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BELT IN THE LATEST PALEOZOIC
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ABSTRACT. Intracontinental transform structures are important forms of conti-
nental deformation, such as the Altyn Tagh fault on Tibetan Plateau. Although many
intracontinental transform structures have developed throughout geological history,
their identification is relatively difficult due to later deformation and sedimentary cov-
ering. Strike-slip faults played an important role in the formation and subsequent
transformation of the Central Asian orogenic belt (CAOB). In this study, a group of
nearly EW-trending dextral shear zones along the southern CAOB in the Beishan,
Alxa, northern margin of the North China Craton and the Great Xing’an Mountains to
the east, is reported. Regional strike-slip duplex systems were developed and strongly
superimposed on the CAOB in the Beishan and Alxa regions. Meanwhile, to the west
of the Beishan, coeval ductile shear zones with the same kinematics also developed
along the CAOB. The ages of the shear zones range from 280 Ma to 230 Ma and
become younger to the east. This megashear system may also connect with the shorten-
ing in the Ural Orogenic belt to the west and the convergence along the eastern margin
of the Eurasian continent, which is approximately more than 9000 km long in the
Asian continent and consists of an intracontinental transform structure in the central
Pangea continent. Further west, the dextral shear system may also connect with the co-
eval shear zones with the same kinematics along the southern Variscan orogenic belt in
Europe and even the South Appalachian Orogenic Belt in the southeastern North
America, which we call the Intra-Pangean Megashear (IPM) after Irving (2004). The
rotation and approach of the Baltic Craton and Siberian Craton and the northern
Pangean lithosphere heated by mantle plumes and its lat.eral (eastward) spreading
may have caused the development of the IPM and intracontinental deformation from
Pangea B to Pangea A.

Key words: Central Asian Orogenic Belt (CAOB), dextral shearing, latest Paleozoic,
Pangea, intracontinental transform system, Intra-Pangean Megashear

INTRODUCTION

Transform faults are one of the most important boundaries in plate tectonics
(Wilson, 1965). They are mainly distributed in the ocean regime. Intracontinentally,
there are large fault systems or continental transform faults such as the San Andreas
system in California, the Altyn Tagh fault and Red River-Ailaoshan fault in China, the
North Anatolian fault in Turkey, and the Alpine fault in New Zealand (§engor and
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others, 2019a). However, the identification of similar transform structures developed
during geological history is relatively few and difficult, and the most important reason
for this is the strong superimposition or cover in later periods (Sengor and others,
2019a). Previous studies have shown that the role of strike-slip shearing is of great sig-
nificance in the evolution of the Central Asian Orogenic Belt (CAOB), however, the
role played by strike-slip shearing is in enthusiastic discussions (§engoér and Natal’in,
1996; Windley and others, 2007; Xiao and others, 2015, 2018), and later intraconti-
nental strike-slip shearing may also cut and duplicate various units, including ophio-
lites, which often causes difficulties in interpretating of the original structures of the
CAOB and its evolution (§engor and others, 2019a).

At present, various studies have different understandings of the age, role and na-
ture of these strike=slip shear zones in CAOB. Strike slipping has not only caused the
stacking of primitive magmatic arcs in the CAOB (Sengor and others, 1993; $engor and
Natal’in, 1996) but has also affected the large-scale rotation and translation between dif-
ferent cratons (plates) (Sengoér and others, 1993; Allen and others, 1995; Sengor and
Natal’in, 1996; Buslov and others, 2004a, 2004b; Yakubchuk, 2004; Natal’in and §engor,
2005; Wang and others, 2007, 2010; Buslov, 2011). However, there are still many differ-
ent interpretations of regional-scale strike-slip faults in the CAOB, such as kinematics,
ages and tectonic settings (Buslov, 2011; §engor and others, 2019a).

A series of late Paleozoic shear zones have been identified in the Tianshan
Mountains in the western part of the southern CAOB, which have the same kinematics
and ages (Shu and others, 1999; Laurent-Charvet and others, 2002, 2003; Wang and
others, 2007, 2010; Charvet and others, 2011; Cai and others, 2012; He and others,
2021). Similar structures are also recognized on the southern margin of the “Silk Road
arc” farther west (Natal'in and $engoér, 2005). However, there have been few related
reports of coeval ductile shear zones in the Beishan and Alxa areas in the central CAOB.
Although shear zones with similar kinematics occur along the northern margin of the
North China Craton (NCC) (Wang and Wan, 2014; Zhao and others, 2015), the age is
relatively young (Late Triassic) (Ma, 2009; Wang and Li, 2020). Do these shear zones
along the southern CAOB belong to a large-scale transform system? How are they con-
nected, what are their ages, and what tectonic setting do they represent? In addition, the
Beishan-Alxa region are also the key region connecting the Tianshan to the west and
the Xing’an-Mongolian orogenic belt to the east: however, there are few structural and
geochronological data of ductile deformation from this region.

In addition, in the reconstruction of Pangea, Pangea Al (Bullard and others,
1965), A2 (Van der Voo and French, 1974), Pangea B (Irving, 1977, 2004; Muttoni and
others, 2003, 2009) and Pangea C (Smith and others, 1981) have been proposed accord-
ing to paleomagnetic data. Pangea Al is the typical Pangea reconstruction of Wegener,
and Northwest Africa is connected to the eastern edge of North America, but there is ba-
sically no overlap between North and South America. Pangea A2 is similar to the classic
Wegener Pangea reconstruction; northwestern Africa is connected with the eastern
edge of North America, but North and South America overlap widely and occupy the
position of the whole Gulf of Mexico. In Pangea B, the northwestern edge of South
America is connected with the eastern edge of North America, while Northwest Africa is
directly connected with southern Europe. Pangea C is similar to Pangea B, but the
northwestern edge of South America is directly connected with southern Europe. There
is no further work because the restoration of Pangea C is quite different from the geo-
logical evidence. At present, there are different views on whether Pangea B existed in
the reconstruction process of the Pangea Supercontinent. The transition from Pangea B
to A requires a nearly EW-trending dextral twist on the southern margin of the present
Variscan orogenic belt (central Pangea Supercontinent), which is named the Intra-
Pangean Megashear (Irving, 2004). However, some studies argued that the relatively
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dextral movement was caused by oblique subduction of the ocean between Gondwana
and Laurasia (Torsvik and others, 2012; Wu and others, 2021).

Since most of the above reconstruction studies were from the perspective of paleo-
magnetism, whether there was such a giant shear zone has always been in doubt, which
is also the main basis for some scholars to oppose the existence of the Pangea B model
(Domeier and others, 2012). However, an increasing number of studies have found a
large amount of dextral transpression deformation at the end of the Paleozoic orogeny
in the Variscan orogenic belt and confirmed the existence of a ca. 2500 to 3000 km dex-
tral strike-slip along the shear zone constrained by displaced tectonic units such as the
Galician-Castillian zone, the axial zone of the Variscan belt, or displaced granitic plutons
(Arthaud and Matte, 1977; Gates and others, 1986; Shelley and Bossiere, 2000; Matte,
2001; Franke and Zelazniewicz, 2002; Natal’in and Sengodr, 2005; Martinez Catalan,
2011; Sengor, 2013). These studies have mainly focused on the European part of the
Pangea Supercontinent. In the eastern part of the supercontinent, the scissor-like clo-
sure of the Paleo-Asian Ocean from west to east occurred in the Tianshan region during
340-310 Ma (Han and others, 2016; Jourdon and others, 2017), the Beishan-Alxa region
during 280-260 Ma (Mao and others, 2012; Liu and others, 2019; Zheng and others,
2020), and farther east in the Solonker Suture during 280-225 Ma (Eizenhoéfer and
others, 2014; Xiao and others, 2015; Liu and others, 2017), and then the convergence
of the NCC and Siberian Craton, as well as the Mongolian terranes between them, was
completed. It is not clear whether the dextral displacement of nearly 3000 km between
the Gondwana continent in the south and Laurasia continent in the north affected the
CAOB in the east, how the deformation behaved in this period, and how it transformed
eastward into other structures. Moreover, the dextral shearing in the eastern CAOB may
be key evidence for the existence of Pangea B and the Intra-Pangean Megashear, but its
distribution, age, and displacement are unknown.

In this study, structural data of ductile dextral shearing in the central and eastern-
most CAOB are reported, their ages and displacements are also constrained, and the
tectonic setting in which dextral shearing occurred is discussed. Combined with data
from the western CAOB and Variscan Orogenic Belt, an intracontinental transform
system which cut through the Kazakhstan orocline-bending structure to the west and
may continue to extend westward along the southern Variscan orogenic belt in
Europe even to the South Appalachian orogenic belt in North America, forming a
mega-shear system in the core of the Pangea Supercontinent, is proposed.

GEOLOGICAL SETTING

The CAOB, mainly located between the Baltic, Siberia, Tarim and North China cra-
tons, is one of the world’s largest Phanerozoic accretionary orogens ($engor and others,
1993; Windley and others, 2007; Xiao and others, 2015). Scholars have various under-
standings of the “Central Asian orogenic belt” and have proposed different names. The
most influential ones are the “Central Asian fold belt” (Khain and others, 2002), “Altaids”
(Sengor and Natal’in, 1996; Sengor and others, 2018) and “Central Asian Orogenic Belt”
(CAOB) (Jahn and others, 2000). Among them, CAOB is widely accepted by the majority
of scholars, and the abbreviation CAOB is also adopted in this paper. The orogenic belt
has undergone a long-lasting evolution from the Neoproterozoic (~1020 Ma) to the early
Mesozoic (Windley and others, 2007). It is the product of long-term subduction of the
Paleo-Asian Ocean and is composed of a large number of accretionary complexes, arcs,
arcrelated basins, ophiolites, seamounts and continental fragments (Windley and others,
2007). Large-scale ductile shear zones, thrust structures, block rotation, orocline bending,
and later intracontinental superimposition are important features of the CAOB (§engor
and Natal’in, 1996; Zhang and Cunningham, 2012; Li and others, 2015, 2021; Xiao and
others, 2015, 2018; Sengor and others, 2018; Jiang and others, 2019; Zhang and others,
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2021f). The ophiolites in the CAOB are generally younger from north to south, indicating
that the orogenic belt grew gradually from north to south (Xiao and others, 2003). Most
ophiolites in the western CAOB formed from the Ordovician to Devonian and are pre-
served in a vast area to the north of the Tarim Craton. The ophiolites in the eastern oro-
genic belt were mainly formed in the Carboniferous-Permian/Triassic. The western
CAOB in China is called Tianshan, which is divided into North Tianshan, Central
Tianshan and South Tianshan and connected with the Beishan orogenic belt eastward;
the eastern part of the orogenic belt is traditionally called the Xing’an-Mongolian oro-
genic belt (Liu and others, 2017), and the Xing’an-Mongolian orogenic belt is connected
with Beishan through the northern margin of the Alxa Block.

The Beishan is located between the East Tianshan and Alxa Block (fig. 1). Previous
studies suggested that it was the convergence position between the Tarim Craton and
the Kazakhstan Plate (Zuo and He, 1990; Zuo and others, 1990). Several ophiolitic
mélanges developed in this orogenic belt, but the formation time and mechanisms of
these mélanges are in dispute (Zuo and He, 1990; Zuo and others, 1990; Xiao and
others, 2010; Mao and others, 2012; Yu and others, 2016; Xin and others, 2020; Gao and
others, 2022). For example, Mao and others (2012) argued that the late Paleozoic
Liuyuan complex is an SSZ-type ophiolite formed in a forearc environment. However,
other authors have suggested that it was the product of a “Red Sea-type” rift zone (Gao
and others, 2022). Similarly, Xiao and others (2010) suggested that the Yueyashan-
Xichangjing ophiolitic mélange was formed in a back-arc basin, which, however, Yu and
others (2016) argued formed in a middle ocean ridge.

To the east of the Beishan is the Alxa Block (fig. 1). It is traditionally considered to
be a Precambrian block and is assigned to a part of the NCC (Huang, 1945; Zhao and
others, 2005); however, some studies have argued that it may have been an independent
block in the early Paleozoic (Zhang and others, 2015a, 2016). The Alxa Block ranges
from the Engeer Us ophiolite belt in the north to the northern edge of the Hexi
Corridor in the south (Huang, 1945). Precambrian rocks in the Alxa Block are mainly
exposed in the area of Longshoushan- Beidashan-Bayanwulashan-Langshan along the
southern and eastern margins, while the early-middle Permian granitic rocks are
exposed in the northern Alxa Block, most of which are distributed in a nearly EW direc-
tion. Recent studies have indicated that the northern boundary of the Alxa Block is the
Chaganchulu ophiolite belt (Zhang and others, 2015b; Zheng and others, 2018) instead
of the Engeer Us ophiolite belt (Zheng and others, 2014). Previous studies have shown
that in the Early Permian, the northern margin of Alxa was an active continental margin
upon which voluminous plutons and volcanic rocks occurred in a post collisional envi-
ronment (Zhang and others, 2015b; Ye and others, 2016). Recent studies have also
shown that the Alxa Block is not an intact block but is divided by multiple ophiolite belts
or ductile shear zones (Zhang and others, 2013, 2014, 2021a, 2021b; Zheng and others,
2014, 2018; Zhao and others, 2022). During the closing of the Paleo-Asian Ocean and
subsequent intracontinental evolution, a large number of Mesozoic basins developed in
the orogenic belt (Graham and others, 2001). At the same time, multiple stages of com-
pression and extension activities and intracontinental ductile strike-slip shear zones/
faults developed in the Alxa Block, forming many Mesozoic basins, such as the
Chaoshui, Yingen-Ejina, and Yabulai basins (Heumann and others, 2014; Zhang and
others, 2021f).

METHODS

In this contribution, previous data of various shear zones in different segments of
the CAOB were collected, in which the structural and geochronological data are the
focus (figs. 1, 2; table 1). In addition, because the structural studies are not equal along
the whole CAOB, especially its eastern part, we also performed structural mapping,
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Fig. 2. Shear zones in eastern CAOB, their index numbers used in table 1, and sample locations dated
in this study.

analysis, and age dating on some shear zones in the eastern CAOB to constrain the ages
of the abovementioned ductile deformations. We tested a totle of five samples including
*0Ar/*Ar dating on three samples from the Beidashan shear zone in the Alxa Block
and the Jinmiaogou shear zone in the Beishan, and zircon U-Pb dating on two samples
and dikes (Tukemu diorite dike in the northeast and Hongshagang diabase in the
southwest) intruding the Paleozoic granites in the Alxa Block (fig. 2). Detailed informa-
tion about the sample locations, geological mapping, dating methods and results are
described in detail in the Supplementary Data, and the interpretation of field data and
its potential problems are also included in it.

DISTRIBUTION OF SHEAR ZONES

The distribution of the late Paleozoic ductile shear zones in the southern CAOB
can be traced from the Tianshan in the west to the Greater Xing’anling in the east
(figs.1, 2; table 1). Our main work is concentrated to the east of the Beishan (fig. 2; ta-
ble 1). The shear zones are introduced from west to east. As many studies have
reported many datasets on the distributions, ages, orientations, kinematics and dis-
placements of shear zones in the Tianshan in the west (Shu and others, 1999;
Laurent-Charvet and others, 2002, 2003; Chen and others, 2005; Wang and others,
2010; Cai and others, 2012; Liu and others, 2022), this study will not introduce them
in detail.

Central CAOB

Beishan.— Eight late Paleozoic ductile dextral shear zones with unknown displace-
ments have been reported in the Beishan and Dunhuang Blocks to the south (fig. 3;
Zuo and Zheng, 1991; Zhang and Cunningham, 2012; Gao and others, 2016; Feng and
others, 2020). Among them, there are three large-scale shear zones in southern, central,
and northern Beishan. The southern zone is the Baidunzi-Xiaoxigong ductile shear
zone (Chen and others, 2007), the Gongpoquan shear zone developed in the central
zone and the Sangejing-Gonglujing shear zones are in the northern zone (Gao and
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Fig. 3. Distribution of the late Paleozoic shear zones in Beishan region. A. Geological map and stereo-
graphic projection of foliations and lineation of main shear zones. B. Felsic mylonite and quartz stretching
Iineation in the Xiaoxigong shear zone. C. Mylonite and asymmetrical structures of felsic veins in the
Baidunzi shear zone, indicating dextral shearing. D. Granitic mylonite and o-type quartz porphyroblasts
in the Jinmiaogou shear zone, indicating dextral shear.

others, 2016). These shear zones are connected westward with the Gubaoquan-
Hongliuyuan and southern and northern marginal shear zones of central Tianshan,
respectively (Cai and others, 2012). Due to the coverage by Quaternary deserts, the
extension of these shear zones to the east is unknown, and there has been no specific
study either. However, aeromagnetic data show that the Sangejing-Gonglujing shear
zones extend eastward to the Yagan area to the north of the Alxa Block (Zhao and
others, 2022), where the latest mapping found a late Paleozoic shear zone in this area
(Cui and others, 2019). The Gongpoquan-Hongliuyuan shear zone in the central zone
may extend to the north of Zongnaishan in the Alxa Block, but there have been no fur-
ther studies on the shear zone. The Baidunzi-Xiaoxigong ductile shear zone in the
southern zone may be connected with the Alxa shear system, as indicated by aeromag-
netic data (Xiong, 2019).

The Baidunzi-Xiaoxigong shear zone is located in the southernmost Beishan (fig.
3), close to the northern margin of the Dunhuang Block. The rocks involved include
Precambrian medium- to high-grade metamorphic rocks, lower Paleozoic medium- to
low-grade metamorphic rocks and late Paleozoic granites. The shear zone is very obvious
in satellite images featuring well-developed S—C fabrics at the map scale, with an outcrop
length of 160 km and a width of 5-8 km. The shear zone is composed of wavy bands of
light-colored ductilessheared clastic rocks “interbedded” with black bands of basalts. The
foliations are distributed around circular or oval granites and often merge at diagonal
corners of granite bodies in map view, showing characteristics similar to the asymmetri-
cally rotated porphyroclast systems under the microscope. Generally, the shear zone is
nearly EW-trending, but the western segment (Baidunzi-Panjiajing section) is NE-
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trending, and the eastern segment (Xijianquan-Xiaoxigong section) is NW-trending
(fig. 3). In the shear zone, felsic mylonite, coarse mylonite, mylonite and ultramylonite
are developed. The foliations and lineations in the shear zone are well developed. The
mylonite foliation is nearly EW-trending with steep dip angles (60°-85°) (fig. 3). Since
the strike of the shear zone is not consistent, the rake is relatively large in the western
shear zone and nearly horizontal in the near east-west-trending part. A previous study
(Chen and others, 2007) and our field observations found a large number of shear indi-
cators (fig. 3C, D), which indicate dextral shearing of this shear zone.

At present, there are few age constraints for the shear zone, and most previous
studies have indicated that the shear zone developed in the late early Paleozoic to
Permian (Zuo and Zheng, 1991; Chen and others, 2007). The sericite 40Ar/3Ar dating
of the shear zone was also performed, whose plateau age is ca. 250 Ma (Ding, 2021).

The Sangejing-Gonglujing ductile shear zone is located between the Mingshui
Block and the Paleozoic Gongpoquan island arc (fig. 3). It is generally nearly EW-trend-
ing, with a width of 1.5-8 km and a regional extension of more than 300 km (Gao and
others, 2016). The rocks involved in the shear zone include early Silurian quartz diorite
and metamorphic rocks of the Beishan Group (Proterozoic). It is mainly composed of
granitic mylonite and mylonitized quartzite. The mylonitic foliation is nearly EW-trend-
ing, which is consistent with the overall extension direction of the ductile shear zone in
the Beishan area, with a dip angle of 30° to 50°. The trend of lineation is generally close
to east-west (fig. 3A). S-C fabric/asymmetric small folds all indicate dextral shearing,
and the age is constrained between 300 Ma and 230 Ma (Gao and others, 2016).

There are abundant Paleozoic acid, medium, and basic dike swarms in the Beishan.
The development of dike swarms was related to many environments, such as mantle
plumes, regional extension, and regional strike slipping (Dewey, 2002). Dike swarms are
often used for reconstruction of paleocontinent and regional tectonic environments
and inversion of regional tectonic stress fields (Dewey, 2002; Sengor, 2013). The dike
swarms in the Beishan are generally distributed in nearly NW-SE and NE-SW directions
(figs. 4, 5). The occurrence of most dikes is nearly vertical. The exposed widths of single
dikes range from 10 cm to several meters, and lengths range from several meters to tens
of kilometers. In the Beishan, the strike of basic dikes is mainly nearly north-south or
northwest, while that of intermediate acidic dikes is mainly northwest or nearly east—
west. Generally, the dike swarms mainly intruded into Paleozoic granodiorite, quartz di-
orite and Permian strata. Many geochronological and geochemical studies have been
carried out in the Beishan; diabase dikes were formed in the Late Carboniferous-Early
Permian, while quartz diorite dikes were generally formed in the Mid-Late Permian
(Zhang and others, 2015¢, 2017; Zheng and others, 2020). We chose the area north of
the Yingao valley in the central Beishan for mapping (fig. 4A). Previous work in this
area constrained the ages of dikes and surrounding rocks (fig. 4, Zheng and others,
2020). Two types of dikes occur in the Yingao valley granite (~280 Ma, Zheng and
others, 2020): Group I dikes (267 Ma) are calc-alkaline gabbros trending NW (fig. 4A);
and Group II dikes are high-Mg diorites trending NE-SW (fig. 4A). Both mapping and
field observations show that Group II was cut by Group I (fig. 4A).

The NW-SE-trending dikes in the Beishan area are the youngest dikes found at
present, while the former intermediate dikes (doleritic dikes) were mostly formed in a
subduction environment (Zhang and others, 2017; Zheng and others, 2020) or in a
slab break-off scenario (Zhang and others, 2015¢). However, many basic dikes are con-
sidered to have formed in an intraplate extensional environment (Peng and others,
2020). The NW-SE-trending dikes in figure 4A were likely derived from an E-MORB-
like source mainly metasomatized by subduction-related fluids. NE-SW-trending dikes
were likely derived from interactions between melts of subducted sediments and over-
lying mantle peridotites (Zheng and others, 2020).
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There are Jinmiaogou and Mazongshan dextral shear zones in the northern and
southern parts of the mapping area (fig. 3). These two shear zones are thought to have
developed in the late Paleozoic (Zuo and Zheng, 1991), and YOAr/%Ar dating of the
Jinmiaogou ductile shear zone in the Jiujing area shows that the shear zone is ca. 258
Ma (table S1; fig. S1, see Supplementary Data for details). The ages of the shear zones
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Tukemu region. C. Nearly east-west-trending dikes of intermediate -acid rocks in Hongshagang region in
the southern Alxa.
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in the mapping area are later than the emplacement age of the NW-trending dike
swarms. Considering the different isotopic closure temperatures, the formation ages of
the shear zones and the NW-trending dike swarms are consistent. Because the shear
zones on the northern and southern sides are both dextral strike slip, the NW-trending
dike swarms in the mapping area are only in the direction of the extensional structures
in the shear zone. In the Beishan, there are many NW-trending dike swarms, which are
distributed between the dextral shear zones without exception (fig. 5). Recently, the
ages of dike swarms in the central Beishan were reported, and the latest NW-trending
acidic dike swarms were emplaced at approximately 260 Ma (Qi and others, 2016).
Combined with regional data, Qi and others (2016) also argued that the Beishan under-
went regional extension during 260-255 Ma, which was probably the induced “T-type”
extension caused by the dextral shearing of east west-trending shear zones across the
entire Beishan region reported by Zuo and Zheng (1991) (fig. 5).

Langshan.—The NE-SW-trending Langshan is located in the northeastern Alxa
Block, which is mainly composed of the Meso-Neoproterozoic Langshan Group,
Paleoproterozoic metamorphic basement rocks and late Paleozoic intrusive rocks (fig.
6). The shear zone is dextral and separates the late Paleozoic granite to the south and
the Langshan Group to the north (fig. 6; Zhang and others, 2021a, 2022). Our previous
work determined that the age of the shear zone is between 270 and 250 Ma (Tian
and others, 2020). Quartz in granitic mylonite shows strongly undulated extinction and
dynamic recrystallization, and quartz-stretching lineation is developed. S-C fabric and
o-type Kfeldspar porphyroblasts indicate dextral shearing. The thickness of the shear
zone changes from tens of meters to 300 meters along the strike, and the steeply well-
developed mylonitic foliations strike east-west. The zircon U-Pb ages of coarse-grained
biotite granites in this area are approximately 270-260 Ma.

To the west, a series of small Permian granite bodies are exposed along the shear
zone (fig. 7; Hui and others, 2021; Zhang and others, 2021a, 2022). They were sheared
by the shear zone. These rocks are connected with the same Permian granite batholith
to the southwest. The displacement of the shear zone can be calculated by using the
western intrusive boundaries between Permian granites and the Neoproterozoic
Langshan Group on two sides of the shear zone as markers (fig. 7). General calculations
show that the dextral displacement was 45 to 82 km (fig. 7).

Similar to the Beishan, a series of intermediate-acidic dike swarms are also distrib-
uted in the Yingen and Tukemu areas to the west of Langshan (figs. 4B, 5). The dikes
in the Yingen area mainly strike northwestsoutheast, and dikes in the Tukemu area to
the east of the Yingen area have both NW-SE and NE-SW strikes, and some dikes are
even folded (fig. 4B). Among them, the NW-SE-trending diorite dikes cut the NE-SW-
or nearly EW-trending granite porphyry dikes (figs. 4B, 5B). The NW-trending diorite
dikes, with widths of 10-15 m and lengths of several meters to several hundred meters,
are straight along the strike, and these dikes intruded into the late Paleozoic granite
(294 = 2 Ma, Zhang, ms, 2013). Zircon U-Pb dating of these NW-SE-trending diorite
dikes indicates 263 = 6 Ma (table S2; fig. S2). This age is consistent with the activity
time of the nearly EW-trending dextral ductile shear zone in the Langshan area, 270—
250 Ma (Tian and others, 2020). Moreover, the development of NW-SE dikes is con-
sistent with the distribution of extensional structures caused by E-W ductile shear.
The late Paleozoic NW-SE-trending dikes in the Yingen and Tukemu areas may be
derived structures caused by the EW ductile shears in northern Alxa (fig. 5).

Yabrai region.— The Yabrai Mountains are located in the middle of the Alxa Block.
The mountains are divided into the South Yabrai and North Yabrai mountains, which
are separated by the nearly east-west-trending Yabrai dextral shear zone (fig. 8). The li-
thology of the Yabrai Mountains is mainly Permian granite (286-272 Ma), monzogran-
ite, syenogranite, gabbro, etc. (fig. 8; Ye and others, 2016). Mid-Late Jurassic-Early
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Cretaceous continental sediments are exposed in the southwest and cover the Permian
granite with a nonconformity (fig. 8). The mountain range and the Early-Middle
Permian granites in the Bayan Nuru area in the east form a nearly EW-trending conti-
nental margin arc (Zhang and others, 2015b).

The NEE-trending Yabrai shear zone is exposed along the eastern edge of Badain
Jaran Desert, and extends for more than 60 km in a direction of 75° (fig. 8). The
width of the shear zone is approximately 200-1000 m. The foliation is nearly vertical
with quartz-stretching lineation. In some parts, a dark stretching enclave lineation is
developed, and the lineation plunges to WSW, with a pitch angle less than 10° (fig.
8B). The o-type rotational porphyroblasts, S-C fabric, bookshelf of K-feldspar and
mica fish indicate nearly horizontal dextral shearing (fig. 8). Far from the main shear
zone, diffused NNE-trending weakly foliated granitic gneiss is developed in the North
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Zha'ertai Group in Guyang (modified from Zhang and others, 1999; See fig. 2 for location of C).

Yabrai Mountains. These foliations extend southward and were cut by the ENE-trend-
ing main shear zone. The NNE-trending foliations may be magmatic fabrics formed
during the syn-tectonic emplacement of plutons (Zhao and others, 2022). There are
no foliations to the south of the main shear zone.

Since the Yabrai shear zone cuts the Permian granite (272 Ma), the shear zone
was formed after 272 Ma. Zhao and others (2022) performed YOAr/PAr dating of the
shear zone, in which the muscovite plateau age is 254-251 Ma, and argued that the
age of the Yabrai shear zone is approximately 250 Ma. The age of the Yabrai shear
zone is therefore consistent with that of the Langshan shear zone (that is, 270-250
Ma, Tian and others, 2020).

A set of NW-SE-trending diorite porphyrite dikes and gabbro dikes were developed
in the early Permian biotite monzogranite (Lu, ms, 2016, 277+1 Ma) approximately 60
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km south of the Yabrai shear zone (figs. 3C, 4). The dikes extend far and vary in length.
The visible length ranges from 200 m to 1000 m, and the width ranges from 0.4 m to 6
m. The dikes are nearly vertical. A previous study showed that these dikes were formed
in an intraplate environment with an age of 241+3 Ma (Lu, ms, 2016). The age of these
dikes is almost the same as that of the Yabrai shear zone in the north, and the strike of
the dikes intersects the shear zone at a large angle (40-45°C) (figs. 4C, 5), they are likely
extensional structures derived from dextral shearing. The sheared late Paleozoic
Mandela pluton indicates that the dextral displacement was 21 to 30 km (Zhao and
others, 2022; fig. 9G).

Beidashan and Longshoushan.— The late Paleozoic Beidashan dextral shear zone
with unknown displacement is mainly distributed along the northern and southern
margins of the Beidashan in the central Alxa Block (fig. 9). Some scholars discovered
a new Tebai ophiolite (mélange) associated with the subduction of the Paleo-Asian
Ocean on the northern side of the Beidashan and suggested that it can be connected
with the Chaganchulu ophiolite (mélange) on the northern margin of the Alxa Block
on the northeastern side, representing the final subduction and extinction of the
Paleo-Asian Ocean (Zheng and others, 2018).

Our field investigation shows that the northern Beidashan shear zone trends nearly
NW-SE, with a width of 0.5-1 km and an exposed length of more than 10 km. In the
shear zone, felsic mylonite is developed, and the protoliths include Precambrian mica
quartz schist and late Paleozoic granite (327-324 Ma, Gong and others, 2018).
Asymmetric folds and S-C fabric all indicate dextral shearing. Biotite from two mylonite
samples yielded two plateau ages of 264.7 = 2 Ma (BDS19-11) and 274.7 £ 2 Ma
(BDS19-8-1b) (table S1; fig. S1). Microscopically, quartz shows undulate extinction and
bulging (BLG), indicating that the deformation temperature was 300-400°C (Passchier
and Trouw, 2005), while the closure temperature of biotite was 300 = 50°C (McDougall
and Harrison, 1999). Therefore, the age of the Beidashan shear zone is between
274 and 264 Ma.
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phyroclast of K-feldspar indicating dextral shearing. F. Measurement of dextral displacement of Southern
Alxa dextral shear zone. G. Measurement of dextral displacement of Yabrai dextral shear zone (sheared
Mandela pluton).

There are two sets of dike swarms in the Hongshagang area on the southern side
of the Beidashan shear zone (figs. 4D, 5). Among them, the most developed dikes
belong to the diabase dike set, which trends nearly north-south. A single dike is 0.5-3
m in width, 30 m in maximum width, more than 100 m to several km in length, and
the longest is more than 10 km. The second set is composed of granite porphyry dikes
(fig. 5C), whose main strike is nearly east-west. A single dike is 0.2—-3 m in width, more
than 10 m in maximum width, and 100 m in length, and several kilometers in some
cases. The zircon U-Pb dating on these north-south dikes in this study showed wide
concordant **°Pb/**®U ages ranging from 2456 + 26 Ma to 231 * 3 Ma, six of which
are concentrated with a weighted mean age of 318.9 = 3.5 Ma (20) (MSWD = 1.2)
(table S2; fig. S2, see Supplementary Data for details).

Both sets of dikes intruded into early Paleozoic gneissic granite (408 Ma, Zhou
and others, 2016) and late Paleozoic granite. The north—south-trending diabase dikes
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cut the nearly east-west-trending granite porphyry dikes (fig. 4D). The zircon U-Pb
dating of these east-west dikes in this study showed that the zircon composition of the
dike is complex, and there are many captured zircons from the country rocks (Hoskin
and Schaltegger, 2003; table S2; fig. S2, see Supplementary Data for details). The
weighted average age of the youngest zircon is 318.9 * 3.5 Ma, which may represent
the emplacement age of the nearly EW-trending dikes. The age of the NS-trending
diabase dikes cutting the EW-trending dikes should be younger. Although there is no
further test on the age of the NS-trending dikes, considering that the intersection
angle between the NS-trending dikes and the Beidashan shear zone is approximately
40-60° (fig. 4D), they may be derived structures of the Beidashan ductile shear zone,
and their formation was at the end of the late Paleozoic (274-264 Ma).

On the southern side of the Beidashan shear zone, we recently discovered a late
Paleozoic dextral ductile shear zone, the southern Alxa ductile shear zone (SADSZ)
(fig. 9; Zhang and others, 2021b). The SADSZ is NW-SE-trending and basically paral-
lel to the Beidashan shear zone. It is located along the Longshoushan in southern
Alxa (fig. 9), starting from Kuantanshan close to the Altyn Tagh fault in the west
(Zhang and others, 2020, 2021c), turning nearly EW in the east and covered by the
Tengri Desert (fig. 9). The overall exposed length of this shear zone is approximately
500 km, and its width ranges from 0.15 to 2.5 km. Various kinematic indicators indi-
cate dextral shear. The sheared early Paleozoic granite on two sides of the SADSZ
indicates that the dextral displacement was between 40 km and 50 km (Zhang and
others, 2021b). The zircon U-Pb ages of the granite sheared by the SADSZ and the
*Ar/*Ar ages of the muscovite from mylonites formed within the SADSZ indicate
that the SADSZ formed ca. 269-240 Ma (Zhang and others, 2021b).

There are several shear zones along the boundaries of the Alxa Block (fig. 9),
including the Late Triassic NE-trending Langshan-Bayanwula sinistral ductile shear
zone (ca. 210 Ma, Zhang and others, 2013), the late Paleozoic-early Mesozoic dextral
WNW-trending ductile shear zone on the southern margin of the Alxa Block (ca. 269-
240 Ma, Zhang and others, 2021b) and the dextral EW-trending shear zone of
unknown age in the Eengeer Us belt along the northern margin of the Alxa Block
(Wang and others, 1998). In addition, there are also shear zones within the block,
including the dextral NE-trending shear zone in Tamusu (Guan, ms, 2010; Wu and
others, 2012), the near EW-trending dextral shear zone in Bayan Nuru (Zhao and
others, 2022) and the dextral ductile shear zone in Beidashan (fig. 9). The activities
of these shear zones were concentrated in the late Paleozoic to early Mesozoic (Zhang
and others, 2013, 2021a, 2021b, 2022; Zhao and others, 2022).

The relationship of these shear zones in and around the Alxa Block is not clear
because of poor outcrops. We plotted all the known shear zones on the aeromagnetic
anomaly map of the Alxa Block and show that the distributions of these shear zones
are consistent with the aeromagnetic anomaly belts (fig. 10). The arcuate array of the
aeromagnetic anomaly belts shows that the dominant structural trend in the Alxa
Block transforms from NW-SE to EW (fig. 10). Because most of these shear zones in
the Alxa Block formed in the Late Permian and with the same kinematics, these shear
zones may be connected to form a large shear system, with a giant S-C-style geometry
in map view, indicating dextral shearing (fig. 10; Zhang and others, 2021b; Zhao and
others, 2022). A similar large ductile strikeslip duplex was also reported from NE
Brazil, that is, the Borborema shear zone system in the Pan-African Orogenic Belt
(Corsini and others, 1996; Neves and others, 2021).

Eastern CAOB (Xing’an-Mongolian Orogenic Belt)

The eastern CAOB is the segment to the east of the Langshan-Bayanwula ductile
sinistral shear zone (Zhang and others, 2013, 2014). Because many dextral shear
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zones in the latest Permian-Early Triassic have been reported in the northern North
China Craton (NCC), we also include the northern NCC in this section. The regional
tectonic line gradually changes from nearly EW to NNE in the east (figs. 1, 2, 7C).

Northern NCC region.— Previous studies have identified at least four EW-trending
major ductile dextral shear zones that consist of a major shear zone (that is, the Guyang-
Wuchuan Shea Zone; Sun and others, 1990; Zhang and others, 1999; table 1, fig. 7C).
These shear zones are several hundreds of meters to 10 km wide and more than 280-
300 km long (fig. 7C). These shear zones formed mainly along the ancient cratonic mar-
gin of the NCC, cutting through the Archaean Wulashan Complex, Paleoproterozoic
Seertengshan Complex, Neoproterozoic Zha’ertai Group and Paleozoic granite related
to the CAOB. K-Ar dating of sericite from the shear zones yielded ages of 253-247 Ma
(Zhang and others, 1999).

The Wulashan Complex in the study region is composed of high-grade metamor-
phic rocks such as gneiss and migmatite. The Seertenshan Complex is mainly com-
posed of schist and marble. The Zha’ertai Group, however, is similar to the Langshan
Group in the Langshan region (fig. 7A) and is mainly composed of low-grade meta-
morphic rocks such as sandstone, limestone and slate. In the Zha’ertai Group, several
bedding-parallel gabbro dikes were reported in the region to the north of Guyang
(Zhang and others, 2021d; figs. 2, 7C), which are similar to the gabbro dikes in the co-
eval Langshan Group in northeastern Alxa (fig. 7B; Zhang and others, 2021a).
Because no Neoproterozoic (900-800 Ma) mafic dikes have been found along the
northern boundary of the NCC except in the Guyang and Langshan regions (Zhang
and others, 2021a, 2021d) and the characteristics of gabbros in these two regions and
their wallrocks are the same, the Zha’ertai Group in the northern NCC and Langshan
Group in northeastern Alxa all experienced strong dextral shearing (fig. 7), and we
infer that the gabbro in the Guyang in the northern NCC was dextrally sheared from
the Langshan region. If this correlation is correct, then the dextral displacement
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between northeastern Alxa and Guyang in the northern NCC was approximately 270
km after restoring the Triassic sinistral strike-slip distance along the northeast south-
west-trending Langshan-Bayanwula Shear Zone (fig. 2).

Ondor Sum region.— The ophiolitic mélange in the Ondor Sum region represents
the early Paleozoic southward subduction zone along the northern NCC (Xiao and
others, 2003), and the basin was closed at the end of the Ordovician (de Jong and
others, 2006). Field mapping reveals nearly EW-trending dextral ductile shear zones in
the interior and northern and southern margins of the Paleozoic ophiolitic mélange
(fig. 11). The shear zone along the southern margin of the ophiolitic mélange zone is
the largest, with an outcropping length of more than 140 km. The involved Ondor Sum
mélange developed mylonite foliations (fig. 11C), which are nearly EW-trending and
steep. Felsic mylonite containing muscovite is developed, and its protolith is quartzite,
with nearly horizontal quartz-stretching lineation (fig. 11B). The early Paleozoic granite
to the south of the shear zone was also involved in deformation, and a quartzstretching
lineation was developed (fig. 11E).

Mapping in the Ondor Sum region shows that there were mainly two stages of fold-
ing in the area. The first stage of deformation produced nearly east-west tight folds.
The folds in this stage are generally recumbent and verge to the north. They are mainly
developed in the chlorite sericite quartz schist in the northern mélange (fig. 11). On
the outcrop scale, the folds in this direction are characterized by axial cleavage, crenula-
tion lineation and kinking. The early nearly EW-trending tight fold hinge was superim-
posed by nearly NS-trending folds. The formation of early nearly EW-trending folds is
generally believed to be related to the deformation of the accretionary wedge caused by
the southward subduction of the Paleo-Asian Ocean (Xiao and others, 2003; Shi and
others, 2013). However, the formation of the later nearly NS-trending folds has not
been determined. Nearly EW-trending ductile shear zones were found to the north and
south of the mélange, and the nearly NS/NNE-trending folds show asymmetric Z-shapes
in crosssections at different scales, which shows that their formation was controlled by
later dextral shearing, resulting in the folding of early nearly EW-trending folds and foli-
ations. If the early fold hinge is regarded as a passive marker, it would be rotated and
deformed continuously during dextral shearing and would then form a Z-shaped fold.
At present, the width of the shear zone is approximately 18-22 km. Taking the EW-
trending fold hinge as a marker, the shear strain angle is approximately 80°, and the
dextral displacement is 102-124 km (fig. 11F).

The *’Ar/*'Ar ages of the amphibole schists in the Ondor Sum region obtained
by scholars are not consistent. de Jong and others (2006) obtained *’Ar/*Ar plateau
ages of phengites from quartz mylonites (that is, 453 * 2 Ma and 449 * 2 Ma), which
are considered the formation ages of accretionary complexes. Similarly, Tang and Yan
(1993) and Tang (1990) also reported a YOAr/3Ar age of 426 = 15 Ma for sodic amphi-
bole in the accretionary complex, representing the metamorphic age of blueschist.
However, Zhang and others (2018) obtained an actinolite *’Ar/*’Ar apparent age of
241 = 19 Ma, which is considered to represent the metamorphic age. Since our map-
ping shows that the accretionary complex suffered strong ductile deformation in the
later stage, the age obtained by Zhang and others (2018) likely represents the age of
later shearing related metamorphism.

Linxi region.—There are a series of nearly EW-trending, Triassic dextral ductile
shear zones with unknown displacements on both sides of the Xar Moron River in the
southern Greater Xing’anling, Inner Mongolia (that is, the Xar Moon Shear Zone; fig.
12). The width of a single shear zone can exceed 2-3 km. The shear zones not only cut
the early “Shuangjing schist” and the late Permian-early Triassic thick conglomerate
(Kedehe conglomerates) but also control/cut the early-middle Triassic Shuangjingzi
pluton (Zhao and others, 2015; Zhang and others, 2021e).
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Fig.11. Geological map of Ondor Sum. A. Geological map. B. Felsic mylonite of the Ondor Sum
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dextral shearing. E. Mylonitic Ordovician granite to the south of Ondor Sum Group in Wulanaobao. F.
Distribution of hematite quartzite and shear strain. G. Stereographic projection of fold hinges in the
Ondor Sum Group.

The Shuangjing schist exposed on both sides of the Xar Moron River is composed
of metamorphic supracrustal rocks and plutonic rocks. Its age was assigned as the early
Precambrian by early geological survey (BGMRIMAR, 1991), but recent high-precision
dating shows that it is very young, and the metamorphic plutonic rocks are mainly late
Paleozoic in age (283 Ma, Li and others, 2007). Ductile deformation is well developed
in the Shuangjing schist. Mylonitic foliations are developed in plutonic rocks and schists.
The foliations are steep, trending nearly east-west. The quartz-stretching lineation is
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well developed (fig. 12C) and gently plunges to the east or west (fig. 12E). A series of
asymmetric structures, such as quartz vein lenses (fig. 12D), small folds and mica fish
indicate dextral shearing.

The Shuangjingzi granite, which is a Triassic granite, is adjacent to the Shuangjingzi
schist. Because of the ductile shear deformation, NE-trending foliation developed with
ENE-trending quartzstretching lineation. Meantime, K-feldspar phenocrysts were devel-
oped, and the long axis of phenocrysts is nearly EW (fig. 12E), which is consistent with
the quartzstretching lineation in the Shuangjing schist in the nearby region. The ori-
ented K-feldspar phenocrysts suggest that the Shuangjingzi pluton may be a syntectonic
pluton, and a previous study reached a similar conclusion (Zhao and others, 2015). If
this conclusion is correct, the emplacement age of Shuangjingzi was the age of ductile
shear (that is, 229-237 Ma, Li and others, 2007). Zhang and others (2018) also obtained
a muscovite *°Ar/*Ar age of Shuangjing schist at 240 * 2 Ma, which is considered to
represent the metamorphic age.

In Shuangjing schist in the study area (north of Nadaga), syntectonic intrusive
rock is also found (fig. 13). There are a series of dioritic enclaves distributed in the
granitic rock body (fig. 13). The long axis of these enclaves is parallel to the quartz-
stretching lineation in the Shuangjing schist (fig. 13). Moreover, the development of
mylonite foliation becomes strong outward in the granitic rock body, the enclaves are
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Fig. 13. Syntectonic granite and oriented dioritic enclaves in the Shuangjing schist. A. Relationship
between the axial ratio of dioritic enclaves and their locations above the ground, A/C represents the ratios
of long and short axes of elliptic enclaves, which were measured in XZ plane. B. Torn dioritic enclaves. C.
Relationship between quartz stretching lineation (red) of mylonite in Shuangjing schist and long axis of
dioritic enclaves (blue). D. Strongly developed mylonitic foliations outwards. E. Intensely sheared dioritic
enclaves without obvious boundaries. F. Dioritic enclaves approximately 4 m above the ground. G. Dioritic
enclaves approximately 1 m above the ground. H. Crossing section of dioritic enclaves approximately 1 m
above the ground. I and J. Oriented K-feldspar phenocrysts in the Shuangjingzi granite.

also strongly sheared, and their outlines are totally indistinguishable (fig. 13). The
age of the enclave is 260-250 Ma, and the metamorphic age of the granite in the wall
rock is also approximately 250 Ma (Li and others, 2014). Under the microscope, the
ductile deformation of minerals in granite and diorite enclaves is not obvious, but the
minerals were oriented to a certain extent (fig. 18I and J), which indicates that the de-
formation temperature was higher and may have been in a plastic state. Therefore, we
suggest that the ductile dextral shearing in the Shuangjing schist occurred at the end
of the Permian. There are at least two more shear zones of the same scale formed to
the north of Linxi region, which are parallel to the Xar Moon Shear Zone; however,
few studies have been performed, and we do not have any detailed information about
these shear zones except their dextral kinematics.

Chifeng region.—To the east of the Linxi region, the Jiefangyingzi area of Chifeng
on the northern margin of the NCC also experienced strong dextral shearing (fig.
14), and the Silurian Badangshan Formation and early Paleozoic intrusions were all
involved in ductile deformation. The ductile deformation was approximately 10 km
wide; however, the displacement is not constrained. In the zone, nearly horizontal
ENE-WSW-trending quartz-stretching lineations were strongly developed (fig. 14).
The Late Triassic granodiorite (229 Ma, Liu and others, 2012) in the study area is
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Fig. 14. Geological map of Jiefangyingzi region. A. Geological map. B. Felsic mylonite and quartz
stretching lineation. C. Stereographic projection of mylonitic foliations and stretching lineation. D.
Asymmetrical folds indicating dextral shearing.

distributed in an ENE direction. The margin of the granite pluton was deformed by
ductile shearing with NEE-trending quartz-stretching lineation. Many dark mafic
xenoliths of various sizes in the granite are obviously elongated in an ENE-WSW
direction. The strike of the granite body and the stretching xenoliths are consistent
with the ductile deformation zone. Recently, the emplacement age of syntectonic
granite (229.7 £ 0.8 Ma) and the YOAr/*Ar plateau age of muscovite in the ductile
shear zone (219.9 = 1.3 Ma) indicate that ductile deformation occurred in the Late
Triassic (Wang and Li, 2020).

Other regions.—In addition to the EW-trending ductile dextral shear zone in Linxi
and Chifeng, dextral ductile shear zones were also found in Carboniferous carbonate
rocks in the Changchun area (Liang and others, 2019), Jiapigou gold deposits (ca. 230
Ma, Deng and others, 2014) and Yingchengzi gold deposits (ca. 248 Ma, Chai and
others, 2016) at the eastern end of the Xar Moron Shear Zone. The Carboniferous
strata in the Chuangchun area are characterized by vertical foliations with east-west sub-
horizontal stretching lineations with dextral kinematic indicators (Liang and others,
2019), which is similar to the deformation in other EW-trending dextral zones. We sug-
gest that this deformation was caused by the same tectonic event, as argued by Liang
and others (2019). The involvement of the Carboniferous strata in Chuangchun also
indicates that deformation occurred after the Carboniferous.

The dextral ductile shear deformation in the Early Triassic was also reported
from Chicheng, Huade and other areas in the northern margin of NCC (Wang and
Wan, 2014). Pre-Cambrian metamorphic rocks and Late Paleozoic—-Mesozoic granitic
rocks were involved in the ductile deformation. The mylonitic foliations trend nearly
E-W and dip to north/south at moderate to steep angles. The kinematic indicators
such as feldspar porphyroclasts and S-C fabrics indicate dextral transpressional shear-
ring (Wang 1996). The timing of the shear zone was constrained between 255 Ma and
241 Ma (Wang and Wan, 2014).

In addition to the EW-trending Xar Moron Shear Zone, the Xing’an-Mongolian
orogenic belt changes to a NE-SW orientation to the east (fig. 1). The Keluo complex
is located in the Hegenshan-Nenjiang-Heihe tectonic belt (HNHTB) (inset in fig. 15)
and belongs to the junction of the Xing’an and Songnen blocks (inset in fig. 15; Liu
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and others, 2017). A mylonite belt with a length of more than 100 km and a width of
dozens of km developed (Miao and others, 2015; Zhao and others, 2017). Mylonite
exposed in the Keluo area is mainly felsic. The foliation is NE-trending and dips to
southeast (fig. 15). Quartz-stretching lineation is developed, nearly horizontally (fig.
15). The foliation may have been subjected to later folding (Zhao and others, 2017),
and the later Devonian granite was involved in the ductile shear zone (Li and others,
2010).

The Keluo complex is composed of typical high-grade metamorphic rocks with mig-
matites, including garnet-bearing biotite plagioclase gneiss, garnet-bearing biotite horn-
blende plagioclase gneiss, garnet-bearing biotite hornblende plagioclase granulite and
plagioclase hornblende gneiss. The complex was intruded by later Early-Middle Jurassic
or Early Cretaceous granites (Miao and others, 2004; Zhao and others, 2017). On the
outcrop and microscopic scales, dextral-shearing structures were found (fig. 15D), indi-
cating the dextral movement of the Xing’an Block relative to the Songnen Block (fig.
15). Because of intensely subsequent deformation, the exact ages of ductile shearing in
Keluo region and its kinematics are still needed to be determinted.

DISCUSSION

Late Ductile Shear Zones along the Southern CAOB
In addition to the nearly EW-trending ductile shear zones from the Beishan to
the Xing’an-Mongolian orogenic belt mentioned above, late Paleozoic dextral shear
zones are also common in the Tianshan (fig. 1), including the Qiugemingtashi-
Huangshan ductile shear zone (Chen and others, 2005; Wang and others, 2010; He
and others, 2021), the ductile shear zone on the northern margin of the Central
Tianshan (that is, the Main Tianshan Shear Zone, Allen and others, 1993; Shu and
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others, 1999; Laurent-Charvet and others, 2003; de Jong and others, 2009; Cai and
others, 2012), the southern margin of the Central Tianshan, the Xinger ductile shear
zone in the northern Kuruktag, and the Kuruktag-Xingdi ductile shear zone (Cai and
others, 2012). Kinematic indicators from field outcrops and microfabrics show con-
cordant dextral shearing, and they are basically parallel in map view; there are also
connected secondary shear zones among them (Shu and others, 1999; Laurent-
Charvet and others, 2002, 2003; Chen and others, 2005; de Jong and others, 2009;
Wang and others, 2010; Cai and others, 2012).

The shear system along the southern CAOB may extend into the Kazakhstan oro-
cline to the west (fig. 1). The Kazakhstan orocline is one of the most striking structures
in the CAOB and is composed of the folded Devonian Volcanic Belt and the Late
Devonian to Carboniferous Balkhash-Yili arc (Li and others, 2018). The Kazakhstan oro-
cline is thought to be the convergence of the large cratons of Baltica, Siberia and Tarim
(Sengor and others, 1993; Van der Voo and others, 2006; Li and others, 2018). The for-
mation period of this giant orocline is disputed; for example, in the late Carboniferous—
Early Permian (Van der Voo, 2004), Devonian and Early Carboniferous and completed
by the Late Carboniferous (Levashova and others, 2012), Late Devonian to Permian
(Choulet and others, 2012; Li and others, 2018), or even Late Permian to the Early
Triassic (Van der Voo and others, 2006; Xiao and others, 2015). As some dextral shear
zones, such as the Central Kazakhstan Fault (CKF) and Chingiz-Alakol-North Tianshan
Fault (CANTF, ca. 263 Ma, de Jong and others, 2009), have cut into the orocline (fig.
1), the orocline should have formed before these shear zones, that is, before the Middle
Permian.

Regionally, the vast area between the Baltic, Siberian and Tarim cratons under-
went intense deformation in the late Paleozoic during the convergence of the three
cratons. Shear deformation also developed in the Ural orogenic belt. Although the
orogenic belt formed in the Devonian-Carboniferous (Puchkov, 1997; Brown and
others, 2006a), ductile deformation still occurred along the nearly NS-trending Main
Uralian Fault in the central part of the orogenic belt from the end of Late Permian to
the Early Triassic (250-240 Ma); however, the kinematics of the shearing are in dis-
pute because of limited evidence (Ayarza and others, 2000; Hetzel and Glodny, 2002;
Brown and others, 2006b). Whether the deformation along the Main Uralian Fault at
250-240 Ma was shortening or strike slipping, the deformation at the end of the late
Paleozoic in the Ural and the dextral shear along the southern CAOB were not only
formed at the same time, but also resulted from the further convergence of the three
cratons (Van der Voo and others, 2006). Therefore, we suggest that the late Paleozoic
dextral shear zone in the southern CAOB may be connected with the Main Uralian
Fault in the west.

The shear zone along the southern CAOB branches eastward into Greater Xing’an.
There are different views on the late Paleozoic-Mesozoic tectonic framework in
Northeast China (Wu and others, 2007; Zhou and others, 2009, Zhou and Wilde, 2013;
Liu and others, 2017; Li and others, 2015). Most studies have suggested that the final
closure of the CAOB in NE China occurred during the Triassic (Liu and others, 2017
and references therein). The tectonic evolution is complicated because of the subduc-
tion of the Paleo-Pacific Ocean to the east and the closure of the Mongolia-Okhotsk
Ocean to the northwest (Wu and others, 2007; Zhou and others, 2014; Liu and others,
2017).

After the closure of the Paleo-Asian Ocean, NE China experienced oceanic plate
subduction in the Mesozoic, and several subduction-related complexes such as the
“Heilongjiang Group” to the west and the Yuejinshan Complex and Raohe Complex
to the east, developed (Zhou and Wilde, 2013; Zhou and others, 2014). At present,
there are different standpoints on the evolution and formation of Heilongjiang
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complex in NE China, but many studies have agreed that it is a subduction accretionary
complex, which is also called the Jihei high-pressure metamorphic belt due to the dis-
covery of high-pressure metamorphic rocks such as glaucophane schist (Zhou and
Wilde, 2013). With the accumulation of zircon U-Pb ages and magmatic rock data,
some scholars believe that the metamorphic rocks of the Heilongjiang Group were the
products of the closure of a Permian to Jurassic ocean basin (Heilongjiang/Mudanjiang
Ocean) (Zhou and Wilde, 2013). Some scholars believe that the Heilongjiang/
Mudanjiang ocean basin was formed in the Early Permian and is a part of the Paleo-
Pacific Ocean, which was subducted from the Late Triassic to the Late Jurassic (Ge and
others, 2016, 2018), while others believe that it opened in the late Early Triassic (Long
and others, 2020). In addition, when the Heilongjiang/Mudanjiang Ocean began to
subduct is also unknown. Some studies have indicated that it began to subduct westward
under the Songnen Block as early as the Permian (Dong and others, 2017; Ge and
others, 2018; Li and others, 2022). Permian metamorphism has also been reported for
the complex (Li and others, 2010), but others argue that it was mainly subducted and
closed in the early and middle Mesozoic (Wu and others, 2007; Zhou and others, 2009;
Zhou and Wilde, 2013). At present, because Mesozoic structural data are sparse in NE
China, the eastward extension of the EW-trending ductile shear zone is unknown, and
we still do not know how EW-trending ductile shearing transformed to the east or the
relationship between EW-trending shear zones and NE-trending structures in NE China.
We prefer that the EW-trending ductile shearing may have transformed to the conver-
gence of the ocean regime in NE China such as the Heilongjiang/Mudanjiang Ocean
(Li and others, 2022) or even the Paleo-Pacific Ocean.

In addition, Miao and others (2004) considered that the Keluo complex in the
Hegenshan-Heihe tectonic belt was the product of collision and amalgamation
between two terranes, and its metamorphic age is 216 = 3 Ma, suggesting that the belt
represents an Indosinian collision zone. Li and others (2009, 2010) also believed that
the Songnen Block collided with the Jiamusi Block in the Middle and Late Triassic.
Moreover, the tectonic reconstruction map of Metelkin and others (2010) based on
paleomagnetism also shows the Middle and Late Triassic amalgamation of blocks. We
have to admit that there are few structural studies in the NE China focusing on the
ductile deformation, many key data such as ages and kinematics are rare, and further
work is also needed to determine the transform relationship in NE China with the
EW-trending segment of shear system along the southern CAOB.

In conclusion, we suggest that the dextral ductile shear system along the southern
CAOB extends eastward from the Ural orogenic belt, connects with Tianshan in
China through the Kazakhstan orocline, goes though the northern margin of the
NCC through the Beishan and the Alxa Block eastward, and finally connects with the
nearly north-south-trending Jihei high-pressure belt and Hegenshan-Heihe tectonic
belt in the east, forming a large “U”-type structure extending more than 5000 km (fig.
16). In addition, coeval gold deposits in the region appear to be spatially associated
with the shear system, and mineralization might be related to this shearing event
across the Eurasian continent (fig. 1).

Large shear zones on the continent often show a shear system composed of a series
of secondary shear zones (Merzer and Freund, 1976). Since the end of the Permian was
the final formation period of the Pangea Supercontinent (Zhao and others, 2018;
Sengor and others, 2019a), the formation of the CAOB was a part of supercontinent de-
velopment. At the end of the Permian, a large intracontinental transform structure com-
posed of a group of dextral ductile shear zones also developed along the Variscan
orogenic belt in Europe (Arthaud and Matte, 1977; Gates and others, 1986; Matte, 1991,
2001; Shelley and Bossiere, 2000; Franke and Zelazniewicz, 2002; Martinez Catalan,
2011; Sengor, 2013; Pfiffner, 2017; $engdr and others, 2019a) (fig. 17B).
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Previous studies have shown that with the formation of the Variscan orogenic
belt, the African Plate continued to move westward relative to southern North
America and Europe. A large deformation regime connects the Ural orogenic belt
and the Variscan orogenic belt with the southern Appalachian orogenic belt in North
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America and the Mauritanides in West Africa (Arthaud and Matte, 1977). The age of
this deformation event was the Late Permian (Sengor, 2013) or 250 Ma (Arthaud and
Matte, 1977). A series of large dextral ductile shear zones, such as the Central
Bohemian shear zone, Tornquist line, Elbe fracture, North Pyrenean fault and Kelvin
fault, developed in this deformation regime. Some scholars have argued that the late
Paleozoic deformation of the South Appalachian orogenic belt in North America and
the contemporaneous deformation in the Ural orogenic belt were connected by a
giant intracontinental shear zone along the southern Variscan orogenic belt in south-
ern Europe, forming a giant intracontinental transform structure in Europe (Arthaud
and Matte, 1977; Martinez Catalan, 2011).

In Asia, the late Paleozoic deformation of the Ural orogenic belt may also corre-
lated with the dextral ductile shear deformation along the southern CAOB in the east
(see above). This study and many previous studies show that these late Paleozoic dex-
tral shear zones in the southern CAOB either appeared as strike-slip duplex structures
(Alxa-Beishan) or strike-slip stacking structures (Scythian-Turan domain; Natal’in and
Sengor, 2005) or a series of nearly parallel shear zones (Tianshan and the northern
margin of the NCC), forming a relatively wide megashear zone in the eastern
Eurasian Plate (fig. 16). At the same time, the late Paleozoic dextral shear systems in
the Ural orogenic belt, Central Asia and the eastern Variscan orogenic belt were active
and are considered to constitute a transcontinental shear zone (Natal’in and §engor,
2005). Due to the similar kinematics and ages, we suggest that the late Paleozoic-early
Mesozoic intracontinental transform structure along the southern CAOB can be con-
nected with the transform structure of the European part, forming a giant intraconti-
nental transform structure system across Eurasia, southern North America and
northwestern Africa (fig. 17). Since the shear zone was developed in the central
Pangea supercontinent, we call it the Intra-Pangean Megashear (IPM) after Irving
(2004) because he first named it in the western part of this system.

Previous studies have shown that many large-scale intracontinental shear zones
(such as the San Andreas and the North Anatolian shear zones) in the world were
formed along previous suture zones or orogenic belts; the main reason for this that
the materials in the sutures or orogenic belts are less competent than the surrounding
tectonic units (Sengor and others, 2019a and references therein). The IPM in the
central Pangea supercontinent is no exception; it mainly developed along the south-
ern Variscan orogenic belt in Europe and the southern CAOB in Asia. These orogenic
belts surrounded the relatively stable cratons (Siberia, Baltic, Tarim and North China
cratons). Therefore, the later intracontinental deformation was mainly distributed or
concentrated in the weak areas surrounding the cratons (§engoér and others, 2019b;
Zhang and others, 2021f).

Ages

The age of dextral ductile shear in the eastern IPM has been restricted to some
extent. Previous studies have focused on the Tianshan and Kazakhstan regions in the
west and the Xar Moron Shear Zone and the northern margin of the NCC in the east.
Our recent work focused on the Beishan and Alxa regions (this study, Zhang and
others, 2021a, 2021b; Zhao and others, 2022). In this study, we systematically collected
the ages of dextral ductile shear along the southern CAOB from the late Paleozoic to
the early Mesozoic, which mainly includes the *°Ar/*’Ar ages of metamorphic miner-
als and the emplacement ages of syntectonic intrusive rocks. The deformation age
gradually becomes younger to the east (fig.18).

In the Tianshan, Chen and others (2005) reported the *’Ar/*’Ar ages of the
Qiugemingtashi-Huangshan ductile shear zone and concluded that the main active
period of dextral shearing was at 262—-242 Ma, and the active age gradually becomes
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younger to the east. Wang and others (2010) dated syntectonic granite in the shear
zone, thus constraining dextral shearing to 270-254 Ma. Cai and others (2012) dated
the mylonite in the ductile shear zone of the northern margin of the Central
Tianshan with **Ar/**Ar dating and obtained 867+3 Ma (dolomite), 290 = 2 Ma (bio-
tite) and 241*1 Ma (biotite). It is believed that the youngest age indicates dextral
shear deformation. The *’Ar/?Ar dating of muscovite from mylonitic granite in the
shear zone yielded an age of 2695 Ma, and the K-Ar dating of biotite yielded an age
of 281 Ma (Shu and others, 1999). Laurent-Charvet and others (2003) also reported
biotite *°Ar/*°Ar ages (240-250 Ma) from the western segment of the northern mar-
gin of Central Tianshan. According to the *’Ar/*’Ar dating of amphibole, biotite and
muscovite in mylonite developed on the southern margin of the Central Tianshan-
Xingxingxia ductile shear zone and the Kuruktag-Xinger ductile shear zone, Cai and
others (2012) argued that the active age of the former is between 298 and 280 Ma,
while the latter is between 290 and 277 Ma. Laurent-Charvet and others (2003) also
used the 40Ar/ 39Ar age of biotite in the middle section of the Xingxingxia ductile
shear zone on the southern margin of the Central Tianshan Mountains to constrain
its active age to 290-300 Ma. The whole-rock 40Ar/ 39Ar ages of the two samples in the
central and eastern parts of the North Tianshan shear zone are 285-255 Ma and 275—
263 Ma, respectively (Allen and others, 1993; de Jong and others, 2009).

In addition, the well-known Erqis shear zone extends from the Altay region of
China to Kazakhstan from southeast to northwest and is one of the large strike-slip
shear zones in the southern CAOB (Sengodr and others, 1993; Buslov and others,
2004a, 2004b; Briggs and others, 2007; Li and others, 2015, 2021). Muscovite of the
syntectonic granites in the Erqis shear zone yielded a *’Ar/*Ar age of 290 Ma
(Mitrokhin and others, 1997; Melnikov and others, 1998). Zhang and others (2012)
obtained a zircon U-Pb age of 252.4 * 2.6 Ma for the undeformed granodiorite
intruding the shear zone, and muscovite, biotite and amphibole 4oAr/ 39Ar dating of
mylonitized gneisses in the shear zone also indicates that the peak period of the dex-
tral ductile shear zone in the Erqis was 275 Ma. Vladimirov and others (1997) and
Travin and others (2001) performed *’Ar/*Ar dating of muscovite, amphibole and
K-feldspar in the shear zone, which constrained its age to 283-263 Ma. Based on
the **Ar/*Ar dating of biotite and amphibole from the mylonites in the Erqis shear
zone in China, Laurent-Charvet and others (2003) suggested that the shear zone was
active from 290 to 245 Ma. Li and others (2015) also defined the upper limit of the
age of the shear zone as 252 Ma according to the zircon U-Pb age of the granitic dike
swarms intruded into the Erqis shear zone near Fuyun County. The timing of the
Erqis shear zone is coeval with those of dextral shear zones along the Tianshan.
However, studies have shown that the Erqis shear zone was a sinistral shear zone
(Laurent-Charvet and others, 2002, 2003; Li and others, 2015, 2021), which will be dis-
cussed later.

Figure 18 shows that the main active time of the Central Tianshan shear zone
and the southern margin of the “Silk Road Arc” in the western section was ca. 280-240
Ma (Laurent-Charvet and others, 2002, 2003; Natal’in and Sengor, 2005; Wang and
others, 2007; Charvet and others, 2011). One biotite *’Ar/**Ar age of the Jinmiaogou
dextral ductile shear zone in the southern Beishan was obtained recently, and their
plateau ages are 258.1+x2.7 Ma (JMG-19-1; fig. SI, see Supplementary Data for
details).

In the Alxa Block, the age of dextral ductile shear zone is rarely published. At
present, the Langshan shear zone has been constrained to have formed at approxi-
mately 250 Ma according to the age of intrusive but undeformed dikes (Tian and
others, 2020). We obtained the muscovite and biotite *°Ar/*°Ar ages of the
Longshoushan ductile shear zone to the south, which are concentrated from 260-250
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Ma (Zhang and others, 2021b), and the muscovite *’Ar/*Ar ages of the Yabrai dex-
tral shear zone are approximately 254-251 Ma (Zhao and others, 2022). Therefore,
the development of the Yabrai shear zone can also be constrained between the Late
Permian and Early Triassic.

In the eastern segment, many studies have been performed to date the shear
zones on the northern margin of the NCC. Gao (ms, 2004) obtained *°Ar/*’Ar ages
of K-feldspar (159 Ma), biotite (197 Ma) and muscovite (183 Ma, 192 Ma and 227 Ma)
from the Shuangjing schist. Ma (2009) obtained a muscovite *’Ar/*Ar age from
Shuangjing mylonitized rocks, which was 224-225 Ma. Zhao and others (2015)
obtained a muscovite *’Ar/??Ar age of mylonitized granite, which was 209 Ma. Some
Shuangjingzi intrusions were typical syntectonic intrusions (Zhao and others, 2015;
fig. 13); therefore, their emplacement age represents the age of shear zone activity,
and the age of Shuangjingzi intrusions ranges from 260 to 230 Ma (Li and others,
2007, 2014; Zhao and others, 2015). It can be determined that the formation age of
the shear zone in the Shuangjing area may be 260-230 Ma. Most mica *°Ar/*Ar ages
obtained at present may be cooling ages, and the *°Ar/*Ar dating results may also be
affected by the superposition of multiple magmatic activities and tectonic events (Li
and others, 2014) in the Xar Moron Shear Zone in a later stage. In addition, a series
of nearly EW-trending dextral ductile shear zones were found in the Yanshan area on
the northern margin of the NCC, and the shearing age is approximately 245 Ma
(Wang and Wan, 2014).

It can be summarized from the data obtained thus far that the age of ductile dex-
tral shearing activity of the Asian part of the IPM was mainly between 280 Ma and 230
Ma (fig. 18), and the ages of the western segment are older and gradually younger to
the east (fig. 18). This phenomenon may indicate the gradual development of the
shear zone from west to east. In the European part of the IPM, the age of shear defor-
mation in the Ural area is 250-240 Ma (Hetzel and Glodny, 2002). Arthaud and Matte
(1977) believed that the dextral shear age on the southern margin of the Variscan
orogenic belt was approximately 250 Ma, although no accurate test methods and ages
were given at that time. Although the exact ages are still relatively few, most scholars
have constrained the age of this deformation in Europe to the Late Carboniferous-
Late Permian (Matte, 2001; Muttoni and others, 2003, 2009; Martinez Catalan, 2011;
Sengor, 2013). Compared with the Asian part, the age of IPM in Europe is older, and
the IPM gradually becomes younger eastward, which may represent the gradual evolu-
tion and development process of the shear zone from west to east and may imply a
continuous adjustment process within the Pangea Supercontinent.

Displacement

It is difficult to determine the displacement of the IPM. On the one hand, the tec-
tonic belt is a shear system, and the displacement obtained by a single shear zone can-
not represent the displacement of the whole system. On the other hand, the shear
system may gradually evolve from west to east, and the displacements of different seg-
ments will be very different. In addition, because both ends of the system are compres-
sional, the length of the system will become shorter with deformation (Sengor and
others, 2019a), and the system has a series of secondary structures in different seg-
ments; they will further absorb part of the strain of the main shear zone; therefore,
the displacement of different segments of the whole system will be greatly different.

As far as the current studies are concerned, the displacement of the IPM in
Europe was approximately 2500-3000 km (Pangea B to Pangea A, Irving, 1977, 2004;
Muttoni and others, 2003, 2009; Sengor, 2013). These studies were mainly based on
paleomagnetic work, which may determine the displacement of the whole transform
system. The dextral displacement of the eastern end of the Variscan orogenic belt
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could reach approximately 300-350 km (Natal’in and Sengor, 2005), while the dex-
tral shear displacement of the Kazakhstan-Tianshan region in the same period was
1165 = 630 km (Zhu and others, 2018) or 1160 = 380 km (Wang and others, 2007).
In the East Tianshan and Beishan, there is no relevant research. Farther east in the
Alxa region, we have only provided constraints on the displacements of some shear
zones, such as the Longshoushan (40-50 km), Yabrai (25-30 km) and Langshan (45—
85 km) shear zones in the central and southern regions. However, several coeval shear
zones, such as shear zones in the Engeer Us, Zhusileng and Yagan regions have been
poorly studied in the northern Alxa region (fig. 10). These shear zones display compa-
rable scales (fig. 10) and likely share similar displacements (~40-50 km), but we have
little information about these shear zones. Assuming that overall displacement was
partitioned into these shear zones, the bulk displacement of ~130-315 km across the
megashear system in the Alxa region can be generally estimated. Moreover, we think
that there are still some small-scale shear zones occurring in the Alxa region that have
not been reported, and a larger offset would be expected. Therefore, the ~130-315
km is the minimum limit. In the east, along the northern margin of the NCC and the
Xar Moron shear zone, there have been few studies on dextral shear displacement.
Our preliminary analysis on the northern margin of the NCC and Ondor Sum area
shows that the dextral displacements were 270 km (fig. 2) and 102-124 km (fig. 11F),
respectively.

The estimated displacement of the IPM by geological methods was obviously less
than that inferred from paleomagnetic data. There are still many shear zones without
displacement constraints in the eastern CAOB. We calculate their displacements by a
shear strain of 5 as the minimum limits (Ramsay and Graham, 1970; Simpson, 1983;
Fossen and Cavalcante, 2017) and show them in table 1; however, further field work is
needed in the future, especially in segments in eastern Asia. The following several fac-
tors may be considered when the displacement is measured.

First, the bulk displacement of the IPM along the southern CAOB was highly
underestimated because we only constrained the shear zones that we know, and there
are still some shear zones lacking important constraints and study in the eastern
CAOB.

Second, numerous studies have suggested that various factors can result in a dis-
placement decrease from the center to the end of the shear zone. For example, the
most common one is that the lateral motion is absorbed by thrust faults and related
folds, as in the case of the Altyn Tagh fault (Zhang and others, 2020, 2021c). The dia-
chronous east-west-trending shear system along the southern CAOB displays a
decreasing trend in the displacement from >2000 km in the western portion, 1000—
1600 km in Central Asia, ~130-315 km in Alxa, ~270 km along the northern margin
of the NCC and approximately 100 km in the farthest eastern portion. It is worth not-
ing that these displacements are the minimum limits of the eastern CAOB because
there are still some large-scale shear zones (especially in the eastern Xing’an-
Mongolian orogenic belt) without any information due to a lack of study. In addition,
the reason for the eastward reduction in lateral offset can be explained by NE-trend-
ing thrusts in NE China or even by the subduction of Paleo-Pacific Ocean (Li and
others, 2022).

Third, the displacement inferred from paleomagnetism is based on the overall
wrench between Laurentia and Gondwana. However, field-based geological studies
have focused on specific geological bodies or markers, such as tectonic belts, plutons,
strata boundaries. These units are generally located on one side of shear systems, or
only in them, which cannot decipher the bulk offset across a broad shear system.
Unrecognized shear zones, degrees of research in different regions and some other
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factors result in a large difference in the offset from inferred paleomagnetism and ge-
ological records.

Although there are few actual measured data, the overall characteristics can be
estimated; that is, the western part of the IPM has the largest displacement and the
displacement decreases eastward. This feature is also consistent with the feature that
the shear system gradually becomes younger to the east (fig. 18).

Pangea A and B

In the early reconstruction of the supercontinent, intercontinental shearing was
suggested in the Pangea supercontinent, such as the “Tethys twist” (Van Hilten,
1964), but now it has been confirmed that the deformation age given by the author is
not correct. In later work using paleomagnetism to reconstruct the Pangea
Supercontinent, different scholars have noticed that the Pangea Supercontinent may
have different shapes (Pangea Al, A2, B, or C) in different stages; that is, there was
strong internal deformation (Van der Voo and French, 1974; Irving, 1977, 2004;
Muttoni and others, 2003, 2009; Le Pichon and others, 2019; Pastor-Galana, 2022)
rather than the early thought that there was basically no significant internal deforma-
tion (Pangea Al) (Bullard, 1965).

Ever since Pangea B was first proposed (Irving, 1977), it has been in dispute even
to the present (Weil and others, 2001; Muttoni and others, 2003, 2009; Irving, 2004;
Domeier and others, 2012, 2021; Torsvik and others, 2012; Le Pichon and others,
2019; Muttoni and Kent, 2019; Kent and Muttoni, 2020; Wu and others, 2021). In our
opinion, in the reconstruction of the Pangea Supercontinent, the role of Adria in
northern Italy and dextral displacement are the focus of the discussion.

Whether Adria is part of Africa or Gondwana is the key question. On the one
hand, authors arguing for Pangea B suggest that Adria is a promontory of Africa, and
its paleomagnetic poles represent the poles of Gondwana (Muttoni and others, 2003;
Muttoni and Kent, 2019; Kent and Muttoni, 2020); however, Domeier and others
(2012, 2021) argued that Adria has rotated relative to stable Africa, and the paleo-
poles of Adria should be excluded in the reconstruction of the Pangea
Supercontinent. On the other hand, studies such as Torsvik and others (2012) and
Domeier and others (2012, 2021) suggested that Adria cannot represent Gondwana
and are based on data dominated by sedimentary poles that are likely to be biased by
inclination error because the application of an expedient blanket correction for incli-
nation error to the sedimentary unit results may result in larger effects on the mean
poles (Kent and Muttoni, 2020).To resolve this problem, Kent and Muttoni (2020)
only chose data from intrusive and extrusive igneous rocks from Adria, which could
exclude the possibility of sedimentary inclination error. They found that the mean of
the Adria poles for the Early Permian was similar to that of Gondwana at the same
time, and they argued for the tectonic coherence of Adria with NW Africa in the
Permian. Two recent studies also provided paleomagnetic data or new interpretations
of the assembly of the Pangea Supercontinent, which all support a Pangea A in the
Early Permian or even before (Domeier and others, 2021; Wu and others, 2021).
However, Wu and others (2021) argued for an oblique convergence between
Gondwana and Laurussia, which may explain the relative dextral movement between
the two continents. Domeier and others (2021) also indicated that possible dextral
movement between units in northwestern Africa is an important problem to be unrav-
eled. Therefore, relative dextral movement may occur during the convergence or
even later, and the question among different studies is its timing.

Regarding the dextral displacement, although the amount of dextral strike slip at
the end of the late Paleozoic constrained by geological methods is significantly differ-
ent from that constrained by the paleomagnetic method, constraints from the eastern
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CAOB are also lacking. There are many reasons for this, which has been mentioned
above. It should be emphasized that although there are obvious differences, ductile
shear deformation from the end of the late Paleozoic to the early Mesozoic generally
existed from the core of the Pangea Supercontinent to its eastern margin, which is
the consensus of geological researchers from various regions. For example, a large
number of contemporaneous dextral shear zones have been found in the southern
margin of the Variscan orogenic belt in Europe (Arthaud and Mapte,l977; Gates and
others, 1986; Shelley and Bossi¢re, 2000; Matte, 2001; Franke and Zelazniewicz, 2002;
Martinez Catalan, 2011; Sengor, 2013; Le Pichon and others, 2019) and the southern
CAOB (Laurent-Charvet and others, 2002, 2003; Wang and others, 2007, 2010;
Charvet and others, 2011; Zhang and others, 2021b; Zhao and others, 2022).

Although their formation mechanisms are not clear, their displacements are also
disputed (Arthaud and Matte, 1977; Sengor, 2013; Sengdr and others, 2019a; Le
Pichon and others, 2019, 2021). The development of this intracontinental-scale defor-
mation zone cannot be answered only by coincidence, and the displacement of this
deformation zone across the Pangea Supercontinent should also be objective. At the
same time, in addition to the geological evidence, the constraints from paleontology
(Cisneros and others, 2012) and paleoclimatology (Kent and Muttoni, 2020) also indi-
rectly reflect the existence of Pangea B. In the discussion of Pangea B and A, most
paleomagnetic studies may be inappropriate in denying their significance because of
the small amount of displacement determined by geology. Even if there was no long
displacement of 2500-3000 km, those paleomagnetic studies against Pangea B need
to consider or explain the reason for the intensely ductile shear deformation devel-
oped in the core of the supercontinent, rather than simply denying its significance.
Given the above reasons, we prefer the interpretations made by paleomagnetic studies
supporting Pangea B and the conjecture of the Intra-Pangean Megashear (Irving,
2004).

Tectonic Setting

The IPM across the central Pangea supercontinent is a giant structure. At the end
of the late Paleozoic (ca. 275-240 Ma), the Variscan orogenic belt and the CAOB
were all in the intracontinental stage. Previous studies were mostly limited to the re-
gional scope in discussing the formation mechanisms or backgrounds. Shu and others
(1999) and Chen and others (2005) considered that the dextral ductile shear zone in
the North Tianshan was the reactivation of the early Paleozoic Tianshan orogenic belt
caused by the collision between the Siberian Craton and the Tarim Craton, reflecting
the characteristics of intracontinental deformation after the collision. The relative
rotation among the Siberian Craton, Junggar block and Tarim Craton in the late
Paleozoic also resulted in the dextral ductile shear zone on the northern margin of
the East Tianshan (Allen and others, 1995; Laurent-Charvet and others, 2002, 2003;
Cai and others, 2012). Wang and others (2010) suggested that the formation of the
dextral shear zone on the northern margin of the Tianshan was related to intraconti-
nental deformation during the post collisional period, mainly because the extension
of the West Siberian region led to the eastward migration of the whole CAOB in the
late Paleozoic. Natal’in and §engor (2005) suggested that it was related to the oblique
subduction of the Paleo-Tethys Ocean.

When discussing the role of the Erqis shear zone, Li and others (2015) suggested
that the shear along the Erqis shear zone absorbed the sinistral movement of the Peri-
Siberian orogenic system relative to the Kazakhstan orogenic system. The sinistral
shear movement, together with the dextral shear movement in the Tianshan, was
formed in the eastward migration of the Kazakhstan orogenic system. It is further
believed that the eastward migration of the orogenic belt may have been related to
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the continuous convergence of the Siberian, Tarim and Baltic cratons in the late
Paleozoic. The eastward migration of orogenic materials in this period is also sup-
ported by paleomagnetic data in the Yili Block (Wang and others, 2007). It was found
that there was no obvious relative movement between the Yili and Junggar blocks
since the Carboniferous. However, in the Late Carboniferous and Late Permian, the
Yili-Junggar Block migrated eastward relative to the Tarim and Siberian cratons,
resulting in the formation of a dextral ductile shear zone in North Tianshan and an
Erqis sinistral ductile shear zone in the late Paleozoic. A recent study on the EW seis-
mic profile across the Junggar Block showed that a strong tectonic event occurred in
the eastern and western parts of the block in the late Paleozoic, resulting in the short-
ening of the Junggar Basin by nearly 35% (He and others, 2018). The formation of
this shortening structure was probably caused by the eastward wedging of the Yili-
Junggar Block between the Tarim Craton and the Siberian Craton in the late
Paleozoic.

In the eastern part of the IPM, previous scholars believed that dextral shearing
along the northern margin of the NCC in the late Paleozoic-Triassic was caused by the
collision of the Yangtze Craton and NCC in the south and the subduction of the
Mongol-Okhotsk Ocean in the north (Zhao and others, 2015). Wang and Wan (2014)
emphasized continuous oblique compression during the closure of the Paleo-Asian
Ocean. However, after recent geological mapping in different regions in different seg-
ments of the eastern CAOB (figs. 6, 11, 12), we found that dextral shearing occurred
after the closure of the Paleo-Asian Ocean. For example, in the northeastern Alxa
Block, the EW-trending ductile dextral strike-slip shear zone cuts the Mid-Late
Permian contraction deformation related to the closure of the Paleo-Asian Ocean in
the Langshan region (fig. 6; Zhang and others, 2021a, 2022) and postcollisional gran-
ite (Hui and others, 2021). In the eastern CAOB, the Permian accretionary wedge was
thrust to the south over the early Paleozoic accretionary wedge and was then trans-
formed by dextral shearing into a giant Z-type fold in the Ondor Sum region (fig.
11A). In the Linxi region, the Xar Moon Shear Zone cuts the Permian ophiolite and
accretionary wedge, and folds related to the closure of the Paleo-Asian Ocean (fig. 12;
Zhao and others, 2015; Zhang and others, 2021e). A similar process may have also
occurred in the Beishan region (Zhang and Cunningham, 2012). We therefore sug-
gest that the latest Permian—Triassic dextral shearing along the CAOB, especially
along the eastern CAOB occurred after the closure of the Paleo-Asian Ocean, and not
by the oblique subduction of the Paleo-Asian Ocean.

Although different scholars have proposed many models in different regions,
most studies have suggested that the dextral shear in the eastern segment of the IPM
at the end of the late Paleozoic may have been related to the interaction among the
Siberian, North China and Tarim cratons. However, this cannot explain the formation
of the segment of the IPM in Europe and its 2500-3000 km displacement. This may
have been related to the evolution of the Pangea Supercontinent and Tethys regime.

Almost all results of Pangea supercontinent reconstruction show that the super-
continent in the Southern Hemisphere encircled oceanic basins, and the Paleo-
Tethys Ocean occupied the main region of the basins during most of the Permian
(Irving, 1977, 1979; Muttoni and others, 2003, 2009; Sengo6r and others, 2019a).
During the transitional period from the Late Permian to the Early Triassic, the Neo-
Tethys Ocean in the south began to expand (fig. 19; Muttoni and others, 2009).

As the IPM formed during the assembly of the Pangea, it should have been
related to the formation of this supercontinent, which was controlled by mantle con-
vections of different scales (Zhong and others, 2007; Mitchell and others, 2021).
During the formation of Pangea Supercontinent, two types of orogens developed
along the periphery and in the core of Pangea (that is, the external and internal
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Permian-Triassic boundary

Panthalassa

panthalassa trench

S. America ) Africa

Fig. 19. Pangea A, distribution of IPM and tectonic setting during the Late Permian-early Mesozoic
(SC-South China, Ka-Kazakhstan, In-Indochina, NCC-North China Craton, Ta-Tarim, Ju-Junggar).

orogenic systems, respectively) (Collins and others, 2011; Murphy and others, 2011).
The external orogenic system formed at the stable boundary between the two global-
scale mantle convection cells (that is, Panthalassan cell and Pangean cell); however,
the internal system formed within the internal part of the Pangean convection cell
(Collins, 2003; Collins and others, 2011). The boundary between these two cells was a
curtain of subduction slabs down to at least a 400 km depth around most parts of the
periphery of Pangea (Murphy and others, 2011; Collins and others, 2011; Stampfli
and others, 2013), which led to thermal isolation, heating, and accumulation of hot
plume materials beneath Pangea that prevented mixing between the two cells
(Lenardic and others, 2011; Le Pichon and others, 2019, 2021). In the Pangea
Supercontinent, the aspect ratio of the continental masses occupied by Laurasia in
the north and Gondwana in the south was approximately 2 because the Tethys
Oceans occupied the other half of the region in the south, which decreased the result-
ing heating of the underlying upper mantle in the south (Le Pichon and others,
2019). Therefore, the Tethyan Oceans in the south acted as an escape window for the
asthenosphere below Pangea, and the lithosphere of northern Pangea was hotter than
that of southern Pangea (Le Pichon and others, 2019), as indicated by many exten-
sional basins in Europe and the Siberian Traps (S engor and others, 2019a; Le Pichon
and others, 2019; Kent and Muttoni, 2020). The warm mantle therefore spread later-
ally and dragged continental fragments toward peripheral subduction zones (Le
Pichon and others, 2021), such as the Khangai-Khantey accretionary zone or
Mongolia-Okhotsk subduction zone to the east of the supercontinent (Sengo6r and
Natal’in, 1996; Zorin, 1999). Therefore, northern Pangea may have moved to the east
relative to Gondwana to the south. In addition, the difference between horizontal
principal stresses imposed on the lithosphere from mantle flow by subducted slabs or
upwelling flow from the large low shear-wave velocity provinces was nearly zero in the



along the southern central Asian Orogenic Belt in the latest Paleozoic 887

Paleo-Tethys region but remained relatively large across all northern Pangea and
gradually decreased from west to east (Mitchell and others, 2021).

According to the deformation of different areas on the northern side of the
Pangea Supercontinent, we suggest that the interaction of different cratons on the
Laurasia continent to the north resulted in continuous EW shortening in the west
(South Appalachian orogenic belt of North America), the middle (Ural orogenic
belt) and the east (Xing’an-Mongolian orogenic belt), while the heated lithosphere
of northern Pangea by plumes and its lateral (eastward) spreading may have been the
main reason. Under the control of these factors, the IPM formed.

Comparison with Other Continental Transform Faults or Large Shear Systems

There are many large continental transform systems or shear systems in the
world, most of which were active during the Cenozoic (for example, Norris and Toy,
2014; Sengor and others, 2019a). Compared to the Intra-Pangea Megashear or shear
system described in this study, some continental transform faults, such as the San
Andreas Fault of California, the Alpine Fault of New Zealand, and the Anatolian Fault
Zone of northern Turkey are narrower. We suggest that three main reasons can
account for the differential structures in the large-scale continental transform faults.

First, the structures and rheological features of strike-slip shear zones vary with
depth. The width of the shear zone hinges on the exposed depth of the shear zones
because the shear zone widens into a broad zone with increasing depth (for example,
Storti and others, 2003; Lusk and Platt, 2020). The shear system we observed in the
southern CAOB is highly exhumed and displays the middle crustal structures. Most
modern continental transform faults as mentioned above present a relatively narrow
zone, which is a fundamental characteristic of large-scale strike-slip faults in the brittle
upper crust.

Second, the thermal structure of the crust, which determines rock rheology, is
another important factor affecting the width of shear zones. In the late Paleozoic, pro-
found magmatism occurred in the CAOB and highly influenced the thermal status of
the crust. In this circumstance, the development of broad shear networks was facili-
tated. This was the same case in the NE Pan-African Orogen, where intense magma-
tism influenced the structures of the shear zones. Both shear activities occurred in a
~20 Ma interval after the emplacement of voluminous plutons. The widest part of the
shear networks along the southern CAOB is in the Beishan-Alxa region where massive
plutons developed, and many were also involved in the ductile deformation.

Third, the high heterogeneity of the accretional orogenic belt influences the scale
of transcurrent systems. The CAOB is a composite collage, including microcontinents,
islands, seamounts, ophiolites, arcrelated basins, etc. The highly heterogeneous crust
could influence the geometric and kinematic boundary conditions on ductile shearing,
and anastomosing shear zones could be induced. A modern example is the broad intra-
continental deformation in the region between the Tibetan Plateau and Mongolia
Plateau, where a network of disconnected transpressive fault zones is controlled by pre-
existing crustal structures, which favor the localization of strain (for example,
Cunningham, 2013). A much older system is the Borborema Strike-Slip Shear Zone
System (NE Brazil), which is more than 5,000 km long with a width of more than ~700
km and was formed on the basement of the older accretionary Pan-African Orogenic
Belt (Neves and others, 2021; Fossen and others, 2022). Continental transform systems
or shear systems are therefore controlled by the structures and temperatures of the
crust. The types of previous orogenic belts on which continental transform systems form
are also important, and accretionary orogenic belts are preferred.



888  J. Zhang and others—Delermination of an intracontinental transform system

CONCLUSION

An intracontinental transform structure is an important form of continental defor-
mation. Strike-slip faults played an important role in the formation and transformation
of the CAOB. With the closing of the Paleo-Asian Ocean in the late Paleozoic, the
Pangea Supercontinent was formed, and then a group of nearly EW-trending ductile
dextral shear zones developed on the southern margin of the Variscan orogenic belt
and the southern CAOB. The shear zone along the southern CAOB started from the
Urals to the west, cut through the Kazakhstan orocline and passed through the Tianshan
in China in the east and connected with the Beishan. It is connected with the strike-slip
system of the Alxa area in the middle and continues eastward along the northern margin
of the NCC, extending to the east of Greater Xing’an. We named this EW-trending shear
zone in central Pangea the “Intra-Pangean Megashear” (IPM). The tectonic belt affected
almost all rocks and structures before the Triassic. The regional strike-slip duplex system
developed and strongly deformed the early orogenic belt. Its age ranges from 280 Ma to
230 Ma and is younger eastward. This tectonic belt connects the shortening in the Ural
orogenic belt with the convergence in the east and forms the intracontinental transform
structure in the central Pangea Supercontinent. The east west distance is more than 9000
km in the whole Eurasian Plate, and the dextral strike-slip displacement decreases east-
ward from approximately 2500 km in the west, ca. 1000 km in the middle part and
~130-315 km in the eastern segment, which is similar to the notable Altyn Tagh fault in
the Cenozoic and transformed some strike slipping to oblique thrusting/shortening in
the easternmost region due to a change in the strike of the system. The fact that the
Baltic and Siberian cratons rotated close to each other from the end of late Paleozoic to
the early Mesozoic and that the northern Pangean lithosphere was heated by plumes
with lateral (eastward) spreading may have caused the development of the IPM and intra-
continental deformation from Pangea B to Pangea A .
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