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ABSTRACT. Two conditions must be fulfilled before biological
mixing of a tracer in sediments can be treated as a diffusive process.
Firstly, the frequency of mixing events must he much greater than
the rate of disappearance of the tracer. Secondly, the scale of ma-
terial exchange must be smaller than the scale of the tracer profile
and the thickness of the mixed-layer, L. Given these conditions, then
time-averaging and a mixing length theory can be employed to
derive, from the governing stochastic equation, the standard tracer
conservation equation, where bioturbation appears as a diffusive
transport term. Two endmember forms of biodiffusion can be rec-
ognized: interphase mixing where porosity and total solids are
intermixed, and intraphase mixing where they are not.

The distribution of benthie infaunal organisms responsible for
bioturbation suggests that the biodiffusion coefficient, Dy (x), should
decrease with depth. Steady-state tracer profiles produced with
various forms of D;(x) differ from the profile generated with con-
stant biodiffusivity only if Dp(x) decreases faster than a quadratic
decay and only when wL/D;(0) < 1 and 0.03 < AL?*/D3(0) < 3
(where w = sediment burial velocity and A = tracer decay constant).

The possibility of determining the depth dependence of bio-
turbation from a single tracer profile is remote. The analysis suggests
that an isotope characterized by 0.3 < AL?/D;(0) < 3 may be used
to verify the mixing function suggested by the infauna distribution.

The evolution of an impulse source of tracer is remarkably
similar for vastly different mixing functions. For this form of input,
transient tracers are no more useful than steady-state tracers in
distinguishing the form of Dy (x).

INTRODUCTION

Geoscientists have long recognized that biological activity can modify
the fabric, texture, structure, and composition of sediments (for example,
Davison, 1891; Crouzier, 1918; Watson, 1927; Moore, 1931; Dapples, 1942).
The reviews by Rhoads (1974), Rhoads and Boyer (1982), Rowe (1974),
Swartz and Lee (1980), Lee and Swartz (1980), Carney (1981), McCall and
Tevesz (1982), and Aller (1982) present a fairly complete portrait of our
present understanding of the phenomena involved. The displacement of

* Present address: Atlantic Geoscience Center, Bedford Institute of Oceanography,
Box 1006, Dartmouth, Nova Scotia B2Y 4A2 Canada

161



162 Bernard P. Boudreau—>Mathematics of tracer mixing

sediment grains as a result of the activity of benthic and infaunal or-
ganisms is known as bioturbation (Richter, 1952). In the presence of
compositional gradients, this displacement leads to net mass transfer.

The quantification of bioturbational rates and fluxes in sediments
has become a prime concern to a large number of sedimentary geo-
chemists. The aim of this effort has been to establish the contribution of
bioturbational transport relative to advection and the effects of chemical
or radioactive reaction on the distribution of various chemical species
in sediments.

The standard method for determining biological mixing rates has
been through the use of tracers. Tracers are compositionally or isotopically
distinct species of sparse concentration that follow and mark the sediment
motion without affecting this motion in any way. Useful tracers may be
conservative-transient or steady-state reactive with a known rate of decay.
Mixing information is extracted from tracer profiles by statistically fitting
the solutions of conservation (transport) equations to the observed tracer
distributions. The solutions contain certain arbitrary parameters which
become defined by the data regression and are intended to characterize
the mixing intensity and length.

This paper deals with the most popular of the currently used models
for bioturbation, the diffusion analogy. Goldberg and Koide (1962) are
responsible for the introduction of this formulation for biological mixing.
They hypothesized that burrowing organisms should cause mixing of
sediment in such a way as to create a net flow of sediment tracer (that is,
in their case 2**Th) from “a richer to a poorer part of the deposit”;
therefore, they envisioned a down-gradient transport analogous to mo-
lecular or “eddy”-diffusion,

aC

J=—Dn’ M

where ] is the bioturbational flux, C is the concentration of the tracer
in some appropriate units, x the depth in the sediment relative to the
sediment-water interface, and Dy, is a proportionality constant, later called
the biodiffusion coefficient. Eq (1) is entirely phenomenological; conse-
quently, Dy, is not known a priori but must be deduced from observation.

The diffusion model was essentially ignored for a decade until
Guinasso and Schink (1975) generalized the earlier work to include
transient tracers and obtained the first calculated values of the bio-
diffusion coeflicient.

Thereafter, there appeared a flood of papers reporting Dy values for
deep-sea sediments (Nozaki and others, 1977; Peng, Broecker, and Berger,
1979; Dayal and others, 1979; Cochran and Krishnaswami, 1980; DeMaster
and Cochran, 1982; Officer and Lynch, 1983a; Aller and DeMaster, 1984;
Kadko and Heath, 1984) in near-shore sediments (Benninger and others,
1979; Cochran and Aller, 1979; Santschi and others, 1980; Aller, Ben-
ninger, and Cochran, 1980; Krishnaswami and others, 1980; Olsen and
others, 1981; Carpenter, Peterson, and Bennett, 1982; Nittrouer and others,
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1983/84), and in lacustrine sediments (Robbins, Krezoski, and Mozley,
1977; Robbins, 1978; Robbins and others, 1979; Krishnaswami and
others, 1980; Sickle, Weimer, and Larsen, 1983; Officer and Lynch, 1982;
Bukata and Bobba, 1984).

The simple diffusive formulation for bioturbation has been the
subject of some criticism. This model describes inadequately situations
where biological activity causes sediment to move advectively over rela-
tively large distances, for example, the conveyor-belt like transport affected
by head-down deposit feeders (Fisher and others, 1980; Carney, 1981;
Aller, 1982). Because infaunal abundance and activity vary with depth
(for example, Myers, 1977; Robbins, Krezoski, and Mozley, 1977; Jumars,
1978; Robbins, 1978; McCall and Tevesz, 1982; Germano, ms), Guinasso
and Schink (1975), Schink and Guinasso (1977), Jumars (1978), Carney
(1981), and Aller (1982) argue that the biodiffusion coefficient should be
depth dependent.

Models with depth dependent biodiffusion coeflicients have been
proposed and solved by Schink and Guinasso (1977), Nozaki (1977),
Peng, Broecker, and Berger (1979), Santschi and others (1980), Olsen and
others (1981), Christensen (1982), and Kadko and Heath (1984). It is not
apparent that these spatially-dependent Dy-models produce significantly
different fits to observed tracer distributions.

The diffusion-model is often utilized without consideration of the
conditions for its validity, with the result that it has been misapplied.
This problem results from the fact that the necessary conditions for this
model have not been explicitly defined. In addition, the analogy between
(eddy) diffusion and bioturbation remains nebulous and formally unstated.
This lack of definition is at the root of the disagreement on the correct
form of the tracer conservation equation as expressed in the discussions of
Christensen (1983) and Officer and Lynch (1983b).

This paper is intended to clarify the definition of biodiffusion,
provide explicit criteria for the validity of the diffusion analogy, establish
the correct forms of the tracer conservation equations, and explore the
effect and need of a spatially-dependent biodiffusion coefficient.

TIME AND SPACE CONTINUA, AVERAGING, AND THE GOVERNING EQUATIONS

On the microscopic scale, sediments are a mixture of discrete grains
of varying size, shape, and composition. The sediment exhibits marked
discontinuities in its properties at this scale; yet, geochemical studies
treat sediments as an idealized system of superimposed continua capable
of occupying each point of the sediment simultaneously. This permits us
to speak of both the porosity and the concentration of a tracer at a
given depth.

What conditions permit the adoption of a spatial continuum for
the actual discrete fields in sediments? Furthermore, on what scale should
a sediment be sampled so that the values reflect this hypothetical con-
tinuum? These problems have been examined by hydrologists and fluid
dynamicists dealing with multi-phase flows (for example, Whitaker, 1969;
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Bear, 1972; Gray, 1975, 1983; Cushman, 1983; Baveye and Sposito, 1984).
They conclude that a condition sufficient for the validity of the spatial-
continuum representation is that the scale of the microscopic variations,
l,,, must be much smaller than the scale of the macroscopic variations, L,
of the properties of interest, and that the sampling must be performed on
an intermediate scale, [,, that is,

Ly <<1,<<L @)

In the present context, [, is the average sediment grain size, and L is
the length (depth interval) over which the tracer changes significantly in
concentration (or activity) or the total mixing depth, whichever is smaller.
The values of I, l,, and L are not absolutes but depend on environmental
conditions such as sediment type and mixing behavior of the benthic
organisms and on the decay rate or distribution of the tracer. For ex-
ample, a sand would have [,, of about 0.5 mm. If a tracer is distributed
over the top 10 cm of the sediment, that is, L, then a continuum will
approximate samples taken on intervals of 0.5 to 2 cm. For a mud, the
lower bound is greatly reduced and considerably smaller samples can be
utilized in connection with the continuum representation.

Unlike the real tracer field, the continuum field is infinitely divisible
without losing any of its defining properties, possesses spatial partial
derivatives to any order desired, and can be subject to limiting operations,
that is, limit x = 0 (Truesdell and Toupin, 1960). The adoptlon of a
continuum model does not preclude the existence of macroscopic dis-
continuities in the sediment property fields (for example, contacts between
different sediment types). These discontinuities must be finite in number,
and the value of the sediment properties and their derivatives must be
defined in the limit as the discontinuity is approached. (We can thus
speak of piecewise continuous properties in a continuum sediment.)

The modelling effort can be further simplified, because most dia-
genetic changes in sediments are directed in the vertical direction. This
has encouraged the use of a uni-dimensional continuum model (Berner,
1980). This treatment is valid, if the horizontal scale, [, of variations is
much larger than the scale of the vertical change, L, that is,

L >> L 3)

When biological patchiness is intense, eq (8) will fail.

Consider now mixing in our hypothetical continuum sediment while
drawing on experience gained from observation of real sediment. Macro-
fauna and perhaps meiofauna rework and displace this sediment. If we
could continuously monitor a tracer at a correct sampling scale, we would
observe that the concentration of a tracer at a given point could change
temporally in a quite sudden manner, unrelated to decay and simple
burial. These sudden changes are due to biological activity.

As an organism moves past or occupies a point in the sediment, it
may remove material to another depth or deposit material taken from
another point within the sediment column. Because the newly introduced
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sediment has a different tracer concentration than the original sediment,
an abrupt concentration change is recorded. As organisms can move in
three dimensions, their movements appear more-or-less random in one
dimension (let’s exclude head-down deposit feeders), and as all points in
the sediment cannot be continuously occupied by infauna, the changes
in the tracer concentration appear as random fluctuations.

The time-average of this fluctuating tracer field may not be random
and, in fact, may constitute a smooth, continuous profile. In this situation,
it may be possible to describe the mixing activity of the infauna as a
diffusive process. We now examine those mathematical and physical
conditions that must be met to permit averaging and use of the diffusion
analogy.

As stated above, bioturbation results from the movement of sediment
grains by organisms from one depth to another. Figure 1 illustrates a
hypothetical, instantaneous tracer distribution, C(x,t), in a sediment. If
the biological transportation of material from an arbitrary depth, say x,,
is to neighboring points, for example, x, and x,, then the mixing is termed
local, that is, the transport distance is small compared to the tracer profile
scale. As shown below, diffusional mixing is a limiting case of this class
of mixing. If mixing causes the exchange of material between widely

TRACER CONCENTRATION

IN SEDIMENT

DEPTH

v

Fig. 1. A schematic, hypothetical tracer distribution in sediments. The axes are
arbitrary, but the tracer concentration or activity increases to the right and depth in-
creases downward. The x-axis is the sediment-water interface. Mixing between neigh-
boring points such as x, and x, or x, are local exchanges, while any exchange between
these points and x; is term nonlocal. )
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separated points on the tracer profile, for example, between X, and x,,
then it is called nonlocal (Imboden, ms). This latter form cannot be
described as diffusive and is explicitly excluded from consideration.
The constraint of local mixing imposes another length scale re-
quirement,
I, <<, << L 4

where [, is the typical distance over which organisms exchange or trans-
port sediment. (There is no restriction on the relative sizes of I, and I.)

The other restrictions on the diffusion analogy are best discovered by
developing a conservation equation for the instantaneous (fluctuating)
tracer field and averaging to obtain an equation for a temporally smooth
field subject to diffusion. To begin the derivation, consider a small in-
terval Ax centered about some arbitrary depth x in the sediment. (Note
Ax < [,.) Over a short period of time, At, sediment and tracer would be
seen to enter or leave at the top and/or the bottom of a box of unit
cross-sectional area and thickness Ax due to burial and biological trans-
port. In addition a small amount of the tracer could decay and/or be
produced in the box over the period At. These processes could combine
to cause a net increase or decrease in the amount of sediment and tracer
in the box, that is

(%) change = flow in — flow out — decay + production (5)

On a short time scale, the local bioturbational mixing appears as a
stochastic contribution to the advection, in addition to the regular burial
component.

The decay term in eq (5) is assumed to be linear in the amount of
tracer. This assumption is not too restrictive as the vast majority of non-
conservative tracers employed in geology are of this type. Tracers with
nonlinear decay can be accommodated with a moderate increase in
mathematical complexity. The production term in this same equation is
assumed independent of the tracer concentration but explicitly depen-
dent on X.

Approximate mathematical expressions of the terms in eq (5) are
given in table 1. These are approximate, because certain quantities that
vary with time have been treated as constant, for example, C(x,t) in the
decay term. Use of these approximations causes no lasting problems.
Substituting, the balance is given by

[Bs(%t + ADT(X,t 4 AL) — Py(x,)C(X,t)]AX ~
[$s<x—%,t>w (x—Az—x,t>C‘ (x—%,t)
s

— P (x,t) k(x) C(x,t)Ax + P(x,t)Ax:I At (11)
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TABLE 1
Approximate mathematical forms of the terms in the
instantaneous tracer conservation equation (eq 5)

Accumulation = [y(x,t + AC(x,t + At) — &, (x,t)C(x,t)] Ax (6)
(change)

ﬂowinz[ és <x— on ,t)W(x— A2x ,t>C<x— A2x ,t)]At (7
ﬂowoutﬁs[rﬁN <\+—A\— >W<x+ A2X ,t)i(x-}-—%,t >:|At (8)

decay = @ (x,t) k(x) C(x,t) At Ax )
production =~ P(x,t) At Ax . (10)
where

C = instantaneous amount (activity) of tracer per unit volume of solids
s = solid volume fraction
W = local advection velocity of the solids

k(x) = rate constant for tracer disappearance

P = rate of production of the tracer per unit volume per unit time

where ¢, = solid volume fraction, that is, 1 — ¢ where ¢ = porosity, and
the overbar ~ indicates a quantity subject to stochastic fluctuations.

The fluxes at the top and bottom of the box can be expressed in
terms of the value at the center by using the truncated Taylor series,

dj(x,t) Ax

x — Ax/2,0) ~ j(xt) — = T a2)
](X -+ AX/2,t) ~ ]( [) + dl((;;t) A2X (13)

where j represents an advective flux. Similarly, the future value at
t + At can be expressed in terms of the value at t,

éC(xt+At)~$C(xt)+mAt (14)

If these series are substituted into eq (11), then after dividing this equa-
tion by Ax and At and taking the limit as A - 0, there results the equality

¢C 9, WwC

ot ox
Eq (15) is the instantaneous, differential conservation equation. for the
tracer. Eq (15) includes the effects of local mixing, yet no biodiffusion
term appears in this equation. On the other hand, the dependent variables

in‘eq (15) are not of the mathematical type found in the usual diagenetic
equations. (Eq 15 is a stochastic differential equation.)

— $, k(x) C + P(x,t) (15)
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The time averaging operation employed here is the standard time
average (Hinze, 1975),

1 [+Atm-/2
<p>= f p dt, (16)
Aty t—Aty,/2

where t, is a dummy variable, At,, is the averaging period, and p any
property, for example, ¢,, C, et cetera.

Limits must now be placed on the relative magnitude of At,;. The
averaging period must embrace a fairly large number of stochastic mix-
ing events. Therefore, if At, is an estimate of the period between mixing
events,

Atl) << Atnv (17)

On the other hand, the averaging period must be smaller than the
relaxation time, At,, of the sediment/tracer system. The relaxation time
is the lesser of the decay time for the tracer (half-life divided by 0.698) or
the time to bury the mixed layer, that is, L/w,, where w, is the maximum
burial velocity. Thus,

Aty << Aty << AL, (18)

In a transient case, there is an introduction time associated with the
tracer input function (excluding a Dirac delta function) which must also
be considered in estimating At,.

The diffusional formulation for bioturbation assumes that eq (18) is
valid at all depths. Despite the possibility of mid-depth maxima, infaunal
population densities ultimately decrease with depth, and so should mix-
ing frequencies. Although there may be a sufficient number of mixing
events to satisfy eq (18) near the sediment-water interface, a rapid decrease
in biological perturbations may lead to severe violation of this require-
ment at depth.

To introduce some quantitative appreciation for the limits imposed
by eq (18), consider 21°Pb, which has a characteristic decay period of about
32 yrs (half-life/0.693), and is commonly used to determine mixing rates
in deep-sea sediments. A At, = 32 yr requires that the period of mixing
events should be no more than about 1 yr, that is, At, < At,/25. Another
isotope employed to extract particle reworking rates in near shore sedi-
ments is #**Th. With a decay period of 35 days, a continuum model would
demand a maximum mixing period of 1 day at every depth. Observations
of mixing frequencies (not just feeding rates) are clearly needed in order
to check that the minimum values are achieved.

Given that an averaging time does exist, then as a first step the
stochastic variables are written as the sum of a non-fluctuating quantity
and a biologically-induced fluctuation in a manner reminiscent of the
treatment of fluctuations in turbulent fluid flows (Reynolds, 1895), for
example

b=+ ¢/ (19A)
G =C+0C (19B)
W =w+w (19C)
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where the non-primed quantities are the time-smooth quantities familiar
to diagenetic models, and the primed quantities are superimposed fluctua-
tion. (In an earlier derivation, Boudreau, ms, assumed that (¢,C) must be
treated as a single variable. Although that approach may still be valid,
I present below a derivation that does not rely on this assumption.)

The averaging produces different results depending on the ability of
organisms to intermix total solids and fluids. There are two endmember
cases. If bioturbation does not mix fluid against total solids, then this
form of mixing is called intraphase mixing (Berner, 1980). The word
phase is not used in its thermodynamic sense. In this case, ¢,/ = 0. The
name interphase mixing is used to describe mixing that affects porosity
(¢s” = 0). As shown below, the failure to recognize these two fundamen-
tally different modes of mixing is at the root of the disagreement between
Christensen (1983) and Officer and Lynch (1983b). There are no data on
the prevalence of these two endmember forms of mixing.

Substitution of definitions (19A, B, C) into eq (15) produces, for
interphase mixing,

00.C | 0b/C | b C _ apw*C 3 . o
T T ox ax |:¢'*W C+dy(w*yC

+ W*C + IWHYC + bIWHC! + b (WHC + b (wHYC! ]

—K(x) [$:C + $,/C + $.C" + §./C] + P(x,t) + P/(x,1) (20)
and for intraphase mixing,
!
06.C | 96C _ 0¢WC 0 [y e 4w

at ot X ax |
+ cl)sw’C’] — ¢, k(x) [C + C] + P(x,0) + P/(x,t)  (21)

Note that the burial velocity for interphase mixing is adorned with a
superscript *. This is done to distinguish it from the velocity during
intraphase mixing. Such discrimination is necessary because these two
quantities are not generally equal (as will be shown later).

Egs (20) and (21) are now time-averaged by utilizing the operator
given by eq (16) along with the so-called Reynolds averaging properties
associated with this operator (Hinze, 1975, p. 6-7)

<p>=p (22A)
<p'>=0 (22B)
<pp>=0 (22G)
<p, p./>+#0 (22D)
<5 =9 (92E)

ot
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where p,” and p,’ are two arbitrary fluctuating quantities. It is further
assumed that the order of temporal integration and spatial differentiation
can be inverted as needed.

The averaging procedure generates the following conservation equa-
tions. For interphase mixing,
ap.C _ 9

a0 = ax | E<OWEY @S>+ b <(wH) > 4 wr<e/C>

—k(x) [$.C + <p/C'>] + P(x,t)  (23)

*
+waﬂﬁ>]—ﬂ%%g

and for intraphase mixing,

ac(j;:C - _ aix[ ¢.~J<C'w’>] — (MS—XC — ¢, k(x) C + P(x,t) (24)

Notice that the time average of the product of fluctuations is not zero
(see Hinze, 1975).

Further simplification of eq (23) is necessary. The fluctuating quan-
tities ¢/ and C’ must be small compared to the non-fluctuating means,
¢, and C. If this were not the case, mixing would have to occur on a
scale comparable to the scale of the tracer profile, and the mixing would
be nonlocal. Because this scale of exchange is specifically excluded, it
follows that

¢, C>> <p/C'> (25)

and the second half of the decay term in eq (23) can be neglected.

Similarly, the terms contained within the large brackets in eq (23)
do not contribute equally to mixing. Over the mixing distance I, eq (25)
implies that d¢,/9x and 9C/dx are nearly constants, such that

, 1,
¢ = o hy —_a(i (26)
and
1 aC
Vo
e, @)

Conversely, the fluctuations in the burial velocity, (w*)’, are not
necessarily small compared to the mean w. During local mixing, infauna
cause intense bioturbation by moving sediment very fast over short dis-
tances. In fact, diffusion is obtained as the limiting case

(W*)! > (28)
and .
,»> 0 (29)

but in such a way that the product

(w*)" I, - finite and non-zero (30)
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In reality, infaunal activity cannot be expected to fulfill such extreme
conditions. The diffusive representation is thus a limiting case that only
approximates bioturbation.

Using the approximations given by eqs (26) and (27), we obtain

< (4> = g <> aai; 31)
<C/(w*y> = g <> 2 32)
<$/C'> z%<l.,'—’> %Z—S (33)
</ (wHYCI> ~L <(wHy > %‘f’{ ‘;f: (34)

In the limit given by eqs (28) through (30), the right hand sides of
eqs (33) and (34) approach zero, while eqs (31) and (32) remain finite and
non-zero. In the diffusive limit, eq (23) reduces to,

L a%[l <ooryt> 28 g :l — k() .G+ P(xt)  (35)
where the chain rule for differentiation has been employed.

Eq (27) can also be substituted into the equation for intraphase
mixing, eq (24), to arrive at
apC _ 9 1 oC _

TR —ax_[ by [7 <w i 4- wG :I:I k(x) ¢,C + P(x,t) (36)

The terms <(w*)'l,> and <w’l;,> both have units of length squared
over time, which are those of diffusion coefficients. If we are correct in
our supposition that these terms are responsible for moving tracer and/or
sediment down gradient, then we can equate these coefficients to the
negative of biodiffusion coefficients,

% <(WHYL,> = — Dy*(x,t) (87A)
% <w'l,> = — Dy(x,t) (37B)

Numerically, Dg* and Dy may be equal, but the distinction is re-
tained to emphasize the two endmembers. The definition of the eddy-
diffusion coefficient - that appears in Prandtl’s mixing-length theory is
similar to eq (37). However, in developing the turbulent flow theory,
Prandtl assumed that w' << w (Hinze, 1975), which is not necessarily
the case with biodiffusion. The analogy between eddy-diffusion and bio-
diffusion is not perfect.

Substitution of eqs (37A, B) into eq (35) generates the final form of
the tracer conservation equations for interphase mixing,
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.C e 20.C
ot~ ax| PriY 5

- ¢SW*C:| —k(x) ;C + P(x,t)  (38)

and into eq (36) for intraphase mixing,

——‘”;;C = a_ax[ ¢ Dn(x.t) g—g —p,wC ] —k(x) $,C + P(x,t)  (39)

The additional component of the diffusive flux in eq (38), that is, Dg(x,t)
C d¢./9x, may contribute substantially if there is a pronounced ¢, gradi-
ent. This situation is typical of surficial sediment.

By introducing the new tracer concentration per unit mass of total
solids, that is, s = C/p,, (where p, is the density of the solids), and setting
P(x,t) = 0, eq (38) can be converted to eq (2) of Christensen (1983), and
eq (39) can be converted to eq (6) of Officer and Lynch (1983b).

It is now possible to show that w* and w are not, in general, identical.
To prove this, let us compare eqs (38) and (89) in a situation where all
other parameters and variables are the same, that is, Dp(x,t) = Dg*(x,t),
et cetera. Subtracting eq (39) from eq (38) produces

] Dute) € 2 — g0 -y | =0 (40)

Excluding the trivial cases where C = 0 and ¢, = 0, and the pathological
case where the diffusive term is the same constant for all depths and
times, eq (40) states that w* can equal w only if porosity is constant
with depth. Note that w is identical to the burial velocity without mixing,
while w* is a calculated quantity dependent on the intensity of mixing.

As a final point, the solutions to eqs (38) and (39) govern the time
averaged behavior of the dependent variables, for example, tracer activity.
This fact has important consequences to any comparisons made between
model predicted tracer profiles and observational data. Sampling is almost
invariably of short duration, At,, if not instantaneous. It is reasonable to
expect that the sampling time is considerably shorter than the period for
mixing f{luctuations, particularly in deep-sea sediments. The observed
picture of the sediment can differ from the time-averaged prediction.
A profile sampled before a mixing event will look different from a sample
immediately after this event. Sampled profiles may have small kinks in
them caused by a mixing event. When time-averaged, these kinks dis-
appear. Parameter values extracted from a single observed profile may
not be equal of time-averaged values.

A related problem concerns the presence of a steady-state. A steady-
state exists if and only if there is an averaging time, Aty, such that the
integral,

1 . t‘l‘Al“/‘Z
C(x) = C(x,to) dt, (41)
At t—At,,/2

yields the same function C(x) for all possible choices of Aty within the
range
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Aty << Atyy < Aty << Aty (42)

This makes it difficult, if not impossible, to sample the steady-state
directly. The validity of eq (41) implies that

oC _
at

which is the traditional definition of the steady-state (Berner, 1980).

(43)

TRACER PROFILES PRODUCED BY SPATIALLY-DEPENDENT
BIODIFFUSION COEFFICIENTS

The decrease in macrofaunal and meiofaunal abundance with depth
in sediments is believed by many to be reflected in a proportional fall in
the intensity of bioturbation. Christensen (1982) claims that the popula-
tion data of Robbins, Krezoski, and Mozley (1977) are sufficiently gaussian
that a mixing coefficient of this functionality is appropriate. These data
are not unambiguously characterized by a gaussian distribution, and other
functions may serve equally well. The population data presented by
Jumars (1978), Jumars and Eckman (1983), Thiel (1983), and Germano
(ms) could be described using a wide range of mathematical expressions.
Not enough data have accumulated to make any definitive statement on
the distributional character of infaunal populations, much less on the
appropriate form of the bioturbational mixing function.

Even as abundance data accumulate, other factors will have to be
considered in formulating the link between biology and mixing functions.
The relationship between faunal density and bioturbational intensity
may not be a direct one. The dominant activity, that is, feeding, burrow-
ing, resting, et cetera, certainly plays a role in establishing the form and
rate of biological reworking at each sediment depth. The relative propor-
tions of these activities are also known to vary with depth (for example,
McCall and Tevesz, 1982).

Some depth dependence of the mixing function can, nevertheless,
be expected. The prime question is what degree (strength) of depth
dependence of Dg(x) is needed to produce tracer profiles appreciably
different from those predicted with a constant coefficient, which is almost
exclusively assumed. This query may be answered directly by solving the
tracer conservation equations for various choices of Dy(x) and comparing
the resulting profiles.

The influence of the form of Dp(x) is examined by studying the
solution of the tracer conservation equation for a radioisotope (k(x) = A)
with no in situ production, that is, P(x,t) = 0, in a sediment with constant
porosity and treating Dy as a constant with respect to time. Of these
assumptions, that of constant porosity is the least justified. The object
of this investigation is, however, the effect of the form of Dy not that of
porosity. If only for this reason, this perhaps important complicating
factor is ignored. (Note that for intraphase mixing, the porosity could be
removed via the transformation proposed by Officer, 1982.) As a result of
this assumption, the difference between interphase and intraphase mixing
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evaporates. The time independence of Dy would be violated in sediments

subject to strong seasonal forcings (Aller, 1980), but the need to keep this

investigation to a reasonable size precludes consideration of this com-

plicating factor. As a result of these assumptions, the tracer conservation
equation becomes

C C :

%T:aix[ 1),g(x)‘z_x—wc:|—>\c (44)

The analysis of eq (44) is greatly simplified, if the governing equa-
tions are first made nondimensional. The nondimensional approach
reduces the amount of work necessary to complete the analysis, highlights
which combination of parameters truly control the solution and can
identify dynamically similar situations. All these points will be demon-
strated as the analysis unfolds.

To make eq (44) dimensionless, we note that the depth is expressed
in terms of fractions of the mixed layer, ¢ = x/L. Time is referenced
relative to the characteristic diffusion time, that is, + = tDy(0)/L2% A
dimensionless concentration, 0, is defined by dividing C by the initial
concentration at the interface for the case where Dy is a constant, desig-
nated C%(0,0). The governing equation now reads,

‘;_(;)_ - aa«.;* [f(g)% _Pe @] —Da(1) ® (45)
valid for 0 < ¢ < 1 and where
Pe = ’1TV,V;(LT) (46A)
Da(l) = DAB—%) (46B)
(© = 5or (460)

Four parameters, Dy(0), w, A, and L, are associated with eq (44)
while eq (45) contains only two, that is, Pe and Da(I)! Investigation of
the influence of the form of Dy(x) while varying four parameters in the
dimensional case is a vastly greater eflort than studying these effects in
nondimensional form with only two parameters. (About n® less calcula-
tions, if n is the number of parameter values tested.)

Secondly, the dimensional concentration, C, is not a function of
the four individual parameters of eq (44). It is, in fact, a function of the
two nondimensional parameters groupings Pe and Da(I). To illustrate
this point with a simple example, the steady-state solution to eq (44) with
Dp(x) = Dy (a constant) is

C=A, e + A, e (47)

where A; and A, are arbitrary constants and
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w % (w2 + 4Dy \)1/2
2Dy,

M

Oly,2

(48A)
But by dividing Dy into the numerator and multiplying by L, we
find that

Pe = (Pe2 + 4Da(I)> 1
2 L

0y = (48B)
Only the parameter groupings of the nondimensional equation appear
in the solution to the dimensional equation. This can be shown to
be the case for any analytical form of Dy(x) and also for the time
dependent case.

Thirdly, the parameters Pe and Da(l) have special meanings beyond
that of the individual dimensional parameters. The parameter Pe is a
type of Peclet number (Bear, 1972, p. 600; Parker, Boggs, and Blick, 1974,
p- 138; Dominico, 1977). The Peclet number is a measure of the relative
influences of burial and biodiffusion in the system under consideration, at
least in the vicinity of the sediment-water interface. Large values imply
burial dominance, and low values biodiffusional (mixing) dominance.
Officer and Lynch (1982) remark that this grouping can be identified as
the inverse of the parameter G employed by Guinasso and Schink (1975).

The grouping labeled Da(l) is the bioturbational equivalent to the
First Damkohler number of engineering and nonequilibrium thermo-
dynamics (Dominico, 1977). The First Damkohler number is a measure
of the influence of decay over the time scale of mixing. Large Da(I)
values indicate substantial decay over a time period needed to mix the
tracer across a layer of sediment the thickness of the mixed zone. Low
values characterize the opposite.

To give the reader some feeling for these parameters, table 2 lists
some values calculated from literature cited values of Dy, L., and \. Note
that on average, Pe tends to be smaller than one (mixing dominates over
burial), particularly in deep-sea sediments, and Da(l) is usually larger
than 1 for the tabulated isotopes.

The nondimensional form of eq (44) is not unique. Eq (45) is just
one of at least three possibilities. For example, Guinasso and Schink
(1975) use the nondimensional time T = tw/L and obtain the form

90 AT 60
where
Da(ll) = QTL (50)

The Second Damkohler number, Da(II) (see Dominico, 1977), relates the
influence of decay on the tracer distribution over a time period needed
to deposit (or bury) a layer of sediment the thickness of the mixed zone.
Alarge value indicates substantial decay, and a small number the converse.
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TABLE 2

Values of dimensionless parameters for various natural environments

Location Source Isotope Pe Da(I) Da(IT)
Long Island Aller, Benninger, and Th 0.01-5.0 5-878 262
Sound Cochran (1980)

Krishnaswami and “Be 0.03-0.1 5-14 71.6

others (1980)

Benninger and 20P 0.33-7.5 0.3-12 1.4

others (1979)
Naragansett Santschi and Th 0.002-0.018  9-171 7375
Bay others (1980)

#0Ph 0.12-0.95 11-87 96

New York Santschi and 21T 0.007 55.4 7914
Bight others (1980) =oph 0,15 14.2 95
(cores 2Th 0.26 148 57
SBC-1 & #Ph 3.3 297 90
SBC-5)
NW Pacific Carpenter, Peterson, 2OPy 0.07-7.0 0.07-13 1.0-3.0
Shelf and Bennett (1982)
North Turckian, Cochran, 21°Ph 0.016 16.6 1057
Atlantic and DeMaster (1978)
Antarctic (same) 2P 0.0013-0.27  8-67 360
North Pacific (same) HOPYy 0.004 4.6 1150
Western Peng, Broecker, and 210Ph 0.067 17 251
Pacific Berger (1979)
Equatorial DeMaster and 2Ph 0.005 7 1400
Pacific Cochran (1982) 281 0.023 5 213
Antarctic (same) 2Ph 0.025 79 3152
Deep-Sca (composite) G ~0.01 ~0.1 ~1
Carbonate
Sediment

This non-uniqueness should not be disturbing, because the two
approaches shown here are not independent. The three parameter group-
ings Pe, Da(I), and Da(ll) are interrelated,

Da(I) 1)
Pe

The first treatment is probably better, if the system is mixing dominated,

that is, low Pe values.

The influence of f(£¢) on the solution of eq (45) is now examined for
both steady-state and transient conditions.

Steady-state solutions—The boundary condition at the top of the
sediments (¢ = 0) is a fixed flux condition.

do _ .
where ¥ is the dimensionless input flux of the tracer at the sediment-
water interface, that is, f.L./Dy(0)/(1 — ¢(0))/C7(0,0) where £, is the (di-

Da(ll) =
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mensional) input. In practice, ¥ is set equal to 1 in all cases. This
particular choice does not affect the findings of this study and is quite
convenient.

The boundary condition at the base of the mixed layer depends on
the behavior of f(¢). If £(£) # 0, then the appropriate condition is
(Danckwerts, 1953; Wehner and Wilhelm, 1956; Pearson, 1959; Bischoff,
1961)

de —0

Ff_ = (53)
and if f(¢) = 0 then,
® = finiteas &> 1 (54)
The steady-state form of eq (45),
d de —
d?[f(g)w —Pe@):l—Da(I) 0=0 (55)

was solved analytically for five different forms of f(¢£), that is, £(§) = 1,
1 —¢&51—¢ (1 — &2 and exp(— (£/(1 — £))?), where this last function
is called a pseudo-gaussian.

Although natural biodiffusion is undoubtedly more complex, the
test functions constitute a mathematically well-defined sequence of pro-
gressively stronger decaying functions. In principle, it is possible to
determine if observed mixing intensities decay faster or slower than the
tested forms.

Analytical solutions of eq (55) for the first three functions of this
sequence are displayed in table 3. (The solution methods are detailed in
Boudreau (ms). A solution for f(x) = e—*% on the interval 0 < x < ®
which includes the burial term omitted by Nozaki (1977) is also reported
by Boudreau, ms.)

The more exotic depth functionalities require the use of numerical
methods of solution. Consequently, a finite-difference scheme to solve
eq (55) was devised for an arbitrary f(¢). The scheme is detailed in the
appendix. It has two noteworthy features. First, it contains a parameter
that allows the scheme to switch smoothly from a centered-difference
formulation when diffusion is dominant (f(§) ~ 1 and Pe < 1) to an
upstream-difference formulation when advection is dominant (f(¢) ~ O(0)
or Pe > 1). Secondly, unlike the methods of Peng, Broecker, and Berger
(1979), Santschi and others (1980), Olsen and others (1981), and Kadko
and Heath (1984), the scheme solves the two-point boundary value prob-
lem, presented by eq (55), directly and not as the long time solution to an
initial value problem, a process that may be unstable if f(£) is sufficiently
small. The scheme used here offers a rather substantial savings in com-
putational effort and appears stable.

Figures 2 through 4 illustrate the tracer profiles generated by the
mixing functions stated above for Pe = 0.001, 0.1, 10, and Da(I) = 0.1 to
1000. (Four other intervening values of Pe were also considered, but the



TABLE 3
Mixing Definition of Sources of information
function Solution to eq (55) constants and functions and calculation algorithms
Constant O =A e+ A e a = (Pe — (Pe + 4Da)'/?)/2 See any standard text
b = (Pe + (Pe + 4Da)'?)/2
A, = W[Pe(l — aca—v/b)
— a(]l — eta—)]—1
A, = — (Ajae@—™) /b
_ Yy P2 I (2(Day)'?) Olver (1972) for Bessel function
1-¢ 6= (Da)*1p,—, (2Da®) M= 1-¢ Boudreau (ms) for derivation
Ip. = modified Bessel function of Luke (1977), Cody (1983), or
the first kind of order e Campbell (1981) for algorithms
A—8d+s) @ = AF (a; b; ¢ €) =s(1—¢&/(1+s) Erdelyi (1953), Lebedev (1965),
s>0 € =8/(1+5) Oberhettinger (1972) for the

(1—¢§) (1—sf)
0<s<05

(1—¢&) (1 —sf)
0.5<s<1

O =AF@;b;c;¢)

(A complex solution
involving hyper-
geometric functions.)

F (a; b; c; €) = Gauss’
hypergeometric function
ta=(1— (1 —4Da/s)s)/2
+b = Da/s/a
tc=Pe+1—5)/(1+5)
A, =¥ [PeF(a; b; ¢; &) +
eabj/cFa+1;b+ 1 c+ 1)

e =—s(l— l1—s
a’ = (1 +(1+4Da/s)'?)/2
b’ = —Da/s/a’

¢ =Pe+1—s)/(1—7%)
A, = A, w/primed variables

properties of F(a; b; c; €)
Boudreau (ms) for derivation
Luke (1977) for an algorithm
1 These constants often have
imaginary values. Luke’s
algorithm allows for this.
Boudreau (ms) suggests a
simple scheme to avoid
complex arithmetic.

See the references given in
previous case

See Boudreau (ms)

8LI
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general trends are adequately displayed in the figures presented here.)
For the majority of the plots, there is a great similarity of the curves
regardless of the form of f(¢) and particularly for small and large Da(I)
values and large Peclet numbers. The pseudo-gaussian based curves with
Da(I) < 10 and Pe = 0.001 and 0.1 do display appreciable deviations at
depth from the trends set by the other curves. (Plots with Da(I) less than
0.1 are not shown because these profiles are essentially superimposed
subvertical lines.)

Profiles with large Da(I) values (isotopes that are short-lived on the
time scale of mixing) are virtually identical, because the tracer disappears
at shallow depths before it can “feel” f(£¢) decay. For small Da(I) values
(that is, long lived isotopes compared to the mixing time), the profiles
are insensitive to the decrease in the intensity of mixing. So little of the
long lived isotopes decays that even the small amounts of mixing near
the base of the mixed layer are sufficient to keep the sediment essentially
homogenized with respect to these isotopes. Profiles with large Pe values
also exhibit little dependence on the form of the mixing function as
biodiffusion is relatively less important than burial in dictating the
shapes of these profiles. Therefore, there exists only a narrow window
of parameter values, that is, Pe < 1.0, 0.3 < Da(I) < 3, in which the
profiles exhibit any deviation from a common behavior, and this is
restricted to profiles generated by mixing functions that decay faster
than (1 — &)

Identification of the form of the mixing function solely from observed
tracer profiles will prove to be difficult. In the above calculations, the
mixed layer depth, L, is assumed known. This is usually an additional
unknown. It has been suggested that long lived isotopes, or more precisely
small Da(I)-valued isotopes, should give this information. However, figure
2 shows that a small Da(I)-valued isotope would suggest a shallower total
mixing depth than the actual value of L, if the unknown mixing function
decays as steeply as a pseudo-gaussian, that is, £ = 0.8 rather than 1.0.
(If the mixing depth is assumed shallower than the true value, the
assumed mixing function need not decrease as strongly as the real f(£).
From table 2, interpretation of *C is susceptible to this error.)

Another practical problem with identification of the mixing func-
tion is the quality and quantity of data. The errors associated with
radiochemical measurements and the inaccuracies and coarseness of the
sampling are often such that almost any function could fit the data.
Unless the quality of the data warrants more effort, the assumption of
constant Dy over the mixing depth is all that can truly be justified.

Perhaps the best approach in extracting mixing functions is to
utilize information on the depth distribution of biological populations
and activities to infer L and f(x), then to verify and quantify these choices
by comparing the predicted and observed profile of a number of isotopes
with at least one in the range 0.3 < Da(I) < 3.0. A shorter lived
isotope would be useful in determining the value of Dy(0).
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No isotope is inherently included in the range of sensitive Da(I)-
values, 0.3 to 3.0. This is a dynamic condition that is a function of the
environmental parameters L (mixing length) and the initial intensity of
mixing, Dg(0), and the decay constant of the isotope, N. To illustrate this
point, let us consider three examples. The first concerns a near shore
sediment with w = 0.1 cm/yr, L. = 10 cm, and Dg(0) = 1.0 to 10 cm?/yr,
that is, Pe = 0.1 to 1.0. (This hypothetical situation is not unlike the
FOAM Site (Goldhaber and others (1977).) If the optimum isotope has a
Da(I) value of 1, then A must be between 10—2 and 10—*/yr. Silicon-32
and 21°Pb are both useful in this situation.

As a second example, another near shore sediment has w = 0.01
cm/yr, L = 10 cm, and Dg(0) = 30 cm?/yr, that is, Pe = 0.003 (Benninger
and others, 1979). The optimum isotope should have a decay constant
between 0.1 and 1.0/yr. These values bracket 22*Th (A = 0.361/yr, Koide,
Bruland, and Goldberg, 1973), although 21°Pb may still be useful. Ben-
ninger and others (1979) did not measure 2?¢Th, but they did obtain a
210Pb profile. Their sampling interval is probably too large to provide any
detailed information on the mixing function, but they did find that a two
step mixing function provided a better fit to their data than a constant.
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Finally, consider a deep-sea sediment with w = 0.001 cm/yr, L = 10
cam, and Dg(0) = 0.1 cm?/yr, that is, Pe = 0.1, which is typical of car-
bonate sediments. The optimum isotope has a A of 1 X 10—3/yr or about
a 700 yr half-life. There is no known isotope of this half-life that meets
the requirements of particle reactivity and steady input necessary to be
modelled in the manner used in this section. Silicon-32 may exhibit some
depth dependent behavior, but this may not be diagnostic.

One comforting thought in these results is that, at least at steady-
state, the dissimilitudes produced by different mixing functions are not
so great as to discredit the result of past studies. For many purposes,
the differences between the mixing functions are within the errors in the
measurements.

Transient tracers.—The aim in this section is to investigate the effect
of the depth dependence of the diffusivity on the time evolution of an
impulse of tracer as studied by Guinasso and Schink (1975). The dimen-
sionless conservation equation in this case reads,

30 9 §0
- = a_g[ (©) -5z —Pe @] (56)

with the initial condition (that is, tracer distribution),
B(£,0) = 5(0) (57)

where §(0) is a Dirac delta function, that is, an impulse (see Arfken, 1970,
or Guinasso and Schink, 1975, for some details on the properties and the
interpretation of this function).

The boundary condition at £ = 0 is
00 _

9
and we again have either eq (53) in partial derivative form (Wooding,
1972) or eq (54), dictated by the form of f(£).

A small set of mixing functions is presented here. Specifically, they
are the constant, the linear decay, and the pseudo-gaussian function. The
solution with f(¢) = 1 is detailed in Guinasso and Schink (1975), but as
pointed out by Officer and Lynch (1982), it was previously available in
Carslaw and Jaeger (1959). Because the solution is readily available, it is
not repeated here.

The solution with f(£) = 1 — £ is not generally available to this
writer’s knowledge. A separation of variable methods of solution is
presented in Boudreau (ms)* with a final result given by

Pe® — 0 (58)

0
0= (1= D Ay Joe (ua (1 - 8)/5) e~ (59)
n=1
! Note that eq (E28b) of Boudreau (ms) has a typographical error. The bar in

front of the r.h.s. is not a negative, but the fraction bar for 1/2. The numerator and
denominator were inadvertently omitted.
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where Jp. () = Bessel function of the first kind of order Pe (for an
algorithm, see Campbell, 1979), w, = n-th root of Jp._, (1) (see Olver
(1960), Hall (1967), and Piessens (1984) for methods of calculating u,),

1
= 60
A Jre (n) 0
and
B2 = __"{ + Da(l) (61)

The pseudo-gaussian again requires the use of numerical methods
of solution. A modification of the steady-state, finite-difference scheme
produces a formulation akin to the famed Crank-Nicholson scheme (Crank
and Nicholson, 1947). The details are provided in the appendix.

Figure 5 compares a time sequence of tracer profiles produced with
the constant (solid lines) and linear (dotted lines) diffusivities for three
different Peclet numbers. Counting along the x-axis, there are five labelled
curves on the first plot. The numbers increase right to left and correspond
to dimensionless times of 7 = 0.001, 0.004, 0.01, 0.05, and 0.1. The plot
for Pe = 0.1 has a sixth curve on the far left hand side corresponding to
7 = 0.5. To get a feel for the times involved: for deep-sea conditions,
Dy = 0.1 cm?/yr and L = 10 cm, so that a 7 = 0.1 is equivalent to 100 yrs.

Early time profiles (r < 0.01) are essentially identical as the pulse
has not penetrated deep enough in this short time to detect a drop-off in
f(¢). Even for longer time the deviation is not great and probably below
analytical detection. As in the steady-state case, a linear depth decay in
f(¢) is simply not strong enough to be differentiated from a constant
mixing function. Investigation with other mixing functions, though not
shown here, indicates that the decay must be stronger than quadratic
before the tracer profiles diverge (as in the steady-state case).

Figure 6 compares the constant diffusivity (solid lines) and the
pseudo-gaussian (dotted lines). As in the previous case, early time profiles
are indistinguishable. This unfortunately is also the time when the pro-
files are easiest to analyze. For longer times, that is, 7 > 0.01, two types
of behavior can be discriminated. For large Pe numbers (strong advection
compared to mixing), the near coincidence continues until the pulse has
left the mixed layer. For small Pe values (weak advection compared to
mixing), a divergence develops which is greater than in the linear case.
The disappearance of diffusive transport as £ = 1 and the weak advection
combine to trap the tracer in the mixed layer. Perhaps the integrated
amount of tracer in the mixed layer or other statistical properties of the
tracer profile both within and below the mixed layer can be used to
distinguish mixing functions for small Pe. Again, it will probably be
necessary to use biological information to infer L and f(x), if the method
is to be successful.



188 Bernard P. Boudreau—Mathematics of tracer mixing

RELATIVE CONCENTRAT:CN

0 0.2 0.4 0.6 0.8 1 12
0 1 | 1 1 " ) ]
1
0.24 7
T
-
o
o ;
QO 0.4
0
7]
L
-
4
o HE
2 os)
[T} H
= 3
o E
0.8
1...
Pe = 0.001 A
RELATIVE CONCENTRATION
0 0.2 0.4 0.6 0.8 1 12
0 " 1 1 ! . 1 . 1

024 7

DIMENS!IONLESS DEPTH

Pe = 0.1

Fig. 5. Diagrams A, B, and C. Transient tracer profiles produced by constant (solid
lines) and linear (dotted lines) diffusivities responding to an impulse source. The dia-
grams are for different Peclet numbers, with low Pe values for diffusion domination (at
least in the vicinity of the sediment-water interface) and high values indicative of ad-
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CONCLUSIONS

The use of a diffusion-type model for bioturbation implicitly assumes
both a spatial and temporal continuum for variables and processes
(parameters). If these continua are to be realistic representations of the
actual fields, then the length and time scale conditions given by eqs (4)
and (18), respectively, must be fulfilled. The validity of these inequalities
permits spatial and time averaging which produces the canonical forms
of the conservation equations for a tracer in marine sediments.

The observed decrease of the benthic macrofaunal population with
depth in the sediment strongly suggests that the biodiffusion coefficient
should be a function of depth. Calculations of steady-state tracer profiles
for a variety of decaying mixing functions subject to a wide range of
burial velocities and mixing intensities show that these profiles become
sensitive to the decrease in mixing only if the mixing function diminishes
faster than a quadratic and the tracer fulfills the condition that 0.3 <
Da(I) < 3.0, with Pe < 1.0.

The time evolution of an impulse source of a conservative tracer
in a sediment is sensitive to the mixing function only if Pe < 10, {(x)
decreases at a rate faster than a quadratic, and only for times greater
than 0.01 « L2/Dg(0).

RELATIVE CONCENTRATION

0.4 0.6 0.8 1 1.2
1 1 I

DIMENSIONLESS DEPTH

Pe = 10 C

vection domination. In the first diagram, the curves are labelled 1 to 5 to indicate the
dimensionless time, that is, 7 = 0.001 for curve I, + = 0.004 for curve 2, + = 0.01 for
curve 3, 7 = 0.05 for curve 4, and 7 = 0.1 for curve 5. Diagram B has an extra curve
on the far left corresponding to 7 = 0.5.
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Fig. 6. Diagrams A, B, and C. Same as figure 5, but comparing the constant (solid
lines) and pseudo-gaussian (dotted lines).
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Tracer distributions are probably most useful in determining and
quantifying mixing functions if the form and mixing depth can first be
inferred from biological data.

The similarities in the tracer profiles produced by different depth

dependent mixing functions suggest that a constant diffusivity or a two
layer model with differing but constant diffusivities may be all that can
be justified in light of the coarse spacing and large errors associated with
past radiochemical data. For isotopes outside the window of sensitive
parameter values, the data may never be of sufficient accuracy to warrant
the use of realistic but more complex mixing functions.
Note added in press: After submission of the final version of this manu-
script, the author discovered the excellent paper by Corrsin (1974). This
paper deals with the limitations of the eddy-diffusion model in modelling
turbulent fluxes. Many of the points I have discussed can also be found
in Corrsin’s work.
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APPENDIX
Finite-difference schemes

A (1) Steady-state.—The form of the tracer conservation equation “discretized” by
the finite-difference scheme is

d*0 df(¢) de
f(&) aF + [ aE ] ag —Da®@=0 (A1)
where, for simplicity, Da = Da(I). This may not be the best choice of forms, but it

appears adequate as numerical and analytical solutions for test cases usually agree to
far better than 3 percent.

Because diffusion is a symmetric process (Fiadeiro and Veronis, 1977), the diffusion
term is approximated by the central-difference formula

[¢%C) Q- —20,1+0,,
dg = h?
where the subscript on C indicates the node position on the finite-difference grid and
h is the distance between nodes.
Eq (Al) also contains a first derivative term. The finite-difference formula for the

first derivative which formally has the same ovder of accuracy as eq (A2) is the central-
difference formula (Mitchell and Griffiths, 1980; Ozisik, 1980)

de = 0i.—0i—,
d¢g 2h
Spalding (1972), Barrett (1974), Chien (1977), Fiadeiro and Veronis (1977), Heinrich,

Huyakorn, and Zienkiewicz (1977) all observe that, for large Peclet numbers, advection
is a strong directional process, and that the central-difference scheme, eq (A3), becomes
inaccurate and can cven be instable. They note that for large Pe, the upstream or
backward-difference formula produces good results (Ozisik, 1980),

a8 0, -0

d¢e h
but that it is formally of accuracy O(h) (see also Gupta, 1983; Shyy, 1985; Patel,
-Markatos, and Cross, 1985).

The diffusivity, f(¢), goes from unity to zero on the interval [0,1]. The lccal
Peclet number

(A2)

(A3)

(A4)

wh
€ e — A
D,(0) £(¢) (A5)
also varies on the same interval from some finite value at ¢ = 0 to an infinitely large
value at ¢ = 1. The central-differcnce formulation becomes unstable under these

conditions (Heinrich, Huyakorn, and Zienkiewicz, 1977; Siemieniuch and Gladwell,
1978; Morton, 1980).

To overcome these difficulties, a weighted differencing scheme (Fiadeiro and
Veronis, 1977) is used that generates the central-difference when ¢ is small and the
upwind-difference when ¢ is large, that is,

@ . (1 _‘O'i)®i»1 +20'|®i — (l +0’1)®i-——1
d¢ — 2h

(:A6)
where
o1 = cotanh(e/2) — /2 (A7)
The weighing parameter, o;, approaches zero as e approaches zero and one when e
approaches infinity.
Combining these results, the finite-difference equivalent to eq (Al) reads,

[ 4[4, -r]5 o

[0, ] oen]
+[f(§) _[(‘(fl(? . _Pe]%‘_’i]&_l:o (A8)

In practice, forty nodes were employed.
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The boundary condition at ¢ = 0, eq (52), must also be made discrete. A central-

difference for the derivative involves the concentration at the exterior point i = —1,
that is,

1
Pe ©, T ®,—-0_)=v (A9)

This value at the exterior point can be eliminated qmte easily (for example, Nogotov,
1978, p. 72-75). If we apply eq (A8) at ¢ = 0, that is, i = 0, then we obtain,

o =[re - [58], —m =]
L[] -r g em]e

_[hlg + [(l(fl(f) . Pe] (_Izh_")] @,] (A10)
S b4

This equation can be substituted into eq (A9) to eliminate ®_, and produce a
difference formula of O(h?) accuracy.

No special precautions need be taken at the point & = 1, and the condition there
is simply the governing equation itself.

A (2) Transient state.—In the transient-state, both space and time derivatives must
be approximated. The approach used here has been to treat the spatial derivatives in
the same way as in the steady-state case and to approximate the time derivative by the
forward-difference formula,

n+1 n

90 _ 1818 (A1)
T k
where the superscripts n and n+1 indicate the n’th and n’th plus one time steps,
respectively, and k is the size of the time step.

To avoid severe restrictions on the magnitude of k associated with fully explicit
schemes, the mecthod of Crank and Nicholson (1947) is invoked to make the scheme
semi-implicit. The right hand side of eq (45) becomes,

1 n+1~i_l_2u+| i_'_uu,, o ni__2n i+n i
_[f(g_[o 0 O | "0 =20, 0

h? h?
+|:()f(§ p _:I I: (l _O'l>“+1®I+1 + QO'X'HIG)E - (l + Ul)n”Oi—x
ac e ¢ 2h
1—0)"011 +20,"0 — (1 +01)'0i
+ ( (T) 0; O'2h i ( (Tl) i ] — Da (nwel +“®1):| (A12)

where ¢ is again defined by eq (A7).

Veronis (personal commun.) has rccently pointed out that the use of the weighing
function for the steady-state, that is, cq (A7), is not appropriate for transient cases and
leads to distortion of solution. (Chien, 1977, has suggested that an additional weighing
function for the time devivative is needed, but it is not clear that his assumption of local
steady-state is appropriate). Until the analysis for the transient case is successfully
completed, use of eq (A7) must continue by necessity. In practice, it was found that the
analytical and numerical solutions with f(¢) = 1 — ¢ differed by less than a few percent.

The boundary condition at ¢ = 0 reads,

E "0, + "0,) — % l: @, ;lv-<'(§)_1 + "Q, — @*1 :l ¥ (A13A)
2 h

2
or
Pe , N 1 n+l®l + n@[ "*19—1 + n®—1 _
o (MOt e — 7[ oh T %h ]w (A13B)

The term on the left hand side of this last cquation involving values at the
exterior point must again be eliminated. The procedure is the same as before. Eqs (Al1)
and (Al2) are applied to the point ¢ = 0 to obtain,
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[+l - B me e o] e

[+ HO | —re]dpe) e,

h? 2 L a¢
—*—[-%—f—é_[]i _[%‘Q O—Pe:’% +Da]:l“®u
At CE s R I

This result can be substituted into eq (A13B) to eliminate the exterior point.

The boundary condition at ¢ = 1 again needs no special consideration, but the
initial condition does pose some problems. Approximation of the delta function proved
to be difficult. The best results were obtained by using the tracer distribution predicted
by the analytical solution for constant diffusivity at very short times (r < 0.001) as the
initial condition rather than trying to deal with the delta function directly. This works
because for short times the pulse does not penetrate far into the sediment and thus
cannot feel that f(¢) is a function of depth, that is, the solution for nearly all possible
f(¢)’s looks the same at the beginning.

This scheme can easily be modified to account for a variable but known porosity
function which would allow both interphase and intraphase mixing to be modelled.
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