A-12
. cr—a1+\l,+ s (A-12)
= 2 A-13
g_a3+‘I/+P’ (A-13)
ACH T Tv| 22 Tl Fo A
P,5_7mx+21YﬂP— il ), (A-14)
and )
ATS. = Co 2T p I ¥+ P 5
P = C1 +(T——B)2— T -0y ay(P = Pr) + a4 In | 0 (A-15)
which reduces for P = Pr to
AT, = + —2— A-16
Pn = () (T_O)Q- (' )

Eq (A-16) can be used at Pgar to temperature of ~200°C without introducing substantial
error (Shock and Helgeson, 1988, 1990; Shock, Helgeson, and Sverjensky, 1989). In the
case of neutral aqueous species, eqs (A-10) and (A-14) reduce to

AVE = —0.Q, (A-17)

ACS, = 0 TX. (A-18)
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Integration of eq (A-6) with respect to temperature yields

= = Co 1 1 1 Tr(T — 0)
S$* =S 1.+ ¢;In (T/Tr) — r | Gy Al b + 6ln T(Ir = 9)
1 32 ¥+ P
+ T=% as(P—Pr)+asln TPy
1 ow
+oY —|=--1 a1/, ~ ope 1Y pr Trs (A-19)

where Tr indicates the reference temperature of 298.15 K.

'The apparent standard partial molal Gibbs free energy and enthalpy of formation are
given by (Benson, 1976; Helgeson, Kirkham, and Flowers, 1981; Tanger and Helgeson,
1988)

AG® = AG} + (Gyr — Gy (A-20)
AH® = AH} + (Hp; — Hj, ) (A-21)

where AG? and Aﬁ}’ stand for the conventional standard partial molal Gibbs free energy
and enthalpy of formation of the species from elements at the reference conditions of 1 bar
and 298.15 K, respectively, and the parenthetical terms represent the difference between
the standard partial molal Gibbs free energy and enthalpy of formation at the reference
conditions and those at the temperature and pressure of interest. It follows from eqs (A-5),
(A-6), (A-20), and (A-21) together with

g0 oo T ~o S P Ev) gy aV"

Air - Ar = [ Cooar+ [V -1 77, ) 4P, (A-22)
o rall QO - T ~o - T o B P /0
o = Chute = = Spor T =T + [ Toar -1 [ ThodinT + Jivsar, (a2s)

and the partial isobaric temperature derivative of eq (A-5), that we can write

+ a(P — Pr)

— — 1 1
AH® = AH? + (T — Tr) — Cg[(T — 0) - (Tr — 6)

1 v+ P 2T -6 | Vv +P
+a2n‘l’+Pr+(T_e)2 ag(P—Pr)+a4n‘I’+Pr

L) s ary = o )2 !
+(x)€— + w - e“ aTP—wPr'Tr €Pr,T,~—I

—@pe 1 ITYpy 1y (A-24)



554 Everett L. Shock—Organic acids in hydrothermal solutions:

and

_ — — T
AG® = AG} - Spr T — Tr) = cl(T In (-—) -T+ Tr)

B

8-T\ T (Tx(T-9)
o | e\ Tre—e)

v+ P
+a(P-Pr)+agin T or

1 ¥+ P
+ T—% ag(P — Pr) + a4 In ¥ 1P

1 1
+ m(— - 1) - ")Pr,Tr( - 1) - wPr,’I'rYPr.Tr(T - Tr) (A'25)
€ €pr,Tr

The conventional Born coefficient (»w) which appears in egs (A-5), (A-6), (A-10), (A-14),
(A-19), (A-24), and (A-25) is defined for the jth ionic species by

0= o™ = Zull, (A-26)

where w:ri denotes the absolute Born coefficient of the hydrogen ion, which is taken to be
0.5387 x 105 cal mol~! at 25°C and 1 bar (Helgeson and Kirkham, 1976), and

z
o =21, (A-27)
1 red

where m = 1.66027 x 10° (A, cal, mol™!), Z; stands for the charge on the ion, and re;
designates the effective electrostatic radius of the jth aqueous ion given by (Tanger and
Helgeson, 1988; Shock and others, 1992)

Tej =Ty + 2| (k, + g), (A-28)

where 1, stands for the crystallographic radius of the ions, k, represents a constant equal to
0.0 for anions and 0.94 for cations, and g denotes a temperature and pressure dependent
solvent function. Values of the g function have been regressed from standard partial molal
volume and heat capacity data for the electrolyte NaCl (Tanger and Helgeson, 1988) and
from supercritical equilibrium constants (Shock and others 1992) for the reaction ’

NaCl° & Na* + CI- (A-29)

where NaCl° represents the neutral, associated complex species. Available expressions for
the g function allow calculation of conventional Born coefficients and their partial deriva-
tives to 1000°C and 5 kb (Shock and others, 1992).

In the case of neutral aqueous species, the solvation terms in the revised-HKF
equations of state can be expressed in terms of the effective Born coefficient (we), which is
given for the nth neutral $pecies by (Shock, Helgeson, and Sverjensky, 1989)

_nZ

re,n

(A-30)

We,n
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where Z. , refers to the effective charge of the nth neutral aqueous species. Regression of
experimental data is consistent with the assumption that the effective Born coeflicients of
neutral aqueous species are independent of temperature and pressure (Shock, Helgeson,
and Sverjensky, 1989; Shock and Helgeson, 1990; Sverjensky, Shock, and Helgeson 1995;
Shock and others, 1992; Shock, 1995; and the present study). It follows that the revised-
HKF expressions for the solvation contributions to the standard partial molal volumes and
heat capacities are given by

AV = —0.Q (A-31)
ACS, = 0. TX. (A-32)

As a consequence, the revised-HFK expressions for the standard partial molal properties of
neutral aqueous species can be expressed as (Shock, Helgeson, and Sverjensky, 1989)

To = ay dq 1 P
_al+\P+P+ a3+\P+P'l“—6—wCQ’ (A-33)

6"— C2 2T 1 \I’+P 34
P—CI+(T_9)2_ T -8y ag(P — Pr) + a4 In T o)) TeTX,  (A-34)

- = e[ 1 1 (Tr(T - 8)
S =Spr‘Tl.+C|1n('I/l"r)—6— T—e \Tr =% +§ln m)

1y ¥+ P ‘
+ T-% az(P — Pr) + a4 In ¥ +pr + wY — Yer1v)s (A-35)
AH’ = AHP + ¢(T = Tr) — C2[( ) ( ) + ay(P - Pr)
v+P 2T - T+ P
+a21n‘P+Pr Pr)+a41n(‘P+Pr
+ we(IY = TrYp, 1 + ( ) ( )) , (A-36)
EPrTr

and
o o Qo - T o
AG® =GP = 8§, (T = Tr) = ¢;| TIn CTe '+ Tr

ol ety

v+p
¥ + Pr

+a(P-Pr)+ayln

1
+ (T — e)[ag(P — Pr)+ asln (q, TP

1
+ (DQ(YP,-,T,-(T - Tr) + (—E- has 1)

(A-37)
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