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ABSTRACT. We present a theory for the decay of sedimentary or-
ganic matter made of a spectrum (a continuous distribution of an
infinite number) of reactive types which can be characterized by a
variable function of the decay constant, k. A fundamental property of
the continuum theory is that it can generate an apparent order of
reaction for the decay of the total mixture greater than one. The
apparent order is related to the predominance of the more refractory
components of the continuum relative to the more reactive.

A Gamma distribution of reactivities is a particularly valuable
model for the initial distribution, g(k, 0). The Gamma distribution,
gk, 0) = g.k"'e */T'(v), is characterized by two free parameters, “a” and
v where “a” measures the average life-time of the more reactive compo-
nents of the mixture and v is a nondimensional parameter solely related
to the shape of the distribution near k = 0 (and I'( ) is the Gamma
function).

Analysis of the experimental data reported in Westrich and Berner
(1984) illustrates that the continuum model, based on the Gamma
distribution, requires half as many parameters as the traditional multi-
exponential model. This analysis indicates that the decay reaction is
characterized by v = 0.125 (equivalent to an a%parent 9th order reac-
tion). A similar treatment of nine organic C profiles from the historical
zone of various shallow and deep-water sediments shows that these
cores can be divided into two groups. The larger group of five profiles
displays v values that range primarily from 0.1 to 0.2 (6th—11th order).
A second group of three cores is characterized by v = 1.0 (apparent 2nd
order reactions), but two of these cores may contain data from the
mixed zone or may not be at steady state. The apparent order of the
experimental data agrees with that of the first group of profiles and
suggests that there may be an important similarity to such data over
broad spatial/time scales. In addition, we also examined the decay of
Westrich’s (1983) hypothetical 8-component organic matter and found
that it can be represented with v = 0.1 (11th order). If this similarity in v
values is substantiated by further studies, it would be a valuable tool in
theoretical studies. Though the data set is small, the analysis also
suggests that the parameter “a” varies systematically with the sedimen-
tation rate.

In the mixed zone of marine sediments, the continuum model
generates rather complicated integrals for the organic matter concentra-
tion profiles. In general, these integrals are amenable to numerical
methods only. They will, however, reduce to analytically manageable
forms, if the mixed zone can be assumed to extend to infinity and
advective transport ignored.

The theory of reactive continuums suggests, in general, that a
standard Arrhenius plot of log, (rate) versus T ' (T = absolute tempera-
ture) will curve upward with falling T™'. However, we have found that
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because of the restricted temperature range normal to sedimentary
environments, this plot will exhibit little deviation from linearity.
Therefore, a single apparent activation energy, E g, for the decay of the
total mass can be calculated from the slope of such a plot.

INTRODUCTION

It is widely recognized and acknowledged that the decay (oxidation)
of natural organic matter is a primary, if not the dominant, process
leading to diagenetic changes in marine sediments (Berner, 1974, 1980;
Froelich and others, 1979; Emerson and others, 1980). This process
determines not only the amount and “quality” of organic matter pre-
served in sediments, but also the extent of nutrient remineralization and
fluxes from sediments and the formation of authigenic mineral phases
such as metal sulfides. It is, therefore, not surprising that considerable
effort has been expended to arrive at quantitative models that can
account for laboratory measured kinetics of this process or to infer its rate
from geochemical data.

The first mathematical model for organic matter diagenesis in ma-
rine sediments originated with Berner (1964). His formulation stated
simply that the rate of disappearance by decay was proportional to the
concentration of organic matter, G,

dG— kG 1
dt__ ()

where tis time and k is an empirical rate constant for net decay. A similar
first-order model for organic matter decay was developed (or implied)
quite independently by soil scientists and marine biologists working in
different environments ( Jenny and others, 1949; Olson, 1963; Minder-
man, 1968; Flanagan and Bunnell, 1976; Hunt, 1977). This formulation
ignores the influence of the oxidant concentration, which is the normal
procedure for diagenesis (Berner, 1980).

While eq (1) has enjoyed success in describing some data (Berner,
1964), most analyses of decay experiments (Westrich and Berner, 1984;
Grant and Hargrave, 1987; Pett, 1989) and determinations of in situ
decomposition rates ( J¢rgensen, 1978; Berner, 1980, 1981; Miiller and
Mangini, 1980; Wapples and Sloan, 1980; Pelet, 1984) have concluded
that a simple first-order dependence on the concentration of total or-
ganic matter, G, was not consistent with the observations. Specifically, the
overall rate of decay was seen to diminish slower than predicted by eq (1),
and G appeared to reach a positive non-zero asymptote as time (or depth)
increased. Equivalent behavior was apparent during organic matter
decomposition in soils and freshwater sediments (Jewell, 1971; Godshalk
and Wetzel, 1978).

To explain this discrepancy, it was suggested that the organic matter
was composed of a variety of discrete organic matter types that differed in
amount and reactivity, but that each component followed a first-order
decay as given by eq (1) (Jorgensen, 1978; Berner, 1980; Westrich, ms;
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Westrich and Berner, 1984; but also Minderman, 1986; Parnas, 1975;
Bunnell, Tait and Flanagan, 1977; Smith, 1979)

T -kG; (2)

where G, is the concentration of the i-th reactive component, and k; is the
corresponding decay constant, which varies from some maximum value
to zero for the refractory component. Thus, the total organic matter
concentration changes as

dt == E kG, (3)

where n is the total number of reactive types.

This approach is not without its own flaws. The number of reactive
types and their associated k-values must be determined empirically as
curve fitting parameters. This procedure is open to at least two avenues
of criticism. Middelburg (1989), reviving the analysis of van Liew (1962),
points out correctly that the graphical analysis performed to extract the
number of reactive types and their reactivities will result in the identifica-
tion of two or three types from a given data set regardless of the actual
number involved. The fact that the eight reactive types identified ulti-
mately by Westrich (1983) differ in reactivity by almost exactly an order
of magnitude strongly suggests that this difference is in part a function of
the selectivity of the method of analysis (or the experimental system) than
an inherent property of the distribution of organic matter types. In
addition, it is essentially impossible to identify a specific organic sub-
stance (or even coherent groups of substances) with the empirically
defined reactive types. The strongest argument in favor of the multiple-G
model is its conceptual and mathematical simplicity.

Westrich (ms) and Middelburg (1989) both recognized that as an
alternative to the discrete multiple-G model, one could assume instead
that k was a continuously varying parameter and that there existed a
spectrum of reactive types, that is, an infinite number. Westrich (1983)
did not pursue this proposal because of the mathematical difficulty
presented by the continuum model. Middelburg (1989) interpreted the
continuum alternative to imply a continuous and direct dependence of
the rate constant, k, on time, t. Although Middelburg’s treatment leads to
informative and pleasing correlations, we cannot sanction this approach.
The apparent reactivity of a continuum mixture of organic matter types
is a function of the changing composition of the mass with time, not time
itself. Creating a functionality directly based on time severs the mechanis-
tic link between the properties of the organic matter and the rate of
decay. The ambiguous meaning of time, or more specifically age, for
organic matter at a given depth in a sediment that has been subject to
bioturbation is also extremely bothersome.

A more suitable implementation of the continuum hypothesis is
available in the form of the theory of reaction in continuous mixtures as
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advanced by Aris and Gavalas (1966), Aris (1968, 1989), Hutchinson and
Luss (1970), Ho and Aris (1987), and Krambeck (1988). According to this
theory, the organic matter is described by a distribution function, g(k, t),
which gives the amount or concentration of organic matter having
reactivities between k and k + dk at time t. Each of the infinite reactive
types characterized by a given value of k undergoes a decay reaction,
which we assume to be first-order. The total amount of organic matter as
a function of time is then the integral of the distribution, g(k, t), over all
possible values of k. Apparently unaware of the work of Aris (1968), this
approach was developed independently by Carpenter (1981, 1982) and
Bosatta and Agren (1985) in their studies of soil organic matter decay.

It is the aim of this paper to develop the theory of reactive continu-
ums as it applies to organic matter diagenesis in marine sediments. In so
doing we will explore the properties and implications of this model. We
will also apply the model to experimental and natural data sets to
evaluate not only its practical utility, but also to determine if it can
identify fundamental properties of the organic matter decomposition
process that are not obvious from the multi-G model.

KINETICS OF A REACTIVE CONTINUUM

General properties.—As stated above, the basic premise of the contin-
uum theory is the existence of a spectrum of reactive types characterized
by a distribution function, g(k, t), which determines the concentration of
organic matter having reactivities between k and k + dk (where dk is in
infinitesimal increment in k). If each reactive types undergoes a first-
order decay reaction', then g(k, t) will change with time according to the
decay equation

dg(k, t)
= = ksl )

which has as its familiar selution

" gk, 1) = g(k, 0)e™ 5)

The true observable quantlty in both experimental and natural
situations is the total amount or concentration of organic matter, G(f),
and this is calculated as the integral of the distribution function over the
range of all possible values of k, which can be taken to be zero to infinity
(Aris, 1968),

= [ gk, nax ®)
or with eq (5)

co= [ g(k, 0)edk 7

' Nonlinear individual reactions are considered by Astarita and Ocone (1988), Chou®
and Ho (1988, 1989), Astarita (1989), Aris (1989), and Ho (in press).
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Eq (7) is, in fact, the definition of a Laplace transform (Abramowitz and
Stegun, 1972, p. 1020; Hildebrand, 1976, p. 55; Spanier and Oldham,
1987, p. 241), and this property will be employed later. Although we will
deal later exclusively with an initial distribution, g(k, 0), that provides for
a closed-form solution of eq (7), numerical integration is a viable option
for other choices (see Press and others, 1986, chap 4; also Davis and
Rabinowitz, 1984).

The rate of change of total organic matter with time can be related to
the change in the distribution by differentiating eq (7),

dG(1) o
d—t( = - [ kg(k, 0)edk 8)

The problem in applying this continuum model lies in specifying
g(k, 0), that is to say, the initial distribution of reactive types. For
example, past studies (Jg¢rgensen, 1978; Berner, 1980, 1981) have as-
sumed that there are m discrete types of organic matter each with initial
concentration G,(0) and reactivity k;,. This is equivalent to a distribution
composed of m delta functions, d(k — k,). The delta function has the
property that its integral is equal to one, so that

J7 30— 1) i dk = £k )

Therefore, the G(t) calculated froma distribution composed of the sum of
m delta functions is

G(t) = fo ) i} 3(k — k) G,(0)e *dk (10)

or with eq (9)

G(t) = 2, G(0)e™ (11)

and we recover the organic matter decay model of J¢rgensen (1978),
Berner (1980, 1981), Westrich (ms), Westrich and Berner (1984).

Yet, a finite set of discrete organic matter types is simply one of an
infinite number of possible distributions and one that is an unlikely
description of natural distributions. We know, for example, that marine
organic matter is composed of a wide variety of organic substances
including protein, lignin, cellulose; chitin, plus all the other products of
biosynthesis and the geopolymerization process. It would be truly astound-
ing that the decay of all these compounds would fall neatly into a small
finite number of reactive types. More likely, the sensitivity of the measure-
ment methods forcibly divides the true distribution into the distinct
categories. The adoption of a continuous distribution presents, in all
probability, a more realistic assumption than its discrete counterpart.

Before trying to discover possible representations for natural distri-
butions, it is worthwhile discussing some of the properties associated with
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continuous distributions because they are quite startling. We start with
the example of a very simple finite distribution, that is, a constant, g,,
from k = 0 to some finite value, k,,

0<k=<k
g0 =10 Sk (12)

Substitution into eq (7) and integration gives

G =30 - e (13)
and nto eq (8)
dG
T %(e““"(l + ket) — 1 (14)

It might first appear that G(t) and the rate given by eqs (13) and (14)
are infinite or undefined as t — 0. This is not the case. At small times, the
exponential is well represented by the first few terms of a Maclaurin
series,

Kot)?
e"‘°’zl—k0t+(;)—~- (15)

so that from eq (13), we obtain in the limit as t = 0
G(t) = kg, (16)
Thus, the total amount of organic matter remains well-defined in this
limit.
Using the same procedure, we find that the rate is also well defined
ast—0, .

dG kg,
i (7
or with eq (16)
gy —&G(t) (18)
dt ~ 2

This means that this particular organic mixture would appear initially to
decay as a first-order process with a decay constant of k,/2.

After enough time had passed, a different picture would emerge to
an observer. As t — «, and e * — 0, then

G(O) = ~gt—° (19)
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and given infinite time, all G(t) would disappear, because all is reactive in
a continuum model. At this point, we stress that the model applies to the
decay of organic matter fully available to the microbial population. For
example, organic matter trapped within shell lattices is specifically ex-
cluded if it cannot be reached by microorganisms.

The rate of decay has the asymptotic form

or with eq (19)
dG G?
E @

So that after a sufficiently long period of time, the reaction would seem to
be second order with rate constant 1/g, (Ho and Aris, 1987).

Why does this perceived change in the order arise? In the beginning
(t = 0), decay is dominated by the most reactive component(s) so that the
bulk organic matter vanishes according to a first-order reaction. How-
ever, for longer times (t — «), the highly reactive fraction of this material
will have been completely consumed, and the overall reaction must
slowdown to reflect the behavior of the less reactive components. This
deceleration in the rate looks to an observer like a shift toward a higher
order of reaction. On a plot of concentration versus time, the curve
defining the evolution of the system adopts a shallower slope with time,
and this is exactly what is seen in the data of Westrich and Berner (1984,
fig. 1).

This change in the apparent order will occur not only for the special
distribution given by eq (12), but for a wide class of initial distributions,
g(k, 0). To illustrate the generality of this assertion, consider the case
where g(k, 0) can be represented as'a power series in k (no singularity at
k = 0) to at least the arbitrarily large value k,,

gk,0) =g, +gk+gki+... (22)
where g, g,, g,, et cetera, are constants. Substituting into eq (7) produces
ko ko ! o
GO =g, [, e™dk +g [ ketdk+g, [ Ketdk+... (29)
Upon integration,

_ gl — e ) N gi(1 — e (1 + Kkot)) N

G(t) " e (24)
or, fort — oo,
Gm=%+%+%+“. (25)
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which is true even if we let k, — . Differentiating eq (25) suggests that in
this limit
6 _ & _ % 38

dt - e ¢ ¢ (26)
Now if g, # 0, that is to say that there is a finite non-zero amount of
highly refractory material, then as the elapsed time becomes very long,
G(t) becomes well approximated by the first term in eq (25). If this is
substituted into eq (26) with only the first term retained, then
dG G o7
dt -~ _go ( )
which is eq (21). The effect of a finite non-zero contribution near k = 0 on
the reactive spectrum is to create an apparent shift to second order
Kinetics in the observed decay of the mixture.
Apparent lower order reactions are also possible. If, for example,
g, = 0 while all other coefficients are non-zero, then the long time
behavior of G(t) is given by second term in eq (25) and, consequently,

dG 2G*?

O @

which indicates a 1.5 order reaction with time. The absence of the first
term in eq (25) implies that there is less refractory material near k = 0
than in the case where g, # 0, so that its behavior has a lesser influence on
the kinetics as time passes. In general, if the first n — 1 terms of the
expansion given by eq (25) are zero, then

dG n(}1+1/n

e, 9
a = gy (29)

which tends to a first-order reaction as n — . The successive loss of low
order terms in eq (25) reflects progressively less refractory material and
so less of a need for higher order kinetics to accommodate the decay’of
this material.

It is also possible and quite reasonable to obtain apparent kinetics
greater than order 2. It was assumed in eq (25) that g(k, 0) was express-
ible as a simple power series; however, we should also consider initial
distributions that are weakly singular, that is, those that have a behavior
like k™ as k — 0, where a < 1 if the total amount of organic matter is to
remain finite. The weak singularity for g(k, 0) ~ k™*if 0 < a < 1 poses no
problem in terms of physical significance. It simply indicates a massive
preponderance of refractory material. Natural organic matter mixtures
may be commonly characterized by such distributions.

As Krambeck (1988) has aptly established, if g(k, 0) ~ k™%, then the
limit theorem of Laplace transforms (Spanier and Oldham, 1987, p. 250)
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immediately allows us to conclude that eq (7) will behave like

G(t —» ®) ~ ! (30)
Differentiating eq (30)

do ~ = (31)

dt

o

or substituting eq (30) into (31)

dG

E ~ —GE ) (32)

—x

A physically realizable solution is limited to a values less than 1. For a = 0,
we recover an apparent second order reaction. As a rises toward 1, the
order also increases. For example, at a = 0.5, there results a third order
reaction, and a = 0.75 generates a fifth order reaction. By choosing a
arbitrarily close to 1, one can obtain arbitrarily large apparent orders for
the decay of the mixture reaction.

It must be emphasized at this point that the occurrence of higher
apparent orders of reaction does not imply nonlinearity in the true
kinetics of decay reaction. The infinite collection of decay reactions that
make up the distribution at any time all continue to be strictly first order.
This means that if the system is perturbed by adding organic matter, the
change in the real rate will be linear in this increment. This can be proven
by considering eq (8). If the initial g(k, 0) is doubled, then we can
substitute 2 - g(k, 0) for g(k, 0), and the rate is simply twice that calculated
previously. Thus, there is a fundamental difference between the per-
ceived order of a mixture and the real order of the constituent reactions.
Higher apparent orders of reaction'and the linear response to perturba-
tions found by Westrich and Berner (1984) are not, therefore, in conflict.

Finite range distributions.—To illustrate the type of changes in the
perceived order of reaction that can occur during the course of decompo-
sition, we consider thé behavior of six g(0,k)-distributions with finite
k-ranges: !

1. Step:

gk, 0) = g, 0 <k <k, (12, repeated)

2. Linear increasing:

gok
gk, 0) = o 0 <k <k, (33)

0

3. Linear decreasing:

g(k, 0)ﬂ= go(l - —) 0 <k <k, (34)
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4. Concave quadratic:

k1Y
gk, 0) = 4g0(k—0 - 5) 0 <k <k, (35)
5. Convex quadratic:
k k
g(k,O)=g0k—01—k—0 0 <k <k, (36)
6. Inverse power law:
k n
g(k,0)=(f) n<l & 0<k<k, (37)

and k = 0 for k > k; in all cases. Figure 1A shows the change in the
organic matter relative to its initial concentration, G(t)/G(0), as a function
of the dimensionless time, ki, for these six g(0,k)-distributions.

The Linear Increasing and Convex Quadratic distributions have
zero intercepts at k = 0 while the Step, Linear Decreasing and Concave
Quadratic have finite intercepts, that is, g(0,0) = g,. According to the
reaction continuum theory, the first two distributions should both gener-
ate long-time apparent orders of 3/2. The latter three will asymptote to
an apparent second order reaction. The Inverse Power Law is a weakly
singular distribution of the type described by eq (30), and it will produce
apparent orders of 3 and 5 for n = 0.5 and 0.75, respectively. All these
distributions have an initial order of 1.

Figure 1B plots the rate of reaction normalized to the initial rate,
R(t)/R(0), against the normalized concentration of organic matter for
each of these initial distributions, that is, eqs (12) and (33) to (37). The
slope of the various lines in this diagram is the apparent order of reaction
at a stage of decomposition where a fraction G(t)/G(0) of the original
material remains. The smaller the ratio G(t)/G(0), the further the decom-
position has progressed. Except for the case of the Inverse Power Law

o

Fig. 1. Kinetic behavior associated with the finite-range g(0,k)-distributions given by
egs (12) and (33) to (37). Diagram A displays the change in the normalized organic matter
concentration, G(t)/G(0), as a function of time as normalized by the mean life-time of the
most reactive component, k,'. Diagram B illustrates the normalized rate of reaction,
R(t)/R(0), plotted against the normalized total organic matter concentration generated by
the same initial reactive distributions. The slope at each point on these curves in diagram B
ae_presents the apparent order of reaction at a given stage of decomposition. Key for both

iagrams:

Step Function, eq (12)
................... Linear Increasing, eq (33)
———————— Linear Decreasing, eq (34)
————————————— Concave Quadratic, eq (35)
_— Convex Quadratic, eq (36)
- Inverse Power Law (n = 0.5), eq (37)
e Inverse Power Law (n = 0.75), eq (37)
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distribution, the curves do not reach their predicted asymptotic slopes,
that is, reaction orders, until the G(t)/G(0) < 0.2, which is quite late in the
degradation process. The Inverse Power Law distributions reach their
asymptotic slopes much earlier in the process, as early as 20 percent
decay for n = 0.75. This means that there is, in that case, a relatively rapid
deceleration in the observed rate shortly after initiation of the process,
which can be seen in figure 1A.

The Gamma distribution.—Even though an analysis of the finite range
distributions given above has proven to be informative, they are probably
not the best choice for data diagnoses. Their integrations are reasonably
complicated, and many forms should presumably be examined to deter-
mine the optimum fit. Aris (1968, 1989) and Ho and Aris (1987) have
advanced the use of the infinite k-range Gamma distribution:

go kv—l e—ak

gk, 0) = Tw)

(38)
where I'( ) is the Gamma function (Abramowitz and Stegun, 1972,
p- 255; Hildebrand, 1976, p. 76; Spanier and Oldham, 1987, p. 411),
and “a” and v are, in principle, free-parameters. In the context of organic
matter decay, the a-parameter is a measure of the average life-time of the
more reactive components of the mixture described by eq (38). The
exponent v is a nondimensional parameter solely related to the shape of
the distribution near k = 0. If v is greater than one, then g(0,0) = 0,and a
mid-distribution maximum results. If v = 1, then the Exponential distri-
bution is obtained. Finally, if 0 < v < 1 then the distribution is weakly
singular near k = 0, like eq (30), but exponential-like in the limit of large
k. This behavior is displayed in figure 2A (see also Tsokos, 1972; Rama-
narayanan and Howard, 1986). Eq (38) is consequently quite remarkable
in its flexibility. The time evolution curves for these distributions are
shown in figure 2B. Additionally, Aris (1989) has demonstrated that the
Gamma distribution has the interesting and useful property that the
apparent order of decay for the mixture remains constant independent
of the fraction decomposed (fig. 2C), unlike the finite-range distributions
of figure 1 that change order with time.

What is arguably the most important consideration is that eq (38)
corresponds to an exceedingly simple G(t) function with highly desirable
properties (Abramowitz and Stegun, 1972, p. 1022; Spanier and Old-
ham, 1987, p. 246)

8o

G() = m (39A)
or, if G(0) is the initial total organic matter,
GV = G(O)|——| 39B
© = GO\ (39B)
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Fig. 2. Kinetic behavior associated with the Gamma distribution, eq (38). Diagram A
displays the shape of this distribution as a function of the normalized rate constant, a - k, for
four values of the parameter v. The parameter “a” is a measure of the mean life-times of the
fast decaying components of the distribution, and v determines the behavior near k = 0 (see
text). Diagram B shows the time evolution of the (normalized) total organic matter
corresponding to the distributions in diagram A. Diagram C illustrates the normalized rate
of reaction, R(t)/R(0), plotted against the normalize% total organic matter concentration,
G(t)/G(0), generated by the Gamma distribution. The slopes are constant and correspond to
apparent reaction orders of 5, 3, 2, and 1.5 forv = 0.25, 0.5, 1, and 2, respectively.
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The rate of disappearance of the total organic matter is the derivative of
eq (39) with respect to time,

dG Vg,

dt T T@+ o (#0)
Egs (39) and (40) together lead to

dG 1+1/v

Froa -k,.G (41)

which confirms the apparent higher orders attainable from small values
of v. The parameter k,, is the apparent rate constant for the decay of the
mixture and is equal to v/(g,)"". Using eq (39A), we can establish that g, =
a"G(0), which leads to the equality,

14

kn = IGOT" 42

The simple form offered by eq (39) is easy to use for curve fitting
purposes, and we will utilize it extensively in the course of data analysis in
the next sections. We are fully cognizant that natural distributions of
reactivity are likely to be highly complex and that our choice of the
Gamma distribution is guided by a degree of mathematical expediency.
Nevertheless, eqs (38) and (39) contain most of the essential behavior-
determining characteristics that could be found in nature. Following
Occam’s directive, we adopt the simplest approach that still contains the
essential features.

APPLICATION OF THE MODEL

Experimental studies.—Decomposition experiments where the (ma-
rine) organic matter congentration was monitored accurately during the
procedure are not abundant, and of that limited set, Westrich and
Berner (1984) quite likely have gathered the best data available. The
traditional treatment of this data employs exponentials and constants for
fitting purposes, that is, delta function distributions. Westrich and Berner
(1984) required at least two exponential terms plus a constant to obtain
an acceptable fit to the data, and a similar fitting is displayed in figure 3A
(r =0.999). This approach involves five arbitrary constants (that is,
a,, b, a,, by, a;), of which only four are truly independent.

If instead, eq (39) is utilized, then the fit shown in figure 3B is
obtained (r = 0.998). Notice that only two parameters are needed to
arrive at this fit. All else being equal, the reactive continuum model has
the distinct advantage of demanding half the number of free parameters
as the traditional model. The parameter v takes a value of 0.125 which is
equivalent to an apparent 9th order reaction. This is indicative of the
strong preponderance of the relatively inert material in the mixture. The
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Fig. 3. Experimental data presented by Westrich and Berner (1984) as interpreted
with the traditional multi-G (exponential) model in diagram A and with the reactive
continuum model, eq (39B), in diagram B. The fit in diagram A gives a, = 0.205,b, = 0.261
yr™',a,=0.578,b, =275 yr™!, and a, = 0.217 for r = 0.999, where a, is not independent of
a, and a,. The fit to eq (39) given,in diagram B generatesa = 0.113 dayand v = 0.125 forr =
0.998 and corresponds to an apparent 9th order reaction. There are also only two
curve-fitting parameters in the continuum representation. Diagram C illustrates the
distributions tﬁat correspond to the fits in (A) and (B). The curve labelled “continous” is the
distribution that coincides with the fit of eq (39) in (B), and the vertical arrowed lines (that
extend to infinity) represent the three delta-functions that generate the exponential fit in
(A). (Note the break in the x-axis of (C).)
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other parameter, a, has a calculated value of 0.113 days which indicates
that the initial material to decay is reactive indeed.

The reactive distributions that correspond to the fits in figure 3A and
B are illustrated in figure 3C. The smooth curve labelled “continuous” is
the Gamma distribution (divided by the initial organic matter concentra-
tion) that coincides to the fit of eq (39) to the data in figure 3B divided by
G(0). (The ratio g(k, 0)/G(0) can be thought of as the analogue to the
probability density function.) The continuous distribution approaches
infinity as k — 0.

The discrete distribution of delta-functions that corresponds to the
exponential fit in figure 3A is given by the vertical arrowed lines in figure
3C,oneatk = 27.5yr™', asecond at k = 0.261 yr™!, and a third atk = 0.
The height of these lines extends to infinity on the g(k, 0)/G(0)-axis.
However, the integral of each delta function is the finite amount of
organic matter for each of the three reactivities. These amounts are given
by reading-off the actual plotted heights against the right-hand axis. This
graphical comparison illustrates the vast differences between the contin-
uous and discrete distributions. That both distributions can be made to fit
the data equally well tells us that the inverse problem will never yield a
unique solution without additional (outside) constraints.

Sediments without mixing or below the mixed-layer.—There is a unique
relationship in these sediments between the depth (below the mixed
zone) and elapsed time at constant porosity,

X = ot (43)

where x is the depth below the sediment-water interface for non-mixed
sediments or below the mixed layer for mixed sediments, and w is the
burial velocity. This permits substitution of x/w for t in eq (39) or any
other G(t)-function that results from a chosen distribution function.

Nine organic matter profiles from various sedimentary environ-
ments were modelled using eq (39). They span burial velocities from
0.2 cm yr™' at the FOAM site (Westrich, 1983) to 0.2 cm kyr ' for a
siliceous ooze at 13.5°N in the Pacific (table 1). The data for each core
along with the non-linear least squared fits of eq (39) are presented in
figures 4 and 5. The best fits for parameters v and a can also be found in
table 1.

The cores are divided into two groups on the basis of the calculated
value of the exponent v. The majority of cores in figure 4 possess v’s
between 0.1 and 0.2 (apparent 6th—11th order reactions). The v-values of
this group are similar to that derived from the experimental data of
Westrich and Berner (1984). The small values of the parameter v for this
group argue that the total organic matter is dominated by refractory
components clustered near k = 0. (We believe that core PC2 & TW2 is
anomalous, and this is discussed below.) The other three cores in figure 5
are described by exponents between roughly 0.8 and 1.0 (apparent®
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TABLE 1

Continuum model fits (eq 39) to selected organic matter profiles in histotical layer
of marine sediments

® Apparent  a
Core Location  (cm kyr™") Source v Order (yr) r*
FOAM Long Island 200 Goldhaber and others 0.152  7.57 4.2 0.930
Sound (1977) and Westrich
(1983)
SCR-44 Santa Cruz 60 Shaw (ms) 0.202 595 70.4 0.929
Basin
BX-6 Peru Margin 230 Froelich and others 0.278  4.60 22.5 0.929
(1988)
PC2 & TW2 Peru Margin 230 Froelich and others 0.052 202 0.16 0.937
(1988)
10127 Central 0.2 Miiller and Mangini  0.139  8.19 14,000 0.926
Equatorial (1980)
Pacific
10141&2 same 1.2 Miiller and Mangini  0.193  6.18 10,184 0.935
(1980)
7706-41K  Peru Margin 150 Reimers (1982) 0.910  2.10 141.3 0.974
7706-36 Peru Margin 40 Reimers and Suess 0.804 225 231.7 0.978
(1983)
DSDP 58  North 2.0 Wapples and Sloan 1.080 193 20,224 0.917
Philippine (1980)
Sea

*Correlation coefficient

orders between 2-2.25) and, consequently, a much more even distribu-
tion of reactive types along the continuum (see fig. 2A).

The reason for this apparent dichotomy is not clear. If the difference
is real, it speaks of intrinsically different initial k-distributions between
these two groups. There are no odbvious geographic or oceanographic
differences or similarities to explain these groupings. The Peru margin
profiles (cores 7706-36 and 7706-41K) probably include some data from
a surficial zone which is appreciably bioturbated. Kim and Burnett (1988)
have demonstrated the existence of measurable particle mixing even in
laminated sediments of this region. Mixing may result in higher apparent
value for the exponent; but we simply don’t have any strong evidence to
back this statement. (The higher v of core BX-6 of the group in figure 4 is
also from the Peru Margin and does appear to contain some data from a
weakly bioturbated surficial layer, that is, L/D, < 1, where D, is the
biodiffusion coefficient.) In addition, there may be non-steady state
effects in core 7706-41K (Boudrean, 1990).

The v value for the DSDP 58 site cannot be explained by these
mechanisms and constitutes a greater enigma. We cannot rely on geo-
polymerization as an explanation, because this would shift organic matter
to the less reactive end of the spectrum and, therefore, decrease the value
of the exponent, v. Wapples and Sloan (1980) discount any thermal
(catagenic) effects, and the organic matter content is not terribly different
from that in the Miiller and Mangini (1980) core of figure 4. This core
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Fig. 4. Six marine organic matter (carbon),profiles and the best fits to this data using eq
(39), which corresponds to a Gamma distribution of reactivity, eq (38). The literature source
for each core is quoted in each figure, while the location and sedimentation velocities can be
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remains a quandary. Similar analyses on more data sets are needed to
establish firmly the trends, if any, in v values and determine the underly-
ing causes.

If we accept that the first grouping is real (if only for the sake of
argument), then the calculated exponents are comparable to that derived
from the laboratory experiments of Westrich and Berner (1984). This
may be indicative of a fundamental similarity in the shape of decay
profiles, over vastly different time and space scales. (This last statement
can be understood by remembering that eq (43) links time and space;
consequently, sampling over different time scales in an experiment is
equivalent to sampling over different space scales in a core.)

We have not yet discussed the parameter “a” that results from these
distributions. Calculated values are shown in table 1. As stated earlier,
this parameter is a measure of the average life-span of the fast decaying
portion of the distribution. One would guess intuitively that a should
increase in value as the sedimentation velocity decreases, because the fast
decaying material is removed before it is incorporated into the historic
zone, either at the sediment-water interface or in the mixed zone. This
general trend is indeed confirmed in the data as seen in both table 1 and
figure 6. While this correlation must be considered tentative in light of
the small data set, it is analogous in the continuum model to the k versus
o relationship derived by Toth and Lerman (1977) for the discrete
model. .

In creating figure 6 we have omitted the a-value corresponding to
core PC2&TW?2, as this value is anomalously low. Common sense argues
that a life-time of only 0.16 yrs is far too short for reactive organic matter
in a sediment with such a modest accumulation rate (that is, compare
with FOAM). The v for this core also stands out for its small value (0.052).
All in all, the organic carbon gradiént in this core is far sharper than
expected and is perhaps related to nop-steady state conditions.

The profiles examined above have been in many cases treated by the
traditional method of fitting with an exponential plus a constant (Wes-
trich, 1983; Miiller and Mangini, 1980; Wapples and Sloan, 1980), and
the resulting fits were found to be equally pleasing and statistically
significant. A curve generated by eq (39) and that by an exponential plus
a constant are not mathematically equivalent, and in perfect data, the
discrepancy would be apparent. Real sedimentary data are, however,
riddled with random variations, and within such noise the two functions
are often statistically undifferentiable. As a result, it is easy to argue that
one choice is as good as another in dealing with sedimentary data. The
only guiding light is one’s conviction in the validity of either one of these
conceptual-mechanistic models, that is, some continuous distribution
versus discrete types.

Westrich’s “Gedanken” experiment.—In his seminal work on the
G-model, Westrich (1983) conducted a thought-experiment wherein he
created a hypothetical sediment containing all eight of the discrete
reactive types that he had identified as components of natural organic
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Fig. 6. A plot showing the correlation between the parameter “a” in eq (39) with the
sedimentation velocity of the cores listed in table 1. (Note core PC2&TW2 is not included.)
The best fit to an exponential is shown in this diagram with “a” in units of yrs and w in units
of cm kyr™.

matter. (We call this the Westrich distribution, although the sum of the
corresponding delta functions is in fact the actual distribution.) Specifi-
cally he proposed a sediment mixture in which each organic matter type
constituted 0.4 percent by weight, except for the inert fraction (k = 0)
which made up only 0.05 percent. He then examined the decay of this
mixture under different sedimentary conditions.

The Westrich distribution does not represent a true known orgaric
matter but rather a hypothetical composite. Nevertheless, it is legitimate
to ask—what type of continuous Gamma distribution is implied by
Westrich’s discrete distribution? To answer this question, we plot the
Westrich distribution (solid line in fig. 7) and then carry out a nonlinear
fit of eq (39) (dotted line in fig. 7). The equivalent continous representa-
tion of the Westrich distribution is then,

Gy  0.879
G(0)  (0.342 + t)*!

(44)

with a correlation, r, of 0.986. This fit required only two parameters,
compared to the original eight separate k’s and Gy(0)’s, which is a
considerable reduction.
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Fig. 7. Nonlinear fit of eq (39)—dotted line—to the Westrich distribution of eight
organic matter types—solid line. The parameters v and “a” have values 0f 0.1 and 0.342 yrs,
respectively, for a correlation coefficient, r, of'0.986.

At least two significant observations can be made in comparing the fit
in figure 7. First, the v for the continous distribution is indicative of an
11th order reaction, which is consistent with the major grouping dis-
cussed above. Secondly, the two distributions diverge after long periods
of time (>10° yrs). This is attributable to the faster decay inherent to
exponentials compared to forms like eq (39). Note that the discrepancy is
small.

Mixed sediments.—We now take a cursory look at a version of the
continuum model that includes mixing of the organic matter. In the
presence of diffusive mixing, the constant porosity diagenetic equation
for a component of the continuum is

g g 9g
gt - Degr— o5, ~kg (45)

Restricting ourselves to the steady state and imposing the boundary
conditions

g=gk 0 x=0 (46A)

dg

I~ 0 (46B)

=L
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where Lis the depth of the mixed layer, the standard solution to eq (45) is

k, 0
(X, k) — __g(__)_ e — E e(uﬂr)LeO'x (47)
& o
(1 — E e(u‘a)L)
o
where
o — (w? + 4Dgk)'"?
p= 9D, (484A)
and
+ (0? + 4D k)"
o= (@ k) (48B)

2Dy

The equation that governs the total amount of organic matter at any
depth is obtained by substituting eq (47) into eq (6)

- k, 0
G(x) = j; (—g_(lb—_)— (e‘“‘ _k e““”%"")dk (49)

g
1 -—— C(M‘U)L

Generally, eq (49) can be integrated numerically (if not analytically) for
any reasonable g(k, 0). Many readers may find it sufficiently unwieldy
that the discrete G-model looks like a superior alternative.

The problems associated with implementing the continuum model
with a finite mixed zone do not end with the complexity presented by eq
(49). To match the concentrations at x = L, the formal procedure would
require that the shape of the distribution be calculated and fed into the
equations governing the non-mixed zone. This could be quite an in-
volved calculation. Frem a practical point of view, there is little to '
recommend the continuum model under these circumstances.

If the mixed layer can be assumed to extend to infinity (for example,
if we are interested only in obtaining the correct behavior of the fastest
decaying components), then some of the simplicity of the non-mixed
situation is regained. The solution for g(k,x) reduces to

g(x, k) = gk, 0)e ™ (50)

K\
K =(D—) (B1)

G = [ gk, 0)edk (52)

where

The total organic matter is
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which is reminiscent of eq (7). There is a Gamma-like distribution for
g(k, 0) that leads to the simple form of eq (39), that is, g(k, 0) = g,k"™"
e~*Vk; however, we shall not pursue this topic further.

ENERGETICS OF DECOMPOSITION

The past discussion has implicitly assumed an isothermal environ-
ment. The decay of organic matter is, however, a rate process and,
therefore, a function of the ambient temperature. To be complete, the
theory must recognize the effects of variable temperature. This is particu-
larly important in shallow-water sediments subject to seasonal fluctua-
tions in temperature (for example, Aller, 1980).

The standard approach in dealing with temperature effects on rates
is to assume the validity of an Arrhenius-type dependence (for example,
Vosjan, 1974; Abdollahi and Nedwell, 1979; Aller and Yingst, 1980;
Aller, 1980; Crill and Martens, 1987; Westrich and Berner, 1988; and
Mackin and Swider, 1989). Does this Arrhenius approach apply to the
decay of total organic matter as represented by the integration over a
reacting continuum, that is eq (41)?

To answer this question, we introduce the work of Crickmore (1989)
who has developed a complete theory for temperature effects on a
reactive continuum. This theory assumes that the Arrhenius formula is a
valid description of the temperature dependence of each individual
reaction of the continuum; thus,

k = A(k)e =R (53)

where A(k) = pre-exponential factor for a rate constant of value k
E(k) = activation energy for a rate constant of value k, k] mole
R = gas constant, 8.3 k] °K™' mole™
T = absolute temperature, °K

-1

Both A(k) and E(k) are now functions of k rather than constants, but they
are usually considered independent of T. (The units of A(k) depend on
the value of v.)

In particular, for-a Gamma distribution, Crickmore (1989) has
shown that the effective or apparent activation energy of the continuum,
E.q is given by

-4 f i K
Ea = S50 Jv k8o OE(R (54)

and k is given by eq (53). The derivation of eq (54) is a bit obscure and is
repeated in the appendix of this paper for the convenience of the reader.

As Crickmore (1989) aptly points out, eq (54) implies in general that
the slope of an Arrhenius plot, that is to say log, (rate) versus T, will not
be a straight line, because E is a function of temperature due to the
exp (—E(k)/RT?) term within the integral. Only if E(k) is a constant, E, can
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we unequivocally say that the line on this plot is straight; that is if E(k) =
E,

aE

Ea = 350) [ gk, 0)dk (55)
but (see app.)
o G(Ow
J kg, 0k = (56)
so that
E,=E 57)

If E(k) is not a constant, then Crickmore (1989) further proves that the
Arrhenius plot should be concave up, with the greater slope at higher
temperature (lower T™'). This results from the fact that reactions with
higher activation energies will dominate this plot at higher temperatures.

The Arrhenius plots of experimental and field data found in Abdol-
lahi and Nedwell (1979), Westrich and Berner (1988), and Mackin and
Swider (1989) do not exhibit appreciable curvature within the errors of
their data. At the same time, we know that as the rate of organic matter
decay slows with the disappearance of the more reactive components, the
activation energy increases somewhat (Westrich and Berner, 1988). Is a
linear Arrhenius plot consistent with this observation of non-constant
E(k)?

The answer is yes, and the reason lies in the restricted temperature
range that prevails in sedimentary experiments. The normal tempera-
ture variation possible in sediments is 273 °K to 303 °K (0-30 °C). On a
mean of 288°K, this represents a fluctuation of only 5.2 percent. It is
demonstrated below that an Arrhenius plot will likely appear linear over
the corresponding range of T™' values.

To begin, write T as

T=T,+T (58)

where T, is the mean of the temperature range (288 °K), and T" is the
possible variation (x15 °K). Then, using the binomial theorem and the
fact that T'/T, << 1, we obtain the approximation
11 (‘1 2T’) s
™ T2 T, (59)
Eq (59) implies that the exponential in the Arrhenius law, eq (53),

can be written as '"

_ 2 _ 2 P
E(k)/RT ~ E(kyRTy e?E(k)T/RTO (60)

€ €
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If we now expand the second exponential on the right-hand side of eq
(60) in a Maclaurin series, then

2E(K)T’
RT}

2 N 2
—E(kyR1 ~ e—h(k)/RTg 1

e (61)

The question now centers on the relative importance of the second and
higher order terms in the large bracket on the right-hand side of eq (61).
If these terms are negligibly small, it then follows that the slope of an
Arrhenius plot will appear linear within the noise of the data, as these are
the only terms explicitly dependent on T".

To make this determination, we estimate the size of the term 2E(k)T"/
(RTy). The tricky part is specifying a likely maximum value for E(k)
which, in turn, generates the largest value possible for 2E(k)T’/(RT?).
The measured E,; values range from 23 to 132 k] mole ™' (Vosjan, 1974;
Jorgensen, 1977; Goldhaber and others, 1977; Abdollahi and Nedwell,
1979; Aller and Yingst, 1980; Crill and Martens, 1987; Westrich and
Berner, 1988; Mackin and Swider, 1989). While these may represent
mean values for various continua, they may not be good surrogates for
the maximum E(k). Setting an arbitrary upper limit of 200 k] mole™' for
these values generates a maximum of 0.03 for 2E(k)T"/(RT?) or a 3
percent deviation from linearity.

One might argue that the highly refractory nature of some organic
matter components might imply even higher values of E(k), but the small
k’s associated with this material must be in part due to small values of
A(k). Nevertheless, as an extreme upper limit, we note that thermal
cracking of kerogen is characterized by E,, values of no greater than 400
k] mole™" (Tissot and Welte, 1978). Therefore, if we adopt an extraordi-
narily large maximum E(k) of 1000 k] mole™ (which is probably physi-
cally impossible), the correction offered by the term 2E(k)T'/(RT?) would
still be only 15 percent. Because all the other subsequent terms in the
Maclaurin series are much smaller than the second, we can conclude that
an Arrhenius plot for E for decomposition of sedimentary organic
matter should be linear within the normal scatter in the data. We note for
interest that the curvature expected from the Crickmore theory is ob-
served in Arrhenius plots dealing with catagenesis where a much broader
temperature change is involved (Tissot and Welte, 1978).

CONCLUDING REMARKS
This paper has presented the theory of a reactive continuum repre-
sentation of marine organic matter decay, and it has explored the
advantages and limitations of this approach. Using the Gamma distribu-
tion as a model function, it was found that the equations generated by the
reactive continuum model fit the experimental data generated by Wes-
trich and Berner (1984) with half the number of parameters of the
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multiple-G model. Based on the exponent of the curve fit in eq (39), that
is, v = 0.125, the apparent order of reaction for this data was ninth order.

The continuum model was applied to nine organic matter profiles
taken in non-mixed sediments or below the mixed layer in bioturbated
sediments. All fits were quite acceptable (r > 0.9), and it was found that
this process divided the profiles into two groups. The first group con-
sisted of five cores for which the exponent, v, in the curve fit to eq (39)
centered in the range 0.1 to 0.2, that is, 6th to 11th order. This result is
consistent with the analysis of the Westrich and Berner (1984) experimen-
tal data and hints at a fundamental similarity of decay profiles at all time
and space scales. The second group of three had exponents in the 0.8 to
1.0 range (apparent orders of 2—2.25). Westrich (ms) established with his
multiple-G model a hypothetical initial distribution for typical organic
matter consisting of eight discrete reactive types. If this is translated into
a continuous distribution, then there results an apparent 11th order
decay, which is again consistent with the main grouping of experimental
and observational data. The explanation for this dichotomy is not imme-
diately evident, and more data anlyses are needed. Overall the contin-
uum model presents a valid and equally accessible alternative to the
G-model for modelling organic matter diagenesis (decay) in the historical
zone of marine sediments.

The mathematics of applying the continuum model to a finite-
thickness mixed zone sediment are dramatically more involved than
those of the G-model. For those who insist on an analytical solution, it
would appear that the continuum model would then be at a practical, but
not conceptual, disadvantage in this case unless the mixed zone can be
assumed to extend to infinity. Those willing to attempt numerical meth-
ods should find only moderate difficulty in the continued use of the
continuum model.

While the continuum theory may initially suggest a complicated
treatment for the energetics of the decay process, it is shown in this paper
that for the temperature-range normal to sedimentary environments, the
Arrhenius plot can still be used to derive an effective activation energy for
the total organic matter mass.

The presentation of the continuum theory contained in this paper is
not exhaustive, and more needs to be done if this technique is to become
a standard tool of diagenetic modelling. To keep the size of the paper
within reasonable bounds, we have conducted only a superficial examina-
tion of mixing effects. Additionally, we have not even attempted to show
how the continuum model will fit into diagenetic equations for oxidant
species or regenerated nutrients. If this initial introduction to the contin-
uum theory finds favor with the scientific community, it will be necessary
to address these issues.
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APPENDIX

This appendix displays the derivation of eq (54) of the text. We start with the Arrhenius
rate law, eq (53),

k = A(k)e BORT (Al

From this equation, we wish to derive the formula for the effective activation energy for the
decay of the total organic matter, Eq; that is to say, the activation energy for k,, in eq (41).
The standard definition of activation energy is (Laidler, 1965; Lasaga, 1981)

E=--gllnk A2A
= RyuD (A24)
or, upon expansion,

e RT® 9k AR
=TT (A2B)

We are interested in the case where E is replaced by E gand k by k...

To begin, we will need the derivative of eq (A1) with respect to T,

% = M o~ EWIRT (A3)

oT RT?
Now multiply each side of eq (A3) by g(k, 0)/[G(0)]**** and then integrate with respect to k,

o ak
g(k, 0) 3T dk k, 0)E(k)dk (A4A)

1 1 -
cor = G b

where we have employed eq (Al). We must now make the crucial assumption that we can
exchange the order of differentiation and integration on the left-hand side of eq (A4A).
There is no obvious reason why this should not be possible, and the result is

1 a e . 1 o
ST T I gk, 0)dk = SOTRE I kg, )E@M)dk (A4B)
However, we must stress the somewhat unproven aspect of this maneuver.

For a Gamma distribution, eq (38),

“ _ 8 ® Ly —ak
fo kg, 0)dk = s [ eetax (ABA)
L]
or, Spanier and Oldham (1987, p. 245),
I kg, 0)dk = agji (A5B)

»

But, we have established with eq (39) that g, = G(0) a*, so that eq (A5b) reduces to

o G(0w
I gk, 0)dk = — (A6)

Therefore, with eq (42) and eq (A6), we further establish that

_ L 9
[G(Q)]l+l/v aT

m

. ok
I gk, 0k = = (A7)
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which, substituted into eq (A4B), gives

Ik 1

= - GO fo " kg(k, 0)E(k)dk (A8)

Using the definition provided by eq (A2B) and substituting E,g, k,, and eq (A8), we find
that

1 o
Eg = W j; kg(k, 0)E(k)dk (A9)
or, with eq (42),
a ™
Fa ™ 560 I kg, 0E®dK (A10)

which is the desired eq (54). Before leaving, we note one other form of eq (Al0).
Substituting eq (A6) gives,

fo " (kg(k, O)E(R)dk

Eqg= =
I kgk, o)k

(AlD)

eff

which clearly indicates that if k can be shown to be independent of T over some range in this
variable, E g will be a constant as g(k, 0), and E(k) are by definition independent of T. This is
what is done in the text.
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