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SOLID-SOLUTION AQUEOUS-SOLUTION EQUILIBRIA:
THERMODYNAMIC THEORY AND REPRESENTATION

PIERRE D. GLYNN* and ERIC J. REARDON*#*

ABSTRACT. Thorstenson and Plummer’s (1977) “stoichiometric
saturation” model is reviewed, and a general relation between stoi-
chiometric saturation K, constants and excess free energies of mixing
is derived for a binary solid-solution B,_,C,A:

GE = RT[In K,, — xIn (xKc,) — (I — x)In((I — x)Kg,)]

This equation allows a suitable excess free energy function, such as
Guggenheim’s (1937) sub-regular function, to be fitted from experi-
mentally determined K,, constants. Solid-phase free energies and
component activity-coefficients can then be determined from one or
two fitted parameters and from the endmember solubility products
Kga and K¢,. A general form of Lippmann’s (1977, 1980) “solutus”
equation is derived from an examination of Lippmann’s (1977, 1980)
“total solubilit[\; product” model. Lippmann’s E'l!l or “total solubility
product” variable is used to represent graphically not only thermody-
namic equilibrium states and primary saturation states but also
stoichiometric saturation and pure phase saturation states.

Experimental evidence indicates that while stoichiometric satu-
ration states may under certain conditions be attained during the
dissolution of relatively insoluble solids (such as Mg-calcites and
Sr-aragonites), thermodynamic equilibrium can nevertheless be
?Xproached for more soluble solid-solutions, such as the alkali hal-
ides.

INTRODUCTION

Solid-Solution Aqueous-Solution (**SSAS’’) processes are of consid-
erable importance to the study of rock-water interactions (Mclntyre,
1963; Saxena, 1973: Braitsch, 1971). Natural minerals, and in particular
iron and manganese oxy-hydroxides, clay minerals, carbonates, sulfates
and evaporite minerals, always contain a certain proportion of impuri-
ties in solid-solution (Palache, Berman, and Frondel, 1951; Deer,
Howie, and Zussmann, 1963). Understanding SSAS processes, that is,
understanding the role of impurities in mineral-aqueous-solution inter-
actions, is of fundamental importance to geochemical studies.

The study of SSAS thermodynamics was initiated around the turn
of the century (Berthelot, 1872; Nernst, 1891; Henderson and Kracek,
1927; Doerner and Hoskins, 1925) mainly as a result of the need for
high-purity chemical reagents. Of main concern were the laws gov-
erning the entrainment of impurities during precipitation processes.
Distribution coefficients were used to express the partitioning of an
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impurity ion C* between an aqueous-solution and a solid phase
B,_.C,A:

'

_ Xea / €] (1)
xsa ! [BY]

where xpa and xc, are the solid-phase mole fractions of components BA

and CA: [B*] and [C*] are the aqueous activities of B* and C*.

While distribution coefhicients can be used as a measure of thermo-
dynamic equilibrium in SSAS systems, they do not directly provide a
measure of the solubility of a solid-solution. Distribution coefficients are
theoretically derived from the two basic conditions defining thermody-
namic equilibrium in a binary SSAS system BA-CA-H,0:

[B¥][A7] = Kpa2pa = KpaXsaYea (2)
[C*)A7] = Kcaaca = KcaXcaYea (3)

where [A7] is the activity of A™ in the aqueous solution, Kg, and K¢, are
the pure endmember solubility products, ag, and ac, are the solid-phase
activities of BA and CA, and g, and y¢, are the solid-phase activity
coefficients.

In dividing eqs (2) and (3) one by another, as is implicitly done in
deriving the distribution coefficient expression (eq 1), information
about the aqueous concentration or activity of the non-substituting ion
A~ and therefore about the solubility of the solid-solution is lost. To
overcome this problem, geochemists' have often expressed the solubility
of a solid-solution B, _,C,A as follows:

AP, = [C*[B* '™ [AT] = K, (4)

where [AP is the observed ion activity product, and K is the applicable
solubility constant at a given temperature and pressure, for a given
solid-solution composition B;_,C,A. In 1977, Thorstenson and Plum-
mer presented a theoretical framework for this formulation, giving the
name “‘stoichiometric saturation” to the state represented by the con-
stant K, and showing how thermodynamic equilibrium could be pre-
dicted from experimental measurements of stoichiometric saturation.
Lafon (1978) criticized the concept of stoichiometric saturation as
well as Thorstenson and Plummer’s laboratory approach in determining
K,, constants. His arguments centered mainly around the applicability of
stoichiometric saturation to natural systems and especially to precipita-
tion processes. Nevertheless, the basic validity of the K, expression as an
equilibrium constant following the law of mass action was not put into
question until Lippmann (1977, 1980, 1982a, b), who objected to the K,

'For example, Garrels and Christ (1965), Berner (1975), Kittrick (1973), Denis
(1982), Denis and Michard (1983), Walter and Morse (1984), Michard (1986).
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formulation and suggested a different equilibrium variable, which he
called ZII or the “total solubility product’”:

211 = [AT|(IB*] + [C*]) = Kpa2ga + Kcaaca %)

where ag, and ac, are the solid-phase activities of components BA and
CA.

The primary objective of this paper is to compare the equilibrium
expressions proposed by the Thorstenson and Plummer and Lippmann
models, evaluating the conditions for which these models may be
individually appropriate and determining which of their components, if
any, should or could be used in a comprehensive theory of SSAS
thermodynamics. The fundamental principles and assumptions built
into the two models will be reviewed. Experimental evidence in support
of both the Thorstenson and Plummer and Lippmann models will be
presented, so that relations between the two models may be better
understood. Conventional pure phase solubility-product theory will also
be discussed and compared to solid-solution solubility theory, in an
effort to determine conditions and processes for which SSAS theory may
be indispensable.

LIST OF SYMBOLS

ag, A, First two dimensionless coefficients in the Redlich
and Kister and Guggenheim expressions for solid-
phase activity coefhicients and excess free energy
(eq 35).

[A7],[B*], [C*] Activities of A7, B*, and C* ions in the aqueous
phase (egs 1, 2, 3).

Aga, Aca Activities of the BA and CA components in the
solid phase (egs 2, 3).

D Distribution coefhcient (eq 1).

fg, fc Correction factors relating aqueous activity-frac-
tions to the mole fractions of the total concentra-
tions of B and C in the aqueous phase (eqs 49, 50,
51).

G Molar Gibbs free energy of a binary solid-solution
(eq 19).

G* Molar excess Gibbs free energy of mixing (eq 20).

GM Molar Gibbs free energy of mixing (eqs 20, 21).

GMid Molar Gibbs free energy of mixing for an ideal sol-
id-solution (eqs 20, 22).

IAP Ion activity product used to test for stoichiometric
saturation with respect to a given solid (eq 4).

Kga, Kca Solubility products of pure BA and pure CA solids
(eqs 57, 58).

K Stoichiometric saturation constant for a solid

S8

mi-, mp., mg.

B,_,C,A (eq 4).
Total molalities of A, B, and C in the aqueous
phase (eq 51).
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Number of moles of B and C in one mole of solid
B,_.C,A.

Gas constant multiplied by the temperature in Kel-
vin (eq 8).

Activity coefhicients of solid-phase components BA
and CA (eqs 2, 3).

Free energy change of a reaction (eq 7).

Standard free energy change of a reaction (eq 9).
Solid-phase mole fractions of BA and CA (eqs 2, 3).
Activity fractions of the free B* and C* ions in the
aqueous phase (eqs 41, 42).

Chemical potentials of A~, B*, and C* in the aque-
ous phase (eq 7).

Standard chemical potentials of A7, B*, and C* in
the aqueous phase (eq 9).

Chemical potential defined by Thorstenson and
Plummer (1977) for a single component solid-solu-
tion (eq 7).

Standard chemical potential defined by Thorsten-
son and Plummer (1977) for a single component
solid-solution (eq 9).

The total solubility product variable as defined by
Lippmann (1977): 2I1 = [A7]([B*] + [C*]) (eq 5).
Value of the total solubility product for a SSAS sys-
tem at primary saturation with respect to a B,_,C,A
solid (eq 52).

Value of the total solubility product for a solution
at stoichiometric saturation with respect to a solid
B,_C\A and a given activity fraction x4 (see dis-
cussion of eq 56).

Value of the total solubility product for a SSAS sys-
tem at thermodynamic equilibrium with respect to
a solid B, ,C,A (eqs 39, 48).

LIST OF DEFINITIONS
The ratio of the aqueous activity of
one of the ions substituting in the
solid-solution to the sum of the aque-
ous activities of the two substituting
ions (see definitions of xp .q and xc .q
in eqs 41 and 42).
A stoichiometric saturation state for
which xc.q = xand xp.q = 1 — x (for
a given solid B, _ ,C,A). This state is
generally close to a stoichiometric sa-
turation state resulting from con-
gruent dissolution of a solid-solution
in initially pure water.
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Primary saturation: The first state reached during the
dissolution of a solid-solution for
which the aqueous phase is at satura-
tion with respect to a secondary sol-
id-solution.

Pure endmember saturation: Saturation of an aqueous solution
with respect to one of the endmem-
ber components of a solid-solution.

SSAS: Solid-solution aqueous-solution.

Stoichiometric saturation: A limiting equilibrium state, hypoth
esized by assuming that a solid-solu-
tion may behave as a single-compo-
nent solid of invariant composition.
For a binary solid-solution, the stoi-
chiometric saturation condition is
given by eq (11) or equivalently eq
(14)

Thermodynamic equilibrium: The state defined by considering the
solid-solution as a multi-component
solid and equating the chemical po-
tential of each of its components to
the corresponding chemical poten-
tial in the aqueous-solution. For a bi-
nary solid-solution, these conditions
are given by eqs (12) and (13), or
equivalently eqs (2) and (3).

THE THORSTENSON AND PLUMMER STOICHIOMETRIC SATURATION MODEL

Brief description.—While acknowledging that eqs (2) and (3)
describe thermodynamic equilibrium in a binary SSAS system, Thor-
stenson and Plummer (1977) contend that in low-temperature geologi-
cal environments, SSAS systems rarely achieve thermodynamic equilib-
rium. They argue instead that solid-solution compositions commonly
remain invariant during solid-phase aqueous-phase reactions. In partic-
ular, solid-solutions dissolving in an aqueous-phase do not reach equilib-
rium in an observable time-scale. Net dissolution is instead arrested, at
least momentarily, when the aqueous-phase reaches a point of “stoi-
chiometric saturation’ with respect to the solid-phase. The term ‘‘stoi-
chiometric saturation” refers to an equilibrium state between an aque-
ous-phase and a solid-solution, “in situations where, owing to kinetic
restrictions, the composition of the solid phase remains invariant, even
though the solid phase may be a part of a continuous compositional
series’” (Thorstenson and Plummer, 1977).

According to Thorstenson and Plummer (1977), a mineral of
composition B, _,C,A upon first contact with an aqueous-phase dissolves
congruently until stoichiometric saturation is reached. Then, if kinetic
restrictions are removed, the mineral can dissolve incongruently (due to
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a recrystallization process and/or to the precipitation of a secondary
solid), thereby evolving toward thermodynamic equilibrium. Congruent
dissolution of a solid-solution B,_,C,A is defined as:

B,_.C,A— (1 — x)B* + xC* + A~ (6)

The term ““congruent dissolution’ only implies that the transfer of ions
between the solid and aqueous phases occurs with a ratio B*/C*/A~
equal to that of the solid.

If a solid-solution reacts while retaining a constant composition,
the solid can be thermodynamically considered a one-component phase.
In such a case, equating the chemical potentials of the endmember
components in the various phases, such as was implicitly done in eqgs (2)
and (3), is invalid or at least is no longer required (Thorstenson and
Plummer, 1977).

If the congruent dissolution reaction (6) proceeds to equilibrium
and if temperature and pressure are constant, the free energy change
Au, of the reaction is:

Ap, = (1 — X)upe + Xpc + Ha- — e =0 (7)

where pg-, pce, pa-, and pg are the respective chemical potentials of the
aqueous ions B*, C*, A™ and the solid-solution B,_,C A. Substituting
definitions for the chemical potential g; of a component i and for the
standard free energy change Ap? of reaction (6),

pi = u! + RT In a (8)
Ap? = (1 — X)up + Xpg: + pa- — pg 9)
gives the following relation:
[B* ' C* A7)

Ap’ = —RT In (10)
ap,_.cA

where ag,_ ¢ A Is the activity of the B,_,C,A solid.
Using the above equations and considering the solid as a one-
component phase (with unit activity), Thorstenson and Plummer write

an equilibrium constant expression for the congruent dissolution reac-
tion (6):

RT

—Ap?
K. = [B*]'"C*[A] =exp( “') (1

K,,, the stoichiometric saturation constant, can be compared to the
lon Activity Product variable, IAP, = [B*]'*[C*|'[A"], in order to
determine whether the solution is at stoichiometric saturation with
respect to a specific solid-solution B,_,C,A. The value of K is depen-
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dent on the standard chemical potential of the solid-solution 2, (eq 9),
and therefore K will vary as a function of solid-solution composition.

Determination of the thermodynamic-mixing properties of a solid-solution
from stoichiometric saturation measurements.— T horstenson and Plummer
(1977) derive equations to predict solid-phase activity coefficients and
distribution coefficients at thermodynamic equilibrium if stoichiometric
saturation constants are known as a function of composition. According
to Thorstenson and Plummer (1977), the constraint that IAP, = K, at
stoichiometric saturation will be valid whether or not the phases
involved are stable. The only restriction is that the composition of the
solid must remain invariant. If this constraint is removed (that is if
incongruent dissolution occurs), then the equilibrium criteria become
those of thermodynamic equilibrium, namely u;, = u;;, for all compo-
nents i in any two phases a and b.

Thermodynamic equilibrium for the B,_C,A-H,O system is
defined by the following relations (from which eqs (2) and (3) can be
derived):

Ma- + ppr — mpa =0 (12)
Ba- + Mt — pca =0 (13)

where pgs and pcs are the chemical potentials of the BA and CA
components in the solid-solution.

If egs (12) and (13) are multiplied by (1 — x) and x respectively and
summed, the following relation is obtained, still representative of
thermodynamic equilibrium:

ta- + Xpce + (1 — X)ue — [xpca + (1 — X)upa| = 0 (14)

As pointed out by Dandurand and Schott (1980), eq (14) is a
necessary but not a sufficient condition for thermodynamic equilibrium.
Stoichiometric saturation, as defined in the Thorstenson and Plummer
model, corresponds to any state that may be described by eq (14).
Thermodynamic equilibrium corresponds to a state described both by
eq (14) and either eq (12) or eq (13). Thermodynamic equilibrium,
therefore, is one of a series of possible stoichiometric saturation states
for which the B* /C* ratio in the aqueous phase usually differs from that
in the solid.

Eq (14) can be expanded in terms of standard chemical potentials
and activities:
pa- + xpde + (1 — x)upe — [xpes + (1 — x)upa + RT In (ags apy*)]
— —RTIn (A JIC* B ') (15)
Substituting the definition of K, (eq 11) gives:
pa- + xug + (I — x)uge — [xuea + (1 — X)upa + RT In (aga apa®)]
= —RTIn K, (16)
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Eq (16) can now be compared to Thorstenson and Plummer’s (1977)
expression for K as a function of Au? (derived from eqs 9 and 11):

—RT In Ks‘s’ = A“r = (1 - X)“B‘ + X[.L(;~ + #A* - “ss (17)

The |mpllcat|on of this comparison is then that the standard
chemical potential 1l of the one component solid B,_,C,A, as used in
Thorstenson and Plummer’s description of the stoichiometric satura-
tion model (qee eqs 9 and 10), can be related to the standard chemical
p()tentlak pha and pl, of the endmember components by the following
equation:

pe = xpea + (1 — x)upa + RT In (agaaps™) (18)

Eq (18) is equivalent to:

/J,?\ = X(H%A + R’I‘ ]n aCA) + (l — X)([J.gA + RT In aBA)
= Xpica + (1 — X)upa = G (19)

The above relation shows that the standard chemical potential u, of the
single-component phase B,_,C,A is equal to the molar Gibbs free energy
G of the “two-component” solid-solution B, _,C,A at the same tempera-
ture and pressure.

Expressions for the activities of the endmember components of
B,_,C,A as a function of endmember solubility products and K values
can now be found. The derivation first makes use of the relation
between the excess free energy of mixing G¥, the free energy of mixing
GM of a real solution, and the free energy of mixing GM 9 of an ideal
solution (Prigogine and Defay, 1954; Swalin, 1972; Saxena, 1973;
Denbigh, 1981):

GF. _ GM _ GM,id (20)

The free energy of mixing of a solid-solution can be considered to be the
difference between the actual free energy G of the solid-solution and
that of a compositionally-equivalent mechanical mixture of the end-
member components:

GM = xpuca + (I — X)upa — |XMOCA + (1 - X)M?&AI (21)
For an ideal solid-solution, the free energy of mixing will be:
GM4 - RT[xInx + (1 — x)In(1 — x)] (22)

Combining eqs (21) and (22) and relating the free energy G
(=xpca + (1 = X)upa = 1) of the solid-solution (in eq 21) to the stan-
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dard free energy change Au? of the congruent dissolution reaction (see

eq9) gives:

GF = x(ue- + whe — péa) + (1 = X)(ube + wa- — wia) — Auy
—RT[xInx + (1 —x)In(1 —x)] (23)

which is equivalent to:

GF = RT|In K — x(In K¢a + In x)
— (1 — x)(In Kga + In (1 = x))] (24)

The equations expressing the relation between the excess free
energy of a solid-solution and the activity coefficients of its components
are (Saxena, 1973, p. 15):

E
RTInyg, = G — x£ (25)
ax
. E aG*F
RTInycy = G* + (1 — X)K (26)

The above equations can be derived from an alternate definition of the
excess free energy (which follows from eq 20)

GF = RT Zn;In (27)

which implies from the Gibbs-Duhem equation (Denbigh, 1981, p. 286)
that

dGEF = RT Z In ydn, (28)
or
E
((-9—(—}—) =RT In ¥, (29)
arli T,P.ny

To evaluate eqs (25) and (26), the derivative of G* with respect to x must
first be determined:

E —
9G = RT [6 In K, + In (ﬁsﬁ) + In a X)] (30)

Ix Ix Kca X

Substituting eqs (24) and (30) into eqgs (25) and (26) respectively gives the
following equations for the activity coefhcients of the BA and CA
components:

d
In ygy = —x ™ (In Kg) + In K, — In Kgy — In (1 — x) (31)
X
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Invyea = (1 — x)ai(ln Ks)+InKg, —InKega —Inx  (32)
X

which are equivalent to the equations first derived by Thorstenson and
Plummer (1977):

d
log agy = —x I (log K,,) + log K — log Kp, (33)
X

]
logaca = (1 — x) I (log K) + log K, — log Kca (34)

Solid-phase activity-coefficients for given solid compositions can be
calculated from measured K, and estimated dK,,/dx data, as Thorsten-
son and Plummer (1977) and Plummer and Busenberg (1987) suggested.
Alternatively, activity coefficients and other thermodl}'namic properties
can be calculated by directly converting K data to G* data (through eq
24) and then using a fitting model for G* as a function of composition.
Guggenheim’s expansion series for G* (Guggenheim, 1937; Redlich and
Kister, 1948; King, 1969) is currently one of the most popular models
used to describe solid-solutions and non-aqueous liquid solutions:

G* = xcaxeaRT[ag + a;(xca — Xsa) + 22 (Xca — Xsa)® + - -] (35)

The Guggenheim model is functionally equivalent (see Glynn, 1989b) to
the Thompson and Waldbaum (1969) model (a two parameter model
used in igneous petrology) and to the original Margules activity-
coefficient fitting series (Margules, 1895: Prigogine and Defay, 1954).
Other possible G* fitting functions include Guggenheim’s (1952) quasi-
chemical model, the Van Laar model (Carlson and Colburn, 1942), and
the Wilson (1964) model. G calculation and estimation techniques are
further discussed by Glynn (1989a, b).

Once activity coeflicients are measured or estimated (using K
data) as a function of solid composition, distribution coefhcients at
thermodynamic equilibrium can be predicted (see eq 32 in Thorstenson
and Plummer, 1977). The composition of the solid-solution at thermo-
dynamic equilibrium will generally differ, however, from the composi-
tion of the initial solid on which the stoichiometric saturation measure-
ment was conducted. Therefore, the measurement of a stoichiometric
saturation state for a given SSAS system with initial solid composition
B,_,C,A will not, by itself, define the composition of the system at
thermodynamic equilibrium. The only exceptions will occur in the case
of a SSAS system with an infinite solid to solution ratio (and a thermody-
namically-stable initial solid) and in special cases where the measured
stoichiometric saturation state actually corresponds to thermodynamic
equilibrium. This effect of the initial solid to solution ratio on the final
composition of a SSAS system at thermodynamic equilibrium has been
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discussed extensively by Glynn and others (1990), Denis and Michard
(1983), Michard and Ouzoukian (1978), and Wollast and Reinhard-
Derie (1977).

Finally, in the case where solid-phase component activities are
known or can be estimated as a function of composition, K, values can
be directly calculated, for any given solid-composition B,_,C,A, through
the following relation:

Kss = KEA K(B]A_X)aéA a'(BIA_X) (36)

This equation can be derived from eq (16) and is equivalent to Thorsten-
son and Plummer’s (1977) eq (22).

Criticisms of the Thorstenson and Plummer model.—Criticisms offered
by Lafon (1978), Gresens (1981a, b), and Lippmann (1977) concerning
the Thorstenson and Plummer stoichiometric saturation model or more
generally the K formulation are reviewed in the appendix. While we
agree with Lafon’s arguments against the applicability of the stoichio-
metric saturation concept to precipitation processes, we believe that the
criticisms offered do not invalidate the use of the stoichiometric satura-
tion concept in the interpretation of solid-solution dissolution experi-
ments.

THE LIPPMANN TOTAL SOLUBILITY PRODUCT MODEL

Description of the Lippmann model.—Lippmann argues that solubility
expressions for solid-solutions should not be derived by simply consider-
ing stoichiometric dissolution. Instead, he suggests using the fundamen-
tal law of equilibrium thermodynamics, u;, = u;p, valid for any compo-
nent i distributed between two phases a and b at thermodynamic
equilibrium and at constant temperature and pressure. For a SSAS
system with two solid-phase components, BA and CA, this law translates
into the mass action relations given in eqs (2) and (3).

If eqs (2) and (3) hold true at thermodynamic equilibrium, so must
their sum or any other arithmetic combination. This principle was used
by Delaney and Nash (1977), who proposed an equilibrium constant
derived by multiplying eqs (2) and (3) by each other. The same principle
is inherent in the Thorstenson and Plummer model, where K, can be
defined by raising eqs (2) and (3) to the x and (1 — x) powers respectively
and multiplying them together (see eq 36). Using an analogy to binary
liquid-vapor systems, Lippmann adds eqs (2) and (3) together:

(IB*] + [CT][AT] = aps Kpa + acaKca (37)
Lippmann then defines the ‘‘total solubility product” variable ZII
ZI = ([BT] + [CTIAT] (38)

such that at thermodynamic equilibrium, Lippmann’s ZIL., versus xga
curve or “‘solidus curve” is given by:

21leq = apaKpa + acaKca = x8a¥BaKea + XcaYcaKea (39)
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(21, refers to the value of ZII as specifically defined at thermodynamic
equilibrium).

In the case of an ideal solid-solution, component activities are equal
to component mole-fractions and eq (39) becomes:

2l = x8aKga + Xca Kea = Kca + XBa(Kpa — Kca) (40)

Eq (40) is equivalent to an equation derived by Berndt and Stearns
(1973) for the solubility of an ideal solid-solution and is also analogous
(see Lippmann, 1980) to the “isothermal vaporization” curve for a
binary liquid-gas system (Prigogine and Defay, 1954, p. 353).

Similar to Thorstenson and Plummer’s stoichiometric-saturation
constant, K, the value of the ZIl., constant is dependent on the composi-
tion of the solid-solution. However, unlike Thorstenson and Plummer’s
1AP variable (which has mole-fraction exponents), the ZII variable does
not depend on the solid-phase composition. Like the stoichiometric
saturation constant K, ZIl,, can be calculated (using eq 39), if the
individual activities of the components in the solid phase are known at
thermodynamic equilibrium.

Alternatively, 2, can be calculated if the activity fractions of the
substituting ions in the aqueous phase are known at thermodynamic
equilibrium. The activity fractions are defined as:

Xoa - (1)
[C*] + [BY]
and
XCaq = +—[(:+1—+_ (42)
[CT] + [B7]
Substituting these two relations into egs (2) and (3):
Xaq([B*] + [CTD[A™]
. Kpa = 3apa (43)
Xcaq([B*] + [CTP[A]
- - aca (44)

In the special case of an ideal solid-solution (ags = xsa and aca = xca),
eqs (43) and (44) can be added together and rearranged. Given that
ZIL = [A7] ([B*] + [C*]) and knowing that Xga + Xca = ! in a binary
system, Lippmann’s “‘solutus’ expression can be derived:

Zneq -1 /(XB,aﬂ + XC.aq _ KCA

KBA KCA) KCA
1 - XB,aq 1 — —

(45)

Kga

As pointed out by Lippmann (1980) eq (45) is analogous to the
“isothermal condensation curve” for a binary liquid-phase/gas-phase
system (Prigogine and Defay, 1954, p. 353):
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An expression of Lippmann’s solutus curve may also be obtained
for the more general case of non-ideal solid-solutions by expressing the
activities of the solid phase components in terms of activity coefficients
and mole fractions and re-arranging eqs (43) and (44):

XBag([B*] + [CTDIAT] _

X 46
Kgavsa BA (46)
XC,aq([B+] + [C+])[A_] _ XcA (47)
Kcavea
and adding eqs (46) and (47) together:
XB,a XC,a
211, = l/ A4 29 48
4 (KBAYBA Kcavea (48)

where yca and ypa are the activity coefficients for the equilibrium
solid-phase.

Lippmann’s solidus and solutus curves can be plotted and used to
predict the solubility of any solid-solution at thermodynamic equilibri-
um, if solid-phase and aqueous-phase activity coefficients are known.
Figure 1, which will be called a Lippmann phase diagram, shows an
example for an ideal solid-solution series. Similar to the phase diagrams
used for binary-solid/binary-melt and binary-liquid/binary-vapor sys-
tems, horizontal tie-lines can be drawn between the solutus and solidus
curves thereby giving the solid-phase and aqueous-phase compositions
for the series of possible thermodynamic equilibrium states. An aqueous
speciation and activity coefhicient model is required, however, in order
to determine aqueous-phase compositions (and solid-solution solubili-
ties). Indeed, unlike more traditional phase diagrams, there are really
two x-axis scales superimposed one upon another: one applies to the
solidus curve and is a mole-fraction scale (xgs = ng/(ng + n¢)), the other
isan activity-fraction scale (xp..q = [B*]/(IB*] + [C*])) and applies to the
solutus curve and to aqueous-solution compositions in general. Aqueous
solutions that plot below the solutus curve are undersaturated with
respect to any solid phase, including the pure endmember solids,
whereas solutions plotting above the solutus are supersaturated with
respect to a series of solid-solutions.

Lippmann phase diagrams illustrate the greatest difference
between the Lippmann (1977, 1980) and the Thorstenson and Plum-
mer (1977) models. While the Lippmann model combines eqs (2) and (3)
into two algebraically-different relations (the solidus and solutus equa-
tions) describing thermodynamic equilibrium and by so doing does not
lose any of the information or specificity present in eqs (2) and (3), the
Thorstenson and Plummer stoichiometric saturation model combines
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Fig. 1. Lippmann solidus and solutus curves for the Ca;(PO,)s(OH, F)-H,0O system
at 25°C, assuming an ideal solid-solution. Endmember’;)l('s are 59.16 for hydroxyapatite
and 60.52 for fluoroapatite (Moreno and others, 1977). The dotted horizontal tie-lines
indicate the relation between the solid mole-fractions and the aqueous activity-fractions at
thermodynamic equilibrium l(‘_poims T2, T1) or at primary saturation (points P2, P1) with
respect to a Cas(PO,4)sOHsFos solid (B,_,C,A in the text). The dashed curve gives the
series of possible (xg.q ZI,) aqueous-compositions that satisfg the condition of stoichio-
metric saturation with respect to a Cag(PO,);OH,sFy 5 solid. Point CSl is the “minimum
stoichiometric saturation’ point for a Cag(PO,);OHg sF 5 solid. .

egs (2) and (3) into a single equation, thereby allowing a greater number
of states (including thermodynamic equilibrium states) to be described.

Although Lippmann (1977, 1980, 1982a, b) originally intended his
model to describe only thermodynamic equilibrium states, his ZII
formulation and his phase diagrams can be used to describe many other
thermodynamic states such as primary saturation, stoichiometric satura-
tion, and pure-endmember saturation states.

Primary saturation states: prediction and depiction on Lippmann
diagrams.—Primary saturation has been described, by Wollast and
Reinhard-Derie (1977), Garrels and Wollast (1978), and Denis and
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Michard (1983), as the first state reached during the congruent dissolu-
tion of a solid-solution, for which the aqueous-solution is at saturation
with respect to a secondary solid-phase. This secondary solid will usually
be of different composition than that of the dissolving solid. For some
special cases, namely in the case of dissolution of the pure endmembers
or of an alyotropic composition (see discussion of figs. 5 and 6 in this
paper; see also Lippmann, 1980), the secondary solid composition will
be identical to that of the initial solid, that is, primary saturation will
coincide with thermodynamic equilibrium and stoichiometric saturation
with respect to the initial solid. For all other situations, primary
saturation will correspond to a metastable equilibrium state, such that
the aqueous phase may be considered to be at equilibrium with respect
to a secondary solid, but not with respect to the primary dissolving solid
phase. The series of possible primary-saturation states for a given SSAS
system is represented by the solutus curve on a Lippmann diagram.

In the specific case of congruent dissolution occurring in an
aqueous-phase initially free of B* and C* ions, primary-saturation can be
approximately found by drawing a straight vertical line on the Lipp-
mann diagram from the solid-phase composition to the solutus. This
assumes that the ratio of the total aqueous concentrations of B and C,
mg./m¢., can be considered equal to the aqueous activity ratio of the B*
and C* ions. This assumption will not hold if the aqueous activity
coefthcients of B* and C* differ from each other or if aqueous ion
association (of B* and C*) occurs. In such a case, the following relations
may be used to determine exactly the primary saturation state:

S L
T B 4 [CF]

N 100
XcC,aq [B+] 1 [C*] cXca

= fBXBA (49)
(50)

where fy and f¢ are factors correcting for a possible difference in the ion
association and in the aqueous activity coefficients of B* and C*. x, and
Xca represent the composition of the primary dissolving solid B, _,C,A.
For example,

T
mpg-+

fo = Xpaq | [——2—r 51

y XB"‘/(m}LerE) G1)

fs and fc may be evaluated using any appropriate speciation model and
aqueous activity theory (Debye-Hiickel, 1923; Davies, 1962; Pitzer,
1979; et cetera). The equation used to calculate the value of ZII at
primary saturation as a function of solid composition, for the case of
congruent dissolution in an aqueous-phase initially free of B* and C*
ions, may be found by combining the Lippmann solutus (eq 48) with eqs
(49) and (50):
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Xsafs Xcafc
21 =1 / + (52)
P (KBA'YBA,y KCA’YCA,y

where yg4,, and yca, refer to the activity coefficients of BA and CA in
the solid B,_,C,A with respect to which the aqueous solution (at primary
saturation) is in temporary thermodynamic equilibrium. ZIL, refers to
the value of the ZII variable as specifically defined at primary satura-
tion.

The composition of the B,_,C,A phase with respect to which the
solution is in temporary thermodynamic equilibrium will generally not
be known a priori. Applying the solidus expression gives:

Zlleq = XcayYcayKea + XBayYeayKea (53)

By equating ZII,(x) (eq 52) to ZIl.(y) (eq 53), the following relation
between the initial solid composition B,_,C A and the secondary solid
B,_,C,A may be obtained:

Xgaf) Xcafc
1 / ( PR h = XcayYcayKeca + XBayYeayKea  (54)
KBA‘YBA.y KCA‘YCA,y

The above equation will be easy to use in the case of an ideal solid-
solution series. In the general case of a non-ideal solid-solution series, eq
(54) will be transcendental in xc,,, (because yp,, and Yca, are typically
exponential functions of xc,,), and if the secondary solid composition is
desired, eq (54) will have to be solved graphically or by an iterative
technique.

Stoichiometric saturation and pure endmember saturation states: predic-
tion and depiction on Lippmann diagrams.—The Thorstenson and Plum-
mer model and the Lippmann model seem very different in their
formulation of *‘equilibrium” constants. Indeed, the constant of stoi-
chiometric saturation K, and the total solubility product ZII., were
initially intended for very different purposes, one as a predictor of
stoichiometric saturation, the other as a predictor of thermodynamic
equilibrium. Nevertheless, the variables IAP, and ZII can be related to
each other and can both be used to describe stoichiometric saturation or
thermodynamic equilibrium states.

Multiplying the definition of IAP (eq 4) by ((B*] + [C*])/([B"] +
[CT]) gives:

- [B*] V' ICc1 }
IAP, = [AT]([B*] + [C*))|- 55
Substituting Lippmann’s definitions of the =I and XBaq aNd Xcaq
variables in eq (55) gives the following relation between ZII and IAP,.

AP,
I = (56)
XB,aqXC,aq
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In contrast to thermodynamic equilibrium, which is constrained to
a single (xp.aq, Z1Il.4) point by eqs (2) and (3) (for a given equilibrium solid
composition), stoichiometric saturation is represented by a series of
XBaq: 211) points (fig. l) defined by eq (56) and by the condition IAPSs =
K. In plotting the series of stoichiometric saturation states for a given
solid-solution B,_,C,A, the mole-fractions x and 1 —x are held constant
in eq (56), and xp.q (and xc,.4) are allowed to vary from 0 to 1. As shown
in figure 1, stoichiometric saturation states never plot below the solutus
curve. This phenomenon is consistent with the fact that stoichiometric
saturation can never be reached before primary saturation in a solid-
solution dissolution experiment. The unique point at which a stoichio-
metric saturation curve joins the Lippmann solutus represents the
composition of an aqueous solution at thermodynamic equilibrium with
respect to a solid B, _,CA.

Stoichiometric saturation curves all have a characteristic minimum
2II value at the “minimum stoichiometric saturation’ point. We define
this point as a stoichiometric saturation state that meets the conditions
XBag = | =X (=xga) and Xc.q = X (=Xca) in €q (56). This state can often be
approximated as the stoichiometric saturation state resulting from the
congruent dissolution of a solid-solution in initially pure water. A
“minimum stoichiometric saturation’ curve can be constructed from
the series of “minimum stoichiometric saturation” points and used to
portray the dependence of the ZIL, constant on solid composition. The
curve can be used in conjunction with thermodynamic equilibrium
points to sketch any particular stoichiometric saturation curve on a
Lippmann diagram. As later illustrated (figs 7, 8), the “minimum
stoichiometric saturation’ curve can also be used to test the closeness of
fit between experimental stoichiometric saturation data and a given
excess-free-energy model for a solid-solution series.

Saturation curves for the BA and CA endmember solids can also be
drawn on Lippmann diagrams by applying the two limiting situations
x =0and x = 1 to eq (b6) and to eq (36) which defines K as a function of
Kga and Ky

K
2Mlg, = —= (57)
XB,aq
and
K
2Mgy = —= (58)
XC.aq

These equations, also given by Lippmann (1980, 1982, b), define the
families of (xpaq» 1) and (Xcaq» 2Ica) conditions for which a solution
containing A~, B*, and C” ions will be at saturation with respect to pure
BA and pure CA solids.

For most purposes, the stoichiometric saturation concept can be
seen as a generalization of the classical pure-phase solubility-product
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theory. Both concepts consider the solid as a phase of fixed composition.
The Gibbs phase rule predicts 0 degrees of freedom for both stoichio-
metric saturation and pure endmember saturation states (assuming that
at stoichiometric saturation the system can be considered to have only
two components, HyO and B,_,C,A). As a consequence, and in contrast
to the thermodynamic equilibrium states described by the Lippmann
model (3 components — 2 phases = 1 degree of freedom), stoichiomet-
ric saturation and pure endmember saturation states will be indepen-
dent of the initial solid to solution mass ratio (Glynn and others, 1990).
Indeed, the initial pre-equilibration composition of a solid-solution will
in general differ from that of the final solid at thermodynamic equilibri-
um. Therefore, the final solid composition will in general depend on the
initial solid to solution ratio. The only exception to this rule will occur in
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Fig. 2. Lippmann phase diagram for the (Ca, Cd)CO;-H,0 system at 25°C drawn
using the Cd-in-calcite distribution coefficient data and CdCOj solubility data of Davis and
others (1987), assuming a regular solid-solution model (a, = —0.8). Endmember pK’s are
8.48 for calcite (Plummer and Busenberg, 1982) and 11.31 for otavite. Dashed lines
represent endmember saturation curves.
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situations for which thermodynamic equilibrium is reached simulta-
neously with primary saturation.

One difference between stoichiometric saturation and pure end-
member saturation states can be seen by comparing eqgs (56) and (57).
For values of x tending (but not equal) to 0 or 1, ZIL values will tend to
+oat xpa = 0 or xca = 0. In contrast, pure endmember saturation curves
are asymptotic for xgs = 0 or xca = 0 but not for both conditions. The
reason for the asymptotic behavior of both the pure endmember and
stoichiometric saturation curves is that as [B*] (or [C*]) goes to 0, the
value of [A7] must tend to +« in order to maintain the various
saturation conditions (IAPg, = Kga, [APcs = Kca, IAPgs = K). Unlike
the stoichiometric saturation and pure endmember saturation curves,
Lippmann’s solutus does not exhibit any “infinite solubility’” points.

Comparison of pure endmember saturation curves with Lippmann solutus
curves.—As demonstrated above, Lippmann diagrams can be used to
depict not only thermodynamic equilibrium and primary saturation
states but also stoichiometric saturation and pure endmember saturation
states. As a consequence, Lippmann diagrams can be used to determine
whether a solid-aqueous phase system may be described with sufficient
accuracy by conventional solubility theory or whether a more complex
solid-solution aqueous-solution model may be needed.

A nearly ideal solid-solution series ((Ca, Cd)COs) is shown in figure
2. The endmember solubility products in this system differ by almost
three orders of magnitude. The solutus curve and the curve repre-
senting saturation with respect to the CdCO; endmember closely follow
each other except in the region where xcq,q s close to 0. In that region,
the pure CdCOj curve approaches an infinitely high value of ZII, while
the solutus curve intercepts the ZII axis at a value equal to the pure
CaCOs,y, solubility product. The pure CaCOs,y, curve is consistently
above the solutus (except at xc,co, = 1): therefore a solution at thermo-
dynamic equilibrium with respect to any (Ca, Cd)COs solid will always be
undersaturated with respect to pure CaCOs . Such a solution will also
always be undersaturated with respect to pure CdCOs, but in this case
only by a very small amount. Recall the definition of the solutus curve:

XB,a XcC,a
2., =1 / L S 24 48)
4 (KBAVBA Kcavea (

If the value of K¢a (Kcaco,n in the above example) is considerably
greater than that of Kg (Kcaco,) and if the solid-phase activity coeffi-
cients are unity (case of an ideal solid-solution), the term xc.q/(Kcavca)
will be insignificant compared to the value of xp.,/(Kgavsa), and the
solutus equation will essentially be identical to the pure BA (CdCOs)
solubility curve, except at values of xp,q very close to zero.

Figure 3 represents the case of a non-ideal SSAS system,
(Ca,Zn)CO;3-H,0, with an order of magnitude difference in endmember
solubility products and with a miscibility gap between xz,co, = 0.20 and
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Fig. 3(A) Lippmann phase diagram for the (Ca, Zn)CO;-H,0 system at 50°C drawn
using the Zn-in-calcite distribution coefficient results of Crocket and Winchester (1966)
and assuming a regular solid-solution (ay = 2.3). Endmember pK’s chosen are 8.663 for
calcite (Plummer and Busenberg, 1982) and 10.05 for smithsonite (Hogfeldt, 1982). The
calculated miscibility gap (from Xzcos = 0.20 to 0.80) is in reasonable agreement with the
maximum amount of Ca in smithsonite (xc.cos = 0.24) reported by Palache, Berman, and
Frondel (1951). Short-dashed lines represent endmember saturation curves. Long-dashed
lines show the miscibility gap determined from the intersection of the solidus curve with a
straight horizontal line drawn from the “‘peritectic”” point. (B) Gibbs free energy of mixing
for tﬁe (Ca, Zn)COs-H,0 system as a function of composition. The long-dashed lines show
the miscibility gap determined from the common tangent points of the G" curve. The
inflexion points give the spinodal Fa compositions, which can also be found from the two
local extrema in the Lippmann so id?xs curve.
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Xznco, = 0.80. Whereas the solidus curve differs from that of the
(Ca,Cd)CO, system, the solutus curve remains very close to the pure
ZnCOjy saturation curve. This behavior is due to the narrow range of
solid-solution compositions at equilibrium with respect to the aqueous-
solution compositions defined by the solutus curve. The solid-phase
activity-coefhicients in the solutus expression depend on the equilibrium
solid compositions. Because the range of solid compositions is small and
close to pure ZnCOj; (from xz,co, = 0.80 to Xz.co, = 1.0), the activity
coefficients do not vary significantly, and the solutus curve, therefore,
remains unchanged and almost identical to the pure ZnCOj saturation
curve. Indeed, the values of the CaCOj ,;, and ZnCOj activity coefficients
have a certain limit which when exceeded (between xz,co, = 0.20 and
Xznco, = 0.80) results in unstable or metastable solid-solutions (with
respect to which an aqueous-solution can never reach thermodynamic
equilibrium). The upper limit placed on the solutus curve by the
endmember saturation curves can also be explained by the fact that a
pure endmember phase will always have a higher free energy than a
solid-phase with some non-zero proportion of substitutional impurities
(Berry and others, 1980, p. 1110). Increasing the excess free energy of a
solid-solution series (such as by increasing the a, value in eq 35) causes a
miscibility gap to form and then to broaden with its limits tending
toward the pure endmember compositions. In corresponding behavior,
the Lippmann solutus curve will move upward, closer and closer to the
pure-phase saturation curves, but never crossing their boundaries.

If the endmember solubility products are close, the solutus curve is
in equilibrium with a much more evenly distributed range of solid-
compositions, and the solutus and solidus curves plot near each other. In
the Ba(CrOy, SO,)-H,0 system (fig. 4), endmember solubility products
differ by about 0.4 log ZII. The Ba(CrO,, SO,) solid-solutions are
assumed ideal. In this case, the pure-phase solubility curves are quite
distinct from the solutus, and solution compositions along the solutus
are clearly undersaturated with respect to both pure BaSO, and pure
BaCrO;, solids.

A hypothetical example of a system with a negative excess free
energy of mixing is illustrated in figure 5. Because a negative excess free
energy lowers the position of a solutus curve relative to the position of
an ideal solutus, the solutus in this system lies distinctly below the pure
BA saturation curve. The system also shows an alyotropic minimum, a
point of intermediate composition corresponding to a minimum in the
solidus curve. By definition (Schuberth, 1977; Lippmann, 1980), an
alyotropic point is a thermodynamic equilibrium state with a B*/C*
ratio in the solid phase equal to the mg. /m¢- ratio in the aqueous phase.
The alyotropic minimum in figure 5 is a result of the strong attraction
between the two components of the solid-solution.

If the excess free energy of mixing is non-zero and positive, and if
the endmember solubility products are close together, a SSAS system
may exhibit an alyotropic maximum, such as can be seen for example in
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Fig. 4. Lippmann phase diagram for the Ba(CrO,, SO,)-H,;O system at 25°C,
assuming an ideal solid-solution series. Endmember pK'’s chosen are 9.67 for BaCrO,
(Lukkariand Lukkari, 1972) and 9.99 for BaSO, (Hogteldt, 1982).

the K(C1, Br)-H,O system (fig. 6). In such a system, the excess free
energy of mixing is not sufficiently high to cause the formation of a
miscibility gap. The solutus curves upward toward the alyotropic point
and, in doing so, tends close to the pure-phase solubility curves. In this
system, as in all systems discussed above, the pure endmember saturation
curves offer an upward boundary for the solutus curve.

Criticisms of the Lippmann model.—The principal limitation of Lipp-
mann’s Total Solubility Product model is its inherent assumption that
solid phases can behave as compositionally uniform phases and attain
thermodynamic equilibrium in an aqueous solution. At low tempera-
tures, solids often behave as multi-compositional phases and are not very
responsive to changes in the surrounding aqueous phase composition.
Thorstenson and Plummer (1977) developed the concept of stoichio-
metric saturation, claiming that solid-solution compositions could
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remain invariant for extended periods of time. It must be emphasized,
however, that the stoichiometric saturation concept can also be applied
only if the initial solid dissolved is compositionally homogeneous and if
the rate of precipitation of any secondary phases is slow compared to the
rate of dissolution.

Lippmann’s formulation of the ZII variable has not met many
objections in the literature, with the possible exception of Walter and
Morse (1984). Walter and Morse claimed that, unlike Thorstenson and
Plummer’s (1977) K,, constant, ZII values determined for different
aqueous-solutions (at stoichiometric saturation with respect to a same
given solid-composition) varied as a function of aqueous-solution com-
position. An examination of Walter and Morse’s experimental findings
shows, however, that ZIL values varied predictably as a function of
aqueous-solution composition (see app. and table 1).
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(xer = 0.676, ZI1 = 15.35). (B) Gibbs free energy of mixing curve for the K(Cl, Br)-H,O
system. The arrow points to the minimum in the G" curve.
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TABLE 1

Interpretation of the stoichiometric saturation states determined by Walter and
Morse (1984) from four magnesian calcite dissolution experiments

Solid composition (zm()le % Mg): 12%  12% 18% 18%
Aqueous Mgz*/Ca * ratio: 1/5 5/1 1/5 5/1
pZII reported by Walter and Morse (1984): 8.11 7.56 7.73 7.30
pKss reported by Walter and Morse (1984): 8.28 8.27 7.94 7.95
pKss calculated using eq (56) and Walter and Morse’s pZI1

values: 8.27 8.25 7.93 7.95

STOICHIOMETRIC SATURATION VERSUS THERMODYNAMIC EQUILIBRIUM CONTROLS
IN LOW TEMPERATURE SSAS SYSTEMS

Walter and Morse’s (1984) experiments (discussed in app.) support
the concept of stoichiometric saturation as a dissolution-controlling
thermodynamic state which can be attained in the (Ca, Mg)CO;-H,O
system or at the least as one that can be determined by extrapolation.
Gamsjdger (1985) observed that (Co, Mn)COjs solid-solutions dissolved
congruently in aqueous acidic media at 50°C, and that the composition
of the solids remained constant in all cases. Gamsjdger concluded that
his aqueous solutions had attained *a steady state characterized by equal
G-functions of the solid and solute species rather than equal chemical
potentials of the endmember carbonates in the phases present.”” Plum-
mer and Busenberg’s (1987) experiments on (Sr, Ca)COs,,, offer per-
haps the best evidence supporting stoichiometric saturation as a state
that can be attained during solid-solution dissolution experiments. As
discussed previously, a solutus curve can never lie above the pure
endmember saturation curves in a Lippmann phase diagram. Plummer
and Busenberg’s highly reproducible congruent-dissolution results gen-
erally lie well above the solutus and pure phase curves. Attainment of
thermodynamic equilibrium or primary saturation states, therefore, can
not explain their results, at 25° or at 76°C (figs. 7, 8). The solutus and
the dashed curve displaying the family of “minimum stoichiometric
saturation’’ points at 76°C near the aragonite endmember are close
together; consequently it can not be completely excluded that the 76°C
experimental results in this particular region may represent thermody-
namic equilibrium or primary saturation. As discussed further in Glynn
and others (1990), the assumption that Plummer and Busenberg’s
(1987) experimental results lie very close to actual stoichiometric satura-
tion states is consistent with the miscibility gap observed in the distribu-
tion of natural low-temperature hydrothermal (Sr, Ca)CO; solids.
Higher stoichiometric solubilities would predict a greater miscibility gap
than observed in these minerals.

There is currently little evidence that stoichiometric saturation
states may control solid-solution precipitation processes. Stoessell and
Carpenter (1986) suggest that stoichiometric saturation does control the
initial partitioning of trace bromide during Na(Cl, Br) and K(Cl, Br)
precipitation. The NaBr and KBr solid-phase activity-coefhcients deter-
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Fig. 7(A) Lippmann phase diagram for the (Ca, Sr)COs,y—H,O system at 25°C
constructed using the congruent dissolution data (plotted points) of Plummer and
Busenberg (1987) and their fitted values to the Guggenheim 8937) sub-regular excess-
free-energy model (a, = 3.43, a, = —1.82). The long-dashed curve is the ‘“minimum
stoichiometric saturation” curve, calculated using Plummer and Busenberg’s fitted a, and
a, values and endmember pK’s of 8.336 for aragonite (Plummer and Busenberg, 1982) and
9.271 for strontianite (Busenberg, Plummer, and Parker, 1984). (B) Gibbs free energy of
mixing curve for the (Ca, Sr)COs,,—H;O system at 25°C. The dashed lines represent the
miscibility gap determined from the common-tangent points of the G™ curve. The
miscibility gap could also be determined from the Lippmann diagram by finding the
intersections of the solidus curve with a straight horizontal through the “eutectic” point
on the solutus curve. The spinodal compositions (inflexion points on the GM curve)
correspond to the two maxima in the solidus curve.
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Fig. 8(A) Lippmann phase diagram for the (Ca, Sr)COsrn—HO system at 76°C
constructed using the congruent dissolution data (plotted points) of Plummer and
Busenberg (1987) and their fitted values to the Guggenheim 8937) sub-regular excess-
free-energy model (a, = 2.66, a, = —1.15). The long-dashed curve is the “minimum
stoichiometric saturation” curve, calculated using Plummer and Busenberg'’s fitted a, and
a, values and endmember pK’s of 8.826 for aragonite (Plummer and Busenberg, 1982) and
9.604 for strontianite (Busenberg, Plummer, and Parker, 1984). (B) Gibbs free energy of
mixing curve for the (Ca, Sr)COg,,,,—H,O system at 76°C. The dashed lines represent the
miscibility gap determined from the common-tangent points of the GM curve.
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mined by Stoessell and Carpenter, using the assumption of stoichiomet-
ric saturation, are not consistent however with the theory that the
energy (and therefore the activity coefficient) of the Br ion should be
smaller in the KCI lattice than in the NaCl lattice. This concept is
reviewed by Kirgintsev and Trushnikova (1966) and Urusov (1974).
Stoessell and Carpenter’s activity coefficients also differ from the values
that can be determined (Kirgintsev and Trushnikova, 1966: Glynn and
others, 1990) from the thermodynamic equilibrium data of Durham and
others (1953) and Simons and others (1952) for the K(CI, Br)-H,O and
Na(Cl, Br)-H,O systems. The applicability of the stoichiometric satura-
tion concept to solid-solution precipitation processes is further discussed
by Glynn and others (1990).

The evidence that stoichiometric saturation controls dissolution
processes for some solid-solution systems does not imply that thermody-
namic equilibrium can never be attained in laboratory dissolution
experiments on other systems or under other conditions.. Durham and
others (1953) give convincing evidence for the attainment of thermody-
namic equilibrium during recrystallization experiments in the
K(Cl, Br)-H;O, Rb(CI, Br)-H,O, and (K, Rb)Br-H,O systems. The
experiments consisted in placing a pure endmember solid-phase in an
aqueous solution of the opposite endmember component. In a second
set of experiments the solid-phase and aqueous-phase endmembers were
reversed, the relative amounts of solid and aqueous phase adjusted to
match the total compositions of the first experimental set. After three to
four weeks, Durham and others (1953) found that each matched pair of
experiments had produced identical solid-solution compositions (to
within 1 percent of each other). Final aqueous-solution compositions
were also identical in each matched pair. To achieve this result for an
array of total aqueous-phase solid-phase compositions, from opposite
initial conditions, indicates that thermodynamic equilibrium can indeed
be achieved at low temperatures in SSAS systems with highly soluble
salts. Using a similar technique to Durham and others (1953), Simons
and others (1952) also demonstrated the attainment of thermodynamic
equilibrium during recrystallization experiments in the Na(Cl, Br)-
NaOH-H,O system.

The fairly good agreement between the K(Cl, Br) recrystallization
results of Durham and others (1953) and those of Flatt and Burkhardt
(1944) and Amadori and Pampani (1911) offers further evidence that
thermodynamic equilibrium was attained in these three studies. The
K(Cl, Br)-H,O experimental results were reinterpreted with the help of
the PHRQPITZ mass-transfer and aqueous-speciation model (Plummer
and others 1988). Guggenheim a, and a, parameters were determined
from a least squares fit of the K, constants calculated from Durham and
others’s (1953) data. Figure 6 shows the various experimental results
together with the fitted Lippmann solidus and solutus curves. The
“minimum stoichiometric saturation” curve is also shown. This curve
gives approximately the aqueous-solution compositions that would be
obtained if K(Cl, Br) solid-solutions could dissolve congruently to stoi-
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chiometric saturation in initially pure water (the assumption made is that
the ratio of the total aqueous concentrations of Br and CI can be
considered equal to the aqueous activity ratio of Br~ and CI7).

A characteristic feature of the ‘“minimum stoichiometric satura-
tion” curve is its downward concavity when displayed on a Lippmann
diagram. This feature occurs in ideal SSAS systems as well as in systems
with miscibility gaps or alyotropic extrema. (In the special case of an
alyotropic minimum, the curve can be seen as two downwardly concave
segments). The final aqueous-solution compositions determined from
the experiments of Durham and others (1953), Flatt and Burkhardt
(1944), and Amadori and Pampani (1911) do not show this characteristic
shape of “minimum stoichiometric saturation” states. The (Sr, Ca)
COg,,p dissolution results of Plummer and Busenberg (1987), however,
do show this characteristic feature.

The best available experimental results indicate that whereas
stoichiometric saturation must be invoked to explain dissolution results
for relatively insoluble solid-solutions such as magnesian-calcites,
cobalt-rhodochrosites, and strontian-aragonites, thermodynamic equi-
librium (which is also a stoichiometric saturation state) can nonetheless
be achieved at low-temperatures in highly soluble solid-solution systems,
such as K(Cl, Br)-H,O, Rb(CI, Br)-H,O, (K, Rb)Br-H,O, and
Na(Cl, Br)-H,O.

Lippmann phase diagrams and the concept of stoichiometric satu-
ration can also be used to describe SSAS systems at high temperatures
and pressures. Because recrystallization rates will typically be much
faster than at low temperatures, the concept of stoichiometric saturation
may not be as important in interpreting SSAS experimental data. The
inaccuracies involved in estimating the thermodynamic properties and
compositional details of the aqueous phase will present the major
difficulty in the interpretation of experimental results in such systems.

CONCLUSIONS

1. The Thorstenson and Plummer (1977) stoichiometric satura-
tion model is reviewed, and a new derivation of the relation between
solid-phase component activities and K, stoichiometric saturation con-
stants is presented. In this denvauon Thorstenson and Plummer’s
standard chemical potential ul, for the one component solid B,_,C A is
equated to the molar free energy of the binary solid-solution and
therefore to the compositionally-weighted average of the endmember
chemical potenuals (usa and pca). Using this approach, the excess free
energy of mixing (G*) of a B,_,C,A solid-solution can be determined
algebraically from the stoichiometric saturation constant K, the end-
member solubility products Ky, and Kca, and the composition of the
solid.

2. Experimentally-determined GF values can be fitted, thereby
defining the thermodynamic properties of a solid-solution series on the
basis of the endmember stabilities and one or two adjustable parameters
(such as ag and a, in eq 35). This approach, while requiring an appropri-
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ate G* function, avoids Thorstenson and Plummer’s (1977) technique of
determining solid-phase activity-coefficients by relating them to the
derivative dK,,/9x at every composition x.

3. The Lippmann (1977, 1980) “total-solubility-product” model is
examined. A general formulation of Lippmann’s solutus equation is
presented, applicable for non-ideal solid-solutions. The minimum solu-
bility concept of “‘primary saturation” is related to Lippmann’s solidus
and solutus curves and to thermodynamic equilibrium. An equation
relating Thorstenson and Plummer’s (1977) IAPg variable to Lipp-
mann’s (1977) ZII variable is developed. This relation allows the repre-
sentation of stoichiometric saturation curves on Lippmann diagrams
and leads to a better understanding of the concept of stoichiometric
saturation and its relation to thermodynamic equilibrium and ‘“‘primary
saturation” states. Similarly, Lippmann phase diagrams can be used to
represent endmember saturation curves, which may then be compared
to the minimum solubility states represented by Lippmann’s solutus
curve.

4. The best available experimental results indicate that stoichio-
metric saturation states can be achieved during the dissolution of
relatively insoluble solids (Walter and Morse, 1984; Plummer and
Busenberg, 1987; Gamsjidger, 1985). On the other hand, the alkali-
halide recrystallization experiments of Durham and others (1953),
Simons and others (1952), Flatt and Burkhardt (1944), and Amadori
and Pampani (1911) demonstrate that thermodynamic equilibrium can
be obtained after three to four weeks at 25°C in systems with highly
soluble solid-solutions.
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APPENDIX

Lafon’s criticisms of the stoichiometric saturation concept.—Lafon (1978) admitted that
determining the stoichiometric saturation state of a solid-solution is *“one of the more
useful methods” for determining its free energy. Lafon nevertheless questioned the
applicability of Thorstenson and Plummer’s model to general geochemical reactions,
stating that “‘there are no well-known, practical mechanisms in nature for selecting a
particular composition a priori and maintaining it fixed.”” Lafon therefore argued that
while stoichiometric saturation may apply to congruent dissolution reactions, stoichiomet-
ric saturation should not be used as a model describing precipitation or recrystallization
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reactions, for which it is difficult to determine in advance the final solid-phase composition
because:
1. Initial or earlier-produced phases are not likely to maintain a fixed composi-
tion.
2. Kinetic factors play an important role in determining the composition of solid
solutions formed during precipitation and recrystallization processes.

Lafon (1978) also criticized the laboratory technique (from Plummer and Mackenzie,
1974) used by Thorstenson and Plummer to determine stoichiometric saturation con-
stants for the magnesian calcite series. The technique specifically consisted in extrapolat-
ing pH values obtained during the congruent dissolution of a magnesian calcite to infinite
time by plotting the data against an inverse square root of time axis, and determining the
intercept. This technique, however, has since been abandoned by Plummer (personal
commun., 1986) and Plummer and Busenberg (1987). Other researchers (Bischoff and
others, 1987; Walter and Morse, 1984; Mackenzie and others, 1983) have continued using
this technique and claim that it does give reproducible results.

Lafon’s criticisms seem valid, inasmuch as the concept of stoichiometric saturation
has so far not been conclusively demonstrated to apply to solid-solution precipitation
processes (Glynn and others, 1990). However, as can be seen from the experiments of
Walter and Morse (1984) and Plummer and Busenberg (1987), Lafon’s criticisms do not
undermine the validity of stoichiometric saturation as a theoretically and experimentally
useful concept which can help in the interpretation and prediction of SSAS dissolution
processes (see discussion in the text).

Gresens’ hypothetical test of the Thorstenson and Plummer model.—Gresens (1981a, b)
gave support to the Lippmann model’s formulation of the total solubility product and
criticized Thorstenson and Plummer’s use of fractional exponents in the stoichiometric
saturation expression. While objecting to the Thorstenson and Plummer formulation,
Gresens accepted the concept of stoichiometric saturation and claimed that Lippmann’s
total solubility product (ZII = [A7] ({B*"] + [C'])) could be used not only to describe
thermodynamic equilibrium but also stoichiometric saturation.

In his first argument against the Thorstenson and Plummer expression for K
Gresens (1981a) developed the following thought experiment:

“Consider a solid-solution aqueous-solution (SSAS) system where the aqueous mass
is very small and the solid mass infinitely large. Assume that the solid has a very low
solubility and a chemical composition consistent with its chemical formula, B 5CA.
The solid is brought into contact with the aqueous phase. Initially, the solid
dissolves stoichiometrically, until a state of stoichiometric saturation is reached.
The solid and the solution then continue reacting toward thermodynamic equilib-
rium by ion for ion exchange of B and C.”

At stoichiometric saturation, the Thorstenson and Plummer model gives an ion
activity product (IAPgs) equal to:

IAPg = [B]*°[C* ™A (Al)

Because [B| =~ [C"] (assuming no difference in their activity coefficients or ion-
pairing propensities), eq (A1) can be reduced to:

IAPss = [BY][A7] (A2)
After an increment of exchange i (of B for C), the IAP expression becomes:
IAPE = (IB'] + i)"* (IC*] — i)**|A"] (A3)
which is equivalent to:

IAP% = (|B']P — i%)** [A7] (A4)
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Thus, the new ion activity product IAP% will always be smaller than the original ion
activity product IAPgg at stoichiometric saturation, no matter which direction of exchange
of B* for C* is chosen. From this observation, Gresens (1981a) reasoned that because K,
was constant under the conditions of the thought experiment, the solution would always
become undersaturated after an increment of exchange. In other words, once stoichio-
metric saturation was reached, the initial increment of exchange would always proceed as
if the original state of stoichiometric saturation was always the state of minimum solubility.
Gresens concluded that such behavior was *““obviously not true’ and was an “‘artifact of the
formulation of the saturation statement as a solubility product that employs fractional
exponents.”

Although Gresens’ argument appears compelling, it is predicated on the assumption
that once stoichiometric saturation is reached, evolution toward thermodynamic equilib-
rium will occur only by ion for ion exchange of the two substituting ions, without any
further net dissolution or precipitation. In other words, Gresens assumes that the aqueous
activity [A~] of the non-substituting ion remains constant. In fact, if after an increment of
exchange the aqueous-solution is still at stoichiometric saturation (with respect to
B,_.C,A), the aqueous activity of the non-substituting ion A~ (and therefore the solubility
of the solid) must necessarily be greater than that of a system at ““minimum stoichiometric
saturation.” This principle is a direct result of considering the solid B,_,C,A as a pure
phase and does not reflect on some mathematical inadequacy of the K notation in
representing stoichiometric saturation.

Consider a pure solid phase BA initially at thermodynamic equilibrium with an
aqueous phase containing A~ and B* ions. If after some process (cation exchange for
example) the activity of B* in the aqueous phase is decreased and if somehow this decrease
is maintained, the activity of A~ in solution will increase to compensate for the decrease in
[B*]. Consequently, the solubility of the solid can be said to be greater than it was in the
initial system. This is a direct result of the law of mass action as applied to a pure solid BA.
The same principle occurs in a SSAS system at stoichiometric saturation with respect to a
phase B,_,C,A. The whole concept of stoichiometric saturation, as defined by Thorsten-
son and Plummer (1977), impinges on the assumption that under certain conditions, a
solid-solution can be considered to behave with an invariant composition, that is, as a pure
phase. Therefore considering Gresen’s thought experiment, if for some reason an
exchange of B* for C* occurs in the aqueous solution, without significantly affecting the
free energy of the initial solid (of which there is an infinite amount), the aqueous activity of
A~ should increase regardless of the direction of exchange if the aqueous phase is to
remain at stoichiometric saturation with respect to the initial solid.

Let us consider this point mathematically. At “‘minimum stoichiometric saturation”,
the aqueous phase is defined by:

IAP, = [B'|'™C*J*[A7] = K (Ab)

After an increment i of exchange (possibly accompanied by dissolution/ precipitation), a
new ion activity product can be defined:

IAPE = (B*J)' (| C' (A" (AB)

By the definition of stoichiometric saturation, both the initial solution and the solution
present after an increment of exchange will be at stoichiometric saturation with respect to
the initial solid B,_,C,A if:

IAP, = IAPY = K, (A7)
which is equivalent to:
[A). [B]'C'P

- (A8)
[A7]  [B'](C*:
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Assuming a closed system with no aqueous ion pairing and with equal aqueous activity
coefficients, the following relations will apply:

[A7]=[B*] +[C7] (A9)
and
[A7]s = [B*]« + [C*]. (A10)

If the activity fractions xp,q and xcaq are defined as in eqs (41) and (42) and if x§,, and x&,,
are similarly defined, eq (A8) can be transformed to:

[A7]e (Xpadl A7) *(Xcagl A7])"

— = — — (All)
[AT] Ol AT]) T“(xEaglAT]Y)
which is equivalent to:
A— g . I-x N X
[ 412 _ (Xs. q)lnx(Xc. q)x (A12)
[AT] (ag) (g
which, by virtue of the conditions of Gresens’ thought experiment, is equivalent to:
A)? 1 — x)! %"
AE (- A1)

A (1 = xtag) OEag)

Eq (A13) demonstrates that the activity of the non-substituting ion A~ in an aqueous-
solution at “minimum stoichiometric saturation” (for which x&,, = x) with respect to
B, ,C,A will always be smaller than the activity of A” in a solution which is not at
“minimum stoichiometric saturation”, the reason being that the denominator term
(1 - xé‘,aq)""(xéﬁaq)" has a maximum value when x&,, = x.

Consequently, once stoichiometric saturation is reached, evolution of the system to
final thermodynamic equilibrium cannot occur only by simple ion for ion exchange, as
Gresens suggests, but must also be accompanied by a net dissolution of the solid. This is
true as long as the solution maintains itself at stoichiometric saturation with respect to
B,_,C,A throughout its evolution toward thermodynamic equilibrium.

Gresens’ second criticism of the Thorstenson and Plummer model.—The thermodynamic
principles predicting the behavior of SSAS systems can be applied regardless of whether
the solid is composed of chemically different or isotopically different substituting ions. In
fact, the ratio of the solubility products of two chemically similar but isotopically different
solid-phases is directly related to the fractionation factor expressing isotopic equilibrium
between a solid phase and an aqueous solution. The thermodynamic properties of
solid-solutions are generally dependent on the differences in mass, ionic radius, electronic
charge, and polarizability of the substituting ions. In comparison, the free energy of
mixing of an isotopic solid-solution will depend almost exclusively on the difference in
mass between the two substituting isotopes. This difference in mass will cause compounds
of different isotopes to have different thermodynamic properties, even though the
differences may often be too small to measure. Gresens (1981a) argued that conventional
solubility product expressions for chemically pure compounds are not written as a product
series of individual isotopic components raised to their mole fraction. For example,
applying Thorstenson and Plummer’s (1977) stoichiometric saturation notation to the
case of a calcite containing two calcium isotopes gives the following equation:

aCaCO;KE:ICiw _ [40 Ca?+]038[44ca?+ ]0.02[(:05—] (A 1 4)

where the fractional exponents represent the relative natural abundances of the calcium
isotopes.
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In practice, the common solubility product expression for calcite, inherently assumes
that the calcium ion activity is the sum of all the calcium isotope activities:

Ica24] _ ([40C32+] + I‘*ica?*]) (A15)

While Gresens’ statement on the implicit handling of isotope activities in conven-
tional solubility products is correct, it can nevertheless be shown (demonstration in Denis,
1981) that it is only a matter of convention, considering that the K notation does have all
the properties required to describe not only stoichiometric saturation but also thermody-
namic equilibrium.

Indeed, for a given calcite isotopic composition and given aqueous activities of **Ca
and *Ca at “minimum stoichiometric saturation,” the term [**Ca?*]"%[*Ca®*|* is as
much a constant as the term ([*°Ca®*| + [*Ca®']). The important property of either
expression is that if the activity of the non-substituting ion CO3~ should change, say
decrease by 10 percent, the terms [**Ca®"|*®|*Ca®*|"® or ([**Ca®*] + [**Ca’*] should
correspondingly change (increase by 10 percent to compensate and maintain a constant
solubility product). In both formulations, this can be done by increasing the individual ion
activities of **Ca and **Ca by 10 percent.

An advantage of using the K notation to predict stoichiometric saturation states is
that regardless of the congruency of the solution, Thorstenson and Plummer’s ionic
activity product AP will always be constant and equal to K, as long as the aqueous
solution is at stoichiometric saturation with respect to the given solid B, _,C,A. The same
cannot be said of Lippmann’s ZII formulation where the activities of the substituting ions
are added together.

Denis (1982) also reviewed Gresens’ two arguments against Thorstenson and Plum-
mer’s K, formulation. His criticisms of Gresens’ arguments are similar to ours: (1)
evolution from a state of stoichiometric saturation to a state of thermodynamic equilib-
rium (with respect to the solid present at stoichiometric saturation) can only occur by a
further dissolution of the solid and not solely by ion for ion exchange as Gresens suggests;
(2) the K, formulation when applied to an isotope solid-solution does yield a constant
solubility product (for a given isotopic solid composition) and thus obeys the conventional
solubility product rule.

Lippmann’s criticisms on the use of fractional exponents in solubility product expressions.—
Lippmann (1977) criticizes the use of fractional exponents in solubility product expres-
sions for solid-solutions. In support of his argument, Lippmann reasons that the law of
mass action assumes chemical purity of reactants and products, thereby implying that
compounds form according to the law of definite proportions. According to this law,
stoichiometric coefficients must be small integers. Indeed, non-fractional coefficients are
evident in mass action expressions for the formation of molecular compounds. In a similar
guise, the electroneutrality condition requires non-fractional exponents in the solubility
product expression for complex ionic crystals: stoichiometric coefficients are directly
derived from valence numbers, which are always integer numbers.

Lippmann (1977) furthers his argument, stating that at ordinary temperatures most
crystalline minerals contain non-fractional multiples of their chemical formulae in their
unit cells, because equipoints are either completely filled or completely vacant, and
equipoints represent whole number multiples of atomic sites per unit cell (equipoints are
sets of atomic sites compatible with space-group symmetry). According to Lippmann
(1977), “fractional occupation of one or more equipoints would be equivalent to variable
composition and would exclude a mineral from the normal solubility product approach.. . .
invariant composition, as it is required for the solubility product to be valid, implies
complete and homogeneous occupation of certain equipoints and (commonly) complete
vacancy of others. Because equipoints are characterized by whole number multiplicity
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according to space group theory, only minerals with non-fractional subscripts in their
formulae are hopeful candidates for applications of the solubility product.”

Lippmann’s criticism seems more a matter of convention than a criticism on the
fundamental validity of the K, notation. In particular, the idea that stoichiometric
coefficients must be small integers seems rather arbitrary.

Walter and Morse’s test of the Lippmann model. —Walter and Morse (1984) used the
results of dissolution experiments on 12 and 18 percent magnesian calcites (of marine
origin) to argue against the Lippmann ZII formulation. The experiments consisted of
equilibrating the two magnesian calcites with two different MgCl,—CaCly,—H,O solutions,
one with a 5 to 1 Mg to Ca ratio and the other with a 1 to 5 ratio. The magnesium and
calcium concentrations of the solution being fixed (by their high initial concentrations),
carbonate activities were determined at stoichiometric saturation using Plummer and
Mackenzie’s (1974) technique of extrapolating pH against the inverse square root of
tme.

Walter and Morse observed that their experimentally-determined Ca?t, Mg2*, and
CO3- equilibrium activities gave rise to the same K, values for a given magnesian calcite
composition, irrespective of the aqueous Mg?* /Ca®* ratio. In contrast, their calculated ZII
values were not constant. Walter and Morse therefore argued that the Lippmann model
failed “‘to accurately represent a consistent equilibrium constant value at stoichiometric
saturation in different solutions.”

Although Walter and Morse’s experiments do support their claim that their kineti-
cally extrapolated K values represent stoichiometric saturation states, this observation
does not invalidate the Lippmann model and should not necessarily deter the use of the ZII
variable in assessing the thermodynamic state of a SSAS system. Indeed, Lippmann did not
claim that ZII could be used as a descriptor of stoichiometric saturation. In its original
design, the Lippmann model focused only on thermodynamic equilibrium. As demon-
strated earlier, the value of the ZII variable will, at stoichiometric saturation with respect
to a phase B,_,C,A, be dependent on the [C*]/[B*] ratio of the solution. This fact does not
necessarily invalidate the use of ZII as a measure of stoichiometric saturation. As can be
seen from table 1, the K values, which can be calculated (using eq 56) from the ZII values
determined by Walter and Morse, are essentially identical to their reported K, values.
Therefore, Lippmann’s ZII notation combined with eq (56) can be used to predict
stoichiometric saturation states.
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