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GENERATION OF CENOZOIC GRANITOIDS IN HOKKAIDO (JAPAN):
CONSTRAINTS FROM ZIRCON GEOCHRONOLOGY, Sr-Nd-Hf
ISOTOPIC AND GEOCHEMICAL ANALYSES, AND IMPLICATIONS FOR
CRUSTAL GROWTH
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ABSTRACT. The island of Hokkaido is a young accretionary terrane, basically built
with a Jurassic accretionary complex and Cretaceous arc in the west (= NE Japan arc
terrane), a Cretaceous-Paleogene forearc basin and accretionary complex with the
Hidaka metamorphic belt in the center, and a Cenozoic island arc with Cretaceous
basement in the east (= Chishima or Kuril arc terrane). Though volumetrically small,
Paleogene and Neogene granitoids are widespread in central Hokkaido (Hidaka Belt).
Granitoids are the most representative component of the continental crust, so in this
work we aimed to study the mode of generation and source characteristics of these
granitoids in order to assess the crustal composition of Hokkaido and examine the
general problem of continental growth. New zircon geochronology on nine granitic
and one gabbroic rocks from the Hidaka Belt reveals three distinct magmatic episodes,
two in the Eocene at 45-46 Ma (3 granites), and 37.0 = 0.5 Ma (1 granite), and one in
the Miocene at 18 to 19 Ma (5 granites and 1 gabbro). The Miocene episode represents
the most important granitic emplacement in Hokkaido. The early Eocene zircon ages
of 45 to 46 Ma are identified for the first time for granitoids that occur in the northern
part of the Hidaka Belt. The zircon age of 37 Ma for a granite from Shirataki is rather
rare in Hokkaido, but similar ages had been reported for a tonalite and a granite from
the Hidaka metamorphic belt. Geochemically, all granites are slightly peraluminous
but not S-type, and they possess volcanic arc granitoid characteristics. Their REE
distribution patterns are typically “granitic,” showing fractionated patterns with LREE
enrichment and distinct negative Eu anomaly. The whole-rock isotopic signatures
[Is, = 0.7044 to 0.7061; ey 4(t) = +1.0 to +4.7; Tyy; = 400-1000 Ma] reveal their
largely juvenile characteristics. This is corroborated by the zircon Hf isotopic composi-
tions [€ge(t) = +8 to +19]. The Eocene granites were most probably generated by
melting of subducted accretionary complex in a prolonged period from 46 to 37 Ma in
supra-subduction zone; whereas the Miocene granites were also generated by melting
of accretionary complex in a back-arc rifting setting. In both cases, the involved
accretionary complex was probably dominated by the mantle-derived lithological
component with little Paleozoic or older crustal material. Hokkaido provides an
excellent example of juvenile crust addition to the continental crust.
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kaido, zircon dating, Sr-Nd-Hf isotope tracers, granitoids, Nipponides, crustal growth,
juvenile/recycled crust, Central Asian Orogenic Belt (CAOB)

INTRODUCTION

The Japanese Islands represent a Phanerozoic subduction-related orogen devel-
oped along the western Pacific convergent margin. The formation of the Japanese
Islands has been taken as the classic model for accretionary orogeny (for example,
Cawood and others, 2009). According to Maruyama and associates (Maruyama, 1997;
Maruyama and others, 1997), the most important cause of the orogeny is the
subduction of an oceanic ridge, by which the continental mass increases through the
transfer of granitic melt from the subducting oceanic crust to the orogenic belt.
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Sengor and Natal’in (1996) named the orogenic complex the “Nipponides,” and
pointed out the resemblance in orogenic style between Japan and the Central Asian
Orogenic Belt (CAOB). Using the newly acquired and literature Sr-Nd isotopic data,
Jahn (2010) tested the models made by the above authors. The test reveals that a large
proportion of the granitoids from SW Japan in fact show high initial 87Sr/ 86Sr ratios,
negative €y4(T) values and Proterozoic Sm-Nd model ages. These data are in strong
contrast with those of two celebrated accretionary orogens, the CAOB (for example,
Jahn, 2004) and Arabian-Nubian Shield (ANS; for example, Stern, 1994; Eyal and
others, 2014), but are quite comparable with those observed in SE China and Taiwan
(Jahn and others, 1990; Chen and Jahn, 1998; Jahn, 2010). This raises questions about
the bulk composition of the continental crust in SW Japan, or the type of material
accreted in accretionary complexes. The finding of Jahn (2010) also negates the
hypothesis that the Nipponides contains very few fragments of older continental crust.
It appears that the subduction-accretion complexes in SW Japan represent only the
upper portion of the bulk crust, which is probably underlain by a Proterozoic
basement.

A continuous study on other parts of the Japanese Islands reveals that the crustal
development in NE Japan (= NE Honshu and Hokkaido) is quite distinguished from
that of SW Japan (fig. 1). In NE Japan the granitoids show the lithological types (more
TTG, or tonalite-trondhjemite-granodiorite suite, and adakitic rocks) and Sr-Nd
isotopic compositions with significantly more “juvenile” signatures. Since granitic
rocks are commonly generated in the P-T conditions of middle to lower crust, they are
ideal materials to be used to probe the nature and architecture of the middle to lower
continental crust. Besides, the radiogenic isotopic compositions of granitoids preserve
the crustal history of their protoliths and constrain their formation time. In this paper,
we employ the conventional geochemical and isotopic tracer techniques, together with
zircon dating and Hf isotope analyses, to examine the petrogenesis of the Tertiary
granitoids from Hokkaido. We will then compare the results with that of the massive
granitoids from SW Japan and other celebrated accretionary orogens (for example,
CAOB and ANS), and discuss the implications for crust growth and the tectonic
evolution of the Japanese accretionary orogens.

GENERAL GEOLOGIC SETTING OF JAPAN AND HOKKAIDO

The evolution of the Japanese Islands results from the interaction of four tectonic
plates: the Eurasian, Philippine Sea, Pacific and Okhotsk. The southwestern part of
Japan (SW Japan) is an eastern margin of the Eurasian Plate, but separated from the
Asian continent by the Japan Sea. The northeastern part of Honshu and Hokkaido
(= NE Japan) belong to the Okhotsk plate. The Okhotsk plate was formerly consid-
ered as a part of the North American Plate, but recent studies indicate that it is an
independent mini-plate, bounded on the north by the North American Plate (Seno
and others, 1996; Apel and others, 2006). The Philippine Sea plate is subducting
northwestwards at a rate of 4 to 6 cm/a under SW Japan along the Nankai Trough and
Ryukyu trench. The Pacific plate is subducting at a rate of 9 to 10 cm/a beneath NE
Japan, with its leading slab reaching a depth of 660 km underneath the area of Beijing,
China, as revealed by a tomographic study (Zhao and others, 2007, 2011; see also a
review by Isozaki and others, 2010).

An incipient subduction zone appears to be developed in the eastern Japan Sea
(Nakamura, 1983; Tamaki and Honza, 1985). Its onland extension, the Itoigawa-
Shizuoka Suture (fig. 1), separates the Japanese Islands in two parts, NE and SW Japan.
However, this subduction zone is not universally accepted as the geophysical evidence
is still not so convincing. On the other hand, many workers consider that the true
geological or tectonic boundary between NE and SW Japan in the Pre-Tertiary time is
located within NE Honshu, termed as “the Tanakura Tectonic Line” (fig. 1).
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Fig. 1. Index map of Japan showing major tectonic units discussed in this paper. NE Japan is separated
from SW Japan by a major fault or tectonic boundary, which is controversially represented by the
Itoigawa-Shizuoka or Tanakura Tectonic Line. SW Japan comprises five tectonic belts: three granitic belts
(Sanin, Sanyo and Ryoke) are separated by two accretionary belts (Sanbagawa and Shimanto) by the Median
Tectonic Line. In NE Japan, granitic rocks mainly occur in the Kitakami and Abukuma Mountains.

The predominance of accretionary complexes and the association of detached
continental fragments in Japan suggest that the Japanese Islands have developed
mainly through convergence between oceanic and continental plates along active
margins (Isozaki, 1997; Isozaki and others, 2010). Isozaki (1996) stated that several
major oceanic plates have subducted beneath the South China Block margin, leaving
more than 10 distinct accretionary complex (AC) belts (now reduced to 9 AC belts,
based on the latest reappraisal of the geotectonic framework of Japan by Isozaki and
others, 2010). All the AC belts occur as thin subhorizontal fault-bounded geologic
units, that is, nappes, and show a clear downward and oceanward younging polarity
(Isozaki and Itaya, 1991; Isozaki and Maruyama, 1991). Numerous oceanic fragments
derived from subducted oceanic plates, including deep-sea sediments and seamount
basalts and reef limestone, were accreted to Japan. According to Isozaki and others
(2010), five orogenic phases had occurred in the last 500 Ma, namely, at 450 Ma



zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses 707

(Oeyama), 340 Ma (Renge), 240 Ma (Akiyoshi), 140 to 130 Ma and 80 to 60 Ma. The
Permo-Triassic event in Japan was thought to be related to the continental collision
between the North and South China Blocks as recorded in the Dabie-Sulu terrane of
China (Oh, 2006; Isozaki and others, 2010), or due to the collision of a Proto-Japan
block with the Eurasian margin (de Jong and others, 2009). In summary, the model of
accretionary orogeny developed for the Japanese Islands (= Miyashiro-type orogeny,
Maruyama, 1997) underlines the prime role of continuous ocean-floor and episodic
ocean-ridge subduction.

Geology of Hokkaido. The island of Hokkaido is a young accretionary terrane
with little or no rocks of Paleozoic ages and older. Kiminami and others (1986)
presented the first tectonic framework of the island’s evolution, which was followed by
other workers (for example, Komatsu and others, 1992). According to Ueda and
others (2000) and Ueda (2005), Hokkaido comprises five roughly N-S running
tectonic units or orogenic belts, from west to east (fig. 2): (1) the Oshima Belt, a
Jurassic accretionary complex and an overlying Cretaceous arc; (2) the Sorachi-Yezo
Belt, a Cretaceous-Paleogene forearc basin and accretionary complex; (3) the Hidaka
Belt, a Paleogene arc complex in the north and the Hidaka metamorphic belt in the
south; originally, the Hidaka Belt was defined to contain a Hidaka Supergroup (clastic
accretionary complex) and a Hidaka Metamorphic Belt (metamorphosed accretionary
complex, up to granulite facies); (4) the Tokoro Belt, a Cretaceous and Paleogene
accretionary complex; and (5) the Nemuro Belt, a Cretaceous and Paleogene arc/
forearc complex (fig. 2). Tectonically, the Oshima Belt has been considered as the
northern extension of NE Honshu and formed the same tectonic collage with
Sikhote-Alin of the Russian Far East (= Honshu-Sikhote-Alin Tectonic Collage), and
the Sorachi-Yezo and Hidaka Belts formed a second tectonic collage or continental-
margin arc with Sakhalin (= Sakhalin-Hokkaido Tectonic Collage; Rodionov and
others, 2011). This arc was interpreted as having formed during subduction of the
ancestral Pacific plate (Izanagi). The Tokoro and Nemuro belts belong to the Kuril Arc
Terrane.

The accretionary complexes of the Oshima, Sorachi-Yezo and Hidaka Belts show a
generally eastward younging polarity formed by westward subduction (Ueda and
others, 2000; Kawamura, 2004). U-Pb SHRIMP dating of detrital zircon from the
Oshima sandstone revealed some Precambrian ages of 1.88 and 2.5 Ga, hence
suggesting that the Oshima sandstone had a share of clastic source from Precambrian
terranes of the Asian continent or the Sino-Korean Craton (Kawamura and others,
2000).

The Sorachi-Yezo Belt comprises four tectonic units (GS], 2010): (1) the Sorachi
Group, in the western part of the belt, composed essentially of greenstones in the lower
partand greenstone, chert and pyroclastic rocks in the upper part; (2) the Yezo Group,
to the east of the Sorachi group, characterized by a Cretaceous forearc basin sequence
dominantly of marine siliciclastic deposits; (3) the Kamuikotan Zone, consisting of
Cretaceous accretionary complexes, which have undergone various grades of metamor-
phism from the blueschist to epidote amphibolite facies; and (4) the Idonnappu Zone,
consisting also of Cretaceous accretionary complexes, but only feebly metamorphosed.
Kimura and others (1994) proposed that the greenstones of the Sorachi Group
represented the remnants of an accreted Late Jurassic oceanic plateau formed on the
Izanagi (Paleo-Pacific) plate based on the large volume of basaltic flows and hyaloclas-
tic deposits. However, it has also been proposed that the Sorachi-Yezo belt represents a
normal oceanic crust (Niida and Kito, 1986) or a marginal basin crust (Takashima and
others, 2002). As a whole, Hokkaido is characterized by the latest Cretaceous to early
Paleogene rapid growth of accretionary complex and exhumation of high pressure
metamorphic rocks in the northwestern Pacific margin (Kimura, 1994).
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Fig. 2. General geologic map of Hokkaido (modified after Yamada and others, 1990). The division of
tectonic units follows Ueda and others (2000) and Ueda (2005).
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The Hidaka Belt in central Hokkaido is characterized by the vast distribution of
Cretaceous accretionary complexes and Tertiary metamorphic belts and ophiolites
(for example, Osanai and others, 1991, 1992). The Hidaka Supergroup consists mainly
of sandstone and shale, with minor chert and volcanic tuffs. Basaltic lava is also found
to erupt on or intruded into unconsolidated mudstone (Miyashita and Katsushima,
1986; Kiminami and others, 1999). Based on microfossil studies, these sediments were
mostly deposited in the Paleogene. The Supergroup was intruded by granitoids of
Eocene to Miocene ages. All the samples analyzed in this work came from this belt.

The Hidaka Metamorphic Belt (HMB) in south-central Hokkaido consists of
high-angle east-dipping thrust sheets composed of metamorphic (pelitic-psammitic
rocks, intermediate and mafic rocks), igneous (layered gabbro, massive gabbro-diorite
and granitoids), and alpine-type ultramafic rocks (Arai and Takahashi, 1989; Arai,
1994; Shimura and others, 2004). In fact, the southern part of the Hidaka belt was
considered to have formed by upthrusting of the eastern main block toward the
western block due to oblique subduction of the Pacific Plate along the Kuril Trench
since Miocene (Kimura, 1986). Thus, some workers considered that the zone along the
Hidaka Main Thrust is a distinct suture between the western (Eurasian plate) and
eastern (Okhotsk Plate) blocks (for example, Iwasaki and others, 2004). On the other
hand, Ueda (2005) considered that the boundary between the Kurile and NE Japan arc
terranes is situated to the east of the Hidaka Belt.

The base of the HMB is the Hidaka Main Thrust, where the metamorphic and
igneous rocks are mylonitized with dextral shear sense. Almost all igneous rocks are
intruded into the metamorphic layers as syn-metamorphic suites. The HMB is thought
to represent an eastward dipping island-arc type crustal section (Komatsu and others,
1989, 1994; Owada and others, 2003). Based on the reconstruction of Shimura and
others (2004), the unexposed “lowermost part” of the “Hidaka crust,” from ca. 23 km
to the Moho (30 km?) is probably composed of mafic granulites as inferred from
petrological studies. The “lower Hidaka crust” (15-23 km) is likely represented by
garnet-2-pyroxene mafic granulite, garnet-orthopyroxene aluminous granulite and
gabbro. The mafic granulites and gabbros show MORB-like composition (Maeda and
Kagami, 1994, 1996; Mikoshiba, 1999).

The Hidaka Mountains show a positive gravity anomaly zone, which was probably
due to the tectonic uplift of the basement rocks that occurred during the collision of
the Kuril forearc sliver with the northern extension of the Honshu arc (Kimura, 1986;
Taira, 2001). In addition, the crustal thickness of the Hidaka Mountains is ca. 30 to 50
km (Ogawa and others, 1994), which is the thickest in Hokkaido.

The celebrated Horoman Peridotite occurs in the southernmost of the Hidaka
belt. It is a fault-bounded mantle slice of 8 km X 10 km X 3 km, emplaced at ca. 23 Ma
(Rb-Sr isotopes on a phlogopite-bearing spinel lherzolite, Yoshikawa and others,
1993). The peridotite consists of several lithological sequences of plagioclase lherzolite—
lherzolite-harzburgite * dunite-harzburgite-lherzolite—plagioclase lherzolite (for
example, Takahashi, 1991; Takazawa and others, 1999, 2000). As the Horoman
Peridotite is not directly related to the present work, no further details will be given.
Similarly, the two tectonic units of the Kuril Arc, the Tokoro and Nemuro belts, are
unrelated to the petrogenesis of the granitoids concerned, their description is not
further presented. We proceed to introduce the geological setting and essential points
relevant to the studied granitoids.

OCCURRENCE OF GRANITOIDS

Though volumetrically small, Cenozoic granitoids are widespread in the Hidaka
Belt. They are scattered in the axial belt of central Hokkaido for an area of 300 km N-S
and 60 km E-W (Ishihara and Terashima, 1985). The granitoids commonly crop out to
the east of the high-grade metamorphic belt in the south, but scattered widely in the
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non-metamorphosed Hidaka Supergroup in the north. Spatially, the granitoids do not
accompany coeval volcanic rocks, but are closely associated with the contemporaneous
gabbroids.

The Cenozoic granitoids of the Hidaka Belt are mostly fine-grained massive I-type
granitoids (Ishihara and Terashima, 1985). Since they are associated with gabbroids,
especially in the westernmost zone, the plutonism is of a bimodal nature. S-type
granitoids also occur, and both S- and I-type granitoids contain ilmenite but not
magnetite, so they belong to the ilmenite series (Ishihara and others, 1998). Ishihara
(2007) considered that the granitoids were generated within the accretionary complex
of the Hidaka Supergroup and its basement, by heat provided by these gabbroids.

Tonalitic granitoids, commonly known to be generated by partial melting of mafic
sources, such as amphibolites, at lower crustal conditions, are conspicuously present in
abundance in the Hidaka Metamorphic Belt. Based on the ASI (aluminum saturation
index) or A/CNK (= Al,O3/(CaO+Na,O+K,0) molar ratio), many of them have
been classified as “S-type tonalities,” and the peraluminous variety (S-type) predomi-
nates over the metaluminous I-type (Shimura and others, 2004). Furthermore, the
tonalities, especially the S-type, entrain a large number of enclaves of various rock-
types, including para-granulites (gt-opx-bi granulite and gt-opx-cord granulite), mafic
granulites, and meta-harzburgite. Mafic enclaves comprise gabbro, hornblende amphi-
bolite and mafic granulites (opx granulite and two-px granulite). Enclave-melt reac-
tions are commonly observed.

Kemp and others (2007a) studied a suite of rocks including opx-bearing granu-
lites, tonalites and gabbros from the Hidaka metamorphic belt and attempted to clarify
the magmatic-metamorphic connection in this area. Their zircon geochronology
revealed that the granulite and amphibolite facies metamorphism and the emplace-
ment of garnet-opx tonalites and gabbros took place at about 19 Ma; whereas a
hornblende-tonalite and a granite were emplaced at 37.5 * 0.3 Ma. With these zircon
age data, they concluded that the Hidaka metamorphic belt has recorded a two-stage
evolution, with the first stage of supra-subduction zone magmatism in late Eocene (ca.
37 Ma) and the second stage of back-arc extension in the Miocene (ca. 19 Ma). The
second stage coincides with the opening of the Japan Sea, and the tectonic activity
resulted in the granulite metamorphism and generation of grt-opx tonalite and
gabbro, probably all related to the underplating of basic magma.

SAMPLING LOCALITIES AND SAMPLE DESCRIPTION

The granitoid samples of this study were collected from the Hidaka Belt of central
Hokkaido, in a N-S traverse along about 143°E (fig. 3). A simple petrographic
description of all the samples is given in table 1. Note that the rock types assigned for
the granitoids were determined after the QAPF classification scheme of Streckeisen
and Le Maitre (1979) based on normative abundances of quartz and feldspars. The
modal analysis indicates that in addition to quartz and feldspars, biotite is present in all
and hornblende in most granitoid samples. The only gabbro sample is composed of
plagioclase, orthopyroxene and clinopyroxene.

ANALYTICAL METHODS

Zircon U-Pb Geochronology and Lu-Hf Isotopic Analysis

Zircon grains were separated from samples of about 1 to 3 kg using the conven-
tional heavy-liquid and magnetic separation techniques at the Langfang Mineral
Separation Laboratory, near Beijing. Cathodoluminescence (CL) images were taken at
the Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological
Sciences, for examination of zircon internal structures and for selection of analytical
spots.
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Fig. 3. Sampling localities of the granitoid samples from central Hokkaido. The Yamabe and Perari-
yama intrusions are of granite porphyry. The new zircon ages obtained in this study are shown next to the
sample numbers. Map based on GSJ, AIST, editor (2003), Maeda and others (1986), Editorial committee of
Hokkaido (1990), Editorial committee of Geology of Japan (2005), Osanai and others (2006, 2007), Suetake
(1997), and Nakagawa (1992).

Zircon U-Pb isotopic analyses were performed using a New Wave UP213 laser
ablation system combined with an Agilent 7500s quadrupole ICPMS (inductively
coupled plasma mass spectrometer) at the Department of Geosciences, National
Taiwan University (NTU-Geosciences). The LA-ICPMS operating conditions and
analytical procedures were the same as those reported in Chiu and others (2009). We
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TaBLE 1

Petrographic description of granitoid and gabbro samples from Hokkaido, Japan

Sample Rock type Major phases (approx. proportion) Accessory phases Secondary
No. phases
NS-1 syenogranite  Kf(35%), Qtz (23%), Bt (20%), P1(19%),  opaque, zircon, apatite, ~ Limonite?
Hbl (Chl) (3%) titanite
SAH-1 syenogranite  Kf (40%), Qtz (36%), P1 (14%), Hbl (5%),  opaque, zircon, apatite
Bt (5%)
SRK-1 gabbro P1(60%), Opx (35%), Cpx (5%) opaque Hb, Bt, Chl
SRK-2 granodiorite Pl (45%), Kf (23%), Qtz (22%), Hbl (3%),  opaque, titanite, zoisite
Bt (7%)
UTT-1 monzogranite  Qtz (26%), Kf (26%), P1 (23%), probably opaque, apatite, zircon Chl
Hbl or Bt in original (25%)
UTT-2 monzogranite Qtz (32%), Kf (28%), P1(20%), Bt? In opaque, apatite, zircon
original (15%), green Hbl (5%)
OTC-1 monzogranite  Kf (36%), Qtz (31%), P1(23%), Bt (10%) zircon, apatite
OTC-2  monzogranite Qtz (36%), P1 (31%), Kf (23%), Bt (10%)  opaque, zircon, apatite
ICH-1 syenogranite  Kf (49%), P1 (24%), Qtz (24%), Bt (3%) opaque, titanite, zircon, Chl
apatite
ST-1 monzogranite  Qtz (42%), P1 (26%), Kf (17%), probably  opaque, titanite, zircon,
Hbl or Bt in original (15%) apatite
UK-1 monzogranite P1(36%), Qtz (31%), Kf (23%), Hbl (5%),  opaque, zircon, apatite
Bt (5%)
AB-1 monzogranite Bt (40%), P1 (21%), Kf (21%), Qtz (18%)  opaque, zircon, apatite

have followed a common practice in reporting zircon ages of young, particularly
Cenozoic, rocks; for example, Wen and others (2008) and Chiu and others (2009).
Generally, precise measurement of 207Pb/ 2357 and 2°"Pb/2°°Pb ratios is feasible for
Precambrian zircons, but not for very young zircons, due to the fact that in young
zircons *U comprises less than 1 percent of natural U, thus little **’Pb can be
produced in zircons (for example, Ireland and Williams, 2003). For this reason, the
weighted mean of pooled *’°Pb/**®*U ages are taken to represent the crystallization
ages of the dated samples. The 2°°Pb/?*®U ages are reported with uncertainties at
two-standard deviation (20) or 95 percent confidence level.

In-situ Lu-Hf isotopic analyses of zircon were performed using a multi-collector
ICP-MS (Neptune), also at NTU-Geosciences. A New Wave UP193FX laser ablation
system was used for spot vaporization. The Lu-Hf isotope analyses were done on the
same zircon grains that were previously analyzed for U-Pb dating. Ablation time was
about 26 s for each measurement with a beam diameter of ca. 40 pm, an 8 Hz
repetition rate, and energy of 100 m]. The detailed descriptions for the analytical
techniques can be found in Wu and others (2006) and Xie and others (2008). The
Harvard reference zircon 91500 and Australian Mud Tank carbonatite zircon were
used as secondary standards for data quality assessment. During the data acquisition of
this study, V6HE/V7THSE ratio of 0.282511 + 25 (20, n = 39) for Mud Tank and
0.282293 = 22 (20, n = 16) for 91500 were obtained. These values are in good
agreement with those obtained by solution and ICPMS methods reported in the
literature (Goolaerts and others, 2004; Woodhead and others, 2004; Woodhead and
Hergt, 2005; Griffin and others, 2006; Wu and others, 2006).

Major and Trace Element Analyses

All major and trace element analyses were performed at NTU-Geosciences.
Samples were crushed in a stainless steel jaw crusher and then powdered in an agate
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mill. Major elements were determined by X-ray fluorescence (XRF) spectroscopy on
fused glass beads, using a Rigaku RIX-2000 spectrometer. For trace-element analyses,
about 200 mg of powdered sample was dissolved in a mixture of HF and HNOg (2:1) in
a screw-top Teflon beaker (Savillex) for 5 to 7 days at ~100 °C. This was followed by
evaporation to dryness, refluxing in 6N HCl and drying twice, and finally re-dissolution
in IN HCI. The procedure was repeated until complete dissolution. The final solution
was split in two parts; a small aliquot (about 10%) was used for subsequent trace
element analysis by ICP-MS, and the rest for further chemical separation of Sr and Nd
for isotopic analysis using a thermo-ionization mass spectrometer (TIMS). Trace
element analysis was performed using an Agilent 7500s. The standard reference
materials used for trace element analyses are AGV-2, BCR-2, BHVO-2, BIR-1 and
DNC-1. The details of analytical procedures may be found in Lin and others (2012).
Analytical errors are 0.5 to 3 percent for major elements and 1 to 10 percent for trace
elements, depending on the concentrations.

Whole-Rock Sr-Nd Isotopic Analyses

For Sr-Nd isotopic analysis, the chemical preparation and mass analysis were
performed at Institute of Earth Sciences (IES), Academia Sinica. Approximately 150 to
175 mg of rock powder was dissolved using a HF-HNO, (2:1) mixture in a screw-top
Teflon beaker for 5 to 7 days at ~100 °C. This same procedure was followed by
evaporation to dryness, refluxing in 6N HCI and drying twice, and then dissolution in
1N HCI. The procedure was repeated until complete dissolution. Chemical separation
was carried out using the conventional ion exchange techniques. Strontium and REEs
were separated in polyethylene columns with a 2.5 ml resin bed of AG50W-X8, 100 to
200 mesh. Strontium was further purified through 1 ml resin bed of AG50W-X8, 100 to
200 mesh. Neodymium was separated from other REEs on 1 ml polyethylene columns
using Eichrom Ln resin (Ln-B25-A) as a cation exchange medium. Sr and Nd isotope
ratios were measured using a Finnigan MAT 262 and a TRITON mass spectrometer.
For the isotopic measurement, Sr was loaded on a single Ta filament with H;PO, and
TaF5; but Nd was loaded on a Re filament with HgPO, and measured using a
double-Re-filament configuration. The effect of mass fractionation in Sr and Nd
isotopic measurements was corrected by normalizing to *°Sr/**Sr = 0.1194 and
MONd/M*Nd = 0.7219, respectively. Analyses of NBS 987 Sr and JMC Nd standard
throughout the period of analysis yielded %6Sr/87Sr = 0.710238 * 0.000016 (20) and
"Nd/'"*Nd = 0.511812 = 0.000007 (20). Procedural blanks were ca. 330 pg Sr and
300 pg Nd. Within-run precision, expressed as 20, was better than 0.000010 for both
Sr and Nd. The procedures of chemical separation and mass analysis can be found in
Jahn and others (2009).

ANALYTICAL RESULTS

Zircon U-Pb Data

The CL images of the ten analyzed zircon samples are shown in figure 4. The sizes
of zircon grains could be estimated from the round laser-abraded spots that have a
diameter of about 50 pm. Zircon grains are in general prismatic and euhedral. A total
of 104 images were taken. Since all the images are very similar, only two images from
each sample are displayed in this figure. All zircon crystals show simple internal
structure with clear oscillatory zonings, thus their magmatic origin can be certified.
The results of U-Pb isotopic analyses are given in table 2. The errors for individual spot
analyses are quoted at 1o, whereas those for the weighted mean ages represent 20
(95% confidence level).

Figure 5 shows a plot of Th/U ratios vs U concentrations in zircon samples. The
variation in both parameters are quite impressive; the U concentrations vary from less
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Fig. 4. Representative CL images of the dated granitoids and a gabbro. The round spot size is about 50
pm (diameter).

than 100 ppm to 2000 ppm or more, and most Th/U ratios are greater than 0.5. Since
metamorphic zircons commonly have low to very low Th/U ratios (<0.1; Hoskin and
Black, 2000), the present Th and U concentration data corroborate the magmatic
origin of the zircon crystals of the Hokkaido granites.

Figure 6 illustrates the U-Pb isotopic compositions in the Concordia diagrams. We
underline that almost all individual analyses fall on or near the Concordia. For the
obvious reason that the ratios of 2°°Pb/?*¥U are more precisely measured than those of
207ph /235U and 2°"Pb/?°°Pb (table 2), the weighted mean values of 206py, /23817 dates
are taken to be the crystallization ages of the analyzed zircon crystals. The obtained
ages fall in three groups: (1) 45 to 46 Ma (3 granite samples), (2) 37.0 = 0.5 Ma (1
granite sample), and (3) 18 to 19 Ma (5 granite samples and 1 gabbro sample).

Whole-Rock Geochemical Data

The chemical analyses of the granitoids are presented in table 3. The principal
characteristics are illustrated in figures 7 and 8. In the Q’-ANOR classification scheme
of Streckeisen and Le Maitre (1979), all the Hokkaido granitoids fall in the class of
“granite” (monzogranite + syenogranite) with only one exception, sample SRK-2, in
granodiorite (fig. 7A). The granitoid samples show a range of SiO, contents from ca.
65 to 75 percent, and K,O from 2.7 to 5.0 percent (table 3). In the A/NK vs A/CNK
diagram (fig. 7B), most samples are shown slightly peraluminous; all but one sample
(AB-1) have A/CNK ratios less than 1.1, which is the value suggested by Chappell and
White (1992) to be the boundary between I- and S-type granitoids. Consequently, most
granitoids may be considered as I-type granitoids, but not S-type as commonly referred
to in the literature.
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Fig. 5. Thand U concentrations in zircon crystals of the Hokkaido granitoids. The generally high Th/U
ratios (>0.5) suggest that the zircon crystals are of magmatic origin.
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Chondrite-normalized REE patterns are shown in figures 8A and 8B. They are
typical of granitic rocks, with light REE enrichment and conspicuous negative Eu
anomaly. The REE abundances of the older Eocene granitoids (fig. 8A) may be slightly
lower and less fractionated than those of the younger Miocene granitoids (fig. 8B), but
the difference is quite subtle. The only gabbro sample exhibits a quasi-flat REE pattern
with about 10x chondritic abundances. In a sense it looks like an atypical N-MORB with
small LREE depletion.

Primitive-mantle-normalized spidergrams of the granitoids are shown in figures
8C and 8D. In the spidergrams the trace elements are arranged in the ascending order,
from left to right, of their compatibilities with the basaltic liquid. Nevertheless, the
application of such diagrams to granitic rocks also serves to identify fractionation of
particular mineral phases during the generation and differentiation of granitic liquids.
Figure 8C shows that in the Eocene granitoids, depletion or negative anomaly is
observed in Nb-Ta, Sr, P, Zr and Ti. The phenomenon of the “INT (Ti-Nb-Ta)
anomaly” is most characteristic of granitic rocks, island arc volcanics and the continen-
tal crust in general.

The spidergrams of the Miocene granitoids are shown in figure 8D. The general
enrichment/depletion patterns are grossly similar to those of the Eocene granitoids.
The only gabbro shows negative anomalies in Nb and Ta, but positive anomaly in Sr.
Such an elemental distribution may favor an interpretation of its origin in an island arc
setting, but not in mid-ocean ridge.

Whole-Rock Sr-Nd Isotopic Data

The whole-rock Sr and Nd isotopic analyses are given in table 4, and further
illustrated in figure 9A. The Rb concentrations in all samples range from 50 to 143
ppm, which are “normal” for granitic rocks. However, the Sr contents vary from ca. 50
to 190 ppm, which are somewhat lower than the normal range of granitic rocks. The
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Fig. 6. U-Pb Concordia diagrams for the zircon grains from the Hokkaido granitoids and a gabbro.

calculated initial ®’Sr/®%Sr ratios (Is, values) range from 0.7044 to 0.7061; and the
age-corrected initial 143N d /'Nd ratios, expressed as €yq(t) values, are all positive,
ranging from +1.0 to +4.7. Single-stage Sm-Nd model ages are between 400 to 1000
Ma (table 4).
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Fig. 6. (continued).

In figure 9B, the literature Sr-Nd isotopic data of Cenozoic felsic-intermediate
magmatic rocks are also shown for comparison. The isotopic data of Miocene rhyolitic
rocks are predominant and they refer to those occurring in four areas—northern
Hokkaido (4-15 Ma; Takagi and others, 1999), central Hokkaido (15-17 Ma; Furukata
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Fig. 6. (continued).

and others, 2010), SW and NE Hokkaido (2-18 Ma; Takanashi and others, 2011, 2012).
Note that all the rocks from the Hidaka metamorphic belt show positive gy, (t) values
except for four tonalitic rocks, two of them defined as tonalitic xenoliths and two as
S-type tonalities (shown in blue diamonds in fig. 9B; Owada and others, 2006). The
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Fig. 6. (continued).

entire data set also shows an anti-correlation between €y,(t) and Ig, values. Note that
the ensemble of our new granitoid data points (shown in red solid dots, fig. 9B)
appears to lie slightly above the bulk array.



zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses 727

data-point error ellipses are 2o

0.0032 NS"1 Granite I
(Nissho-toge) ,
0.0030 | /l’;ﬁ,
TN
) >
] 7
a A/
g 00028 | X
s | 777 (Mean = 182403 [1.4%] 95% conf.
Witd by data-pt errs only, 0 of 19 re;j.
MSWD = 1.5, probability = 0.08
(error bars are 2c)
0.0024 — : P — F—
0.008 0.012 0.016 0.020 0.024 0.028 0.032
207pp/235
data-point error ellipses are 2¢
0.0036 773
SRK-1 Gabbro/ J
0.0034 | (Shira’
0.0032 jﬂ."
i - ,/‘.‘\\\
/4"“\ \)
) "7,/1/ 7@:‘3\\\‘\\\ A
T BN
s 0.0030 | /j \4 (//@,A‘)b\,/ /
3 Vi Avy”»‘
Ni\vwag/7)
0.0028 | “'»\‘sgh-" %'(l .
\%\‘;“{3“/4 Mean = 19.0%0.2 [1.3%] 95% conf.
‘YE‘«% Wtd by data-pt errs only, 0 of 23 rej.
0.0026 | ‘ MSWD = 0.80, probability = 0.73
(error bars are 2c)
0.0024 . . L . f )
0.00 0.01 0.02 0.03 0.04 0.05

207pp/235

Fig. 6. (continued).

Zircon Hf Isotopic Data
The zircon Hf isotopic compositions of the Hokkaido granitoids are given in table
5, and further illustrated in figures 10A and 10B. Note that all individual samples have
arange of g¢(t) values; for example, sample UK-1 (ca. 45 Ma) shows a range of gpy(t)
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from +8.9 to +17.3, and ST-1 (37 Ma) from +11.0 to +18.1 (table 5). The ranges are
beyond the analytical uncertainty of 0.5 to 1.0 epsilon unit. In a study of zircon
chemistry and Hf isotopic compositions from two igneous complexes (Pingtan and
Tonglu) in SE China, Griffin and others (2002) observed that a large variation in
YSHE/VTTHE (up to 15 ey units) was found between zircon grains of different growth
stages within a single rock, and between zones within single zircon grains (up to 9 €
units). Such variation suggests that each of the observed magmas in both complexes
developed through hybridization of two or more magma batches with different
sources. They conclude that this mixing has produced similar Sr and Nd isotopic
compositions in the different rock types of each complex, but the zircons have
functioned as “tape recorders” and preserved details of the assembly of the different
magmas. We agree with the above observation and interpretation of Griffin and others
(2002), however, we like to offer a supplementary explanation as follows.

Zircon crystallizes at a given time in an evolving granitic magma that would likely
preserve the chemical and isotopic compositions in equilibrium with the magma at
that time. The bulk composition of a magma chamber would change through
fractional crystallization, but such closed system chemical fractionation will probably
not modify the isotopic compositions. A change of isotopic compositions could only be
achieved through an open-system behavior, such as influx of a foreign magma or
assimilation of country rocks in the magma chamber. Zircon crystals formed at any
given stage would register the Hf isotopic composition of the evolving magma at that
stage. Since zircon crystals do not grow at the same time, the individual grains from a
single rock could have recorded the Hf isotopic compositions of different stages of
magma evolution.

Kemp and others (2007b) conducted an elaborate study of Hf isotopic change
with magma generation and evolution of the I-type granites from the Lachlan Fold Belt
of Australia. They analyzed U-Pb, Hf and O isotopic compositions in zircons to reveal
the nature of the crustal component. They reached a novel conclusion that the I-type
granites were in fact formed by the reworking of sedimentary materials by mantle-like
magmas, but not by remelting of older metamorphosed igneous rocks as widely
believed. Nonetheless, the authors also concluded that I-type magmatism critically
involves continental growth, this being camouflaged to some extent by the non—-mantle-
like isotope ratios of the bulk rocks. The overall proportion of juvenile material added
by the Lachlan I-type suites was between 85 percent and 50 percent in different
plutons.

Despite the large range of €4.(t) values observed in the Hokkaido granitoids (fig.
10A), the entire data set shows that all of them is exclusively positive, similar to the
whole-rock gy4(t) values. The two-stage Lu-Hf model ages are shown in figure 10B. All
model ages are younger than 550 Ma, and a few give negative or future age values.
Similar to the whole-rock Sm-Nd model ages, the zircon Hf model ages are consistent
with their juvenile characteristics. No Precambrian heritage is identified.

DISCUSSION

Significance of the New Zircon U-Pb Ages and Literature Age Data

Our new zircon age data and those from Kemp and others (2007a) indicate three
distinct intrusive events in Hokkaido at ca. 45, 37 and 18 Ma. In order to reach a better
understanding of the significance of the newly obtained zircon ages and the tectonomag-
matic evolution of Hokkaido, we compiled the available age data of Tertiary plutonic
rocks from the literature, and they are summarized in a histogram (fig. 11). Among the
108 dates reported in the literature, a half of them (54) were obtained on biotite by the
conventional K-Ar method, and a quarter (29) were fission-track (FT) dates on zircon
(18) and apatite (11). Prior to the present work, zircon U-Pb dates are rare (total = 6),
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TABLE 3

Chemical compositions of granitoids and a gabbro from Hokkaido

Sample No. NS-1 SAH-1 SRK-1 SRK-2 AB-1 UK-1
Locality Nissho-toge  Sahoro-dake Shirakawa Shirakawa Aibetsu Ukishima
Rock type granite granite gabbro grano-diorite granite granite
Zircon age (Ma) 18.2 18.6 19.0 (19.0) 45.7 44.8
Major element contents (in %)

Si0, 74.48 73.34 48.29 64.89 67.87 68.48
ALO;3 13.57 13.65 19.58 14.55 15.31 13.52
Fey03 1.40 1.91 7.31 6.87 4.03 2.97
MnO 0.03 0.04 0.13 0.11 0.09 0.05
MgO 0.29 0.14 7.24 1.35 1.33 0.75
CaO 1.02 0.87 12.12 2.69 227 2.04
NayO 3.20 4.17 2.75 3.96 3.46 4.76
K,0 5.01 4.37 0.15 2.72 3.23 3.02
TiOy 0.25 0.23 0.81 1.07 0.65 0.38
P,05 0.06 0.05 0.08 0.25 0.16 0.09
LOI 0.40 0.37 1.02 0.91 1.04 2.41
Total 99.71 99.14 99.48 99.36 99.44 98.46
Parameters used for classification of Streckisen and Le Maitre (1979):

ANOR 12.74 12.64 97.72 40.44 33.21 25.59
Q' 34.96 30.72 0.00 25.49 31.38 26.10
Parameters (molar ratios) for calculation of aluminum saturation index:

A/NK 1.27 1.18 4.18 1.54 1.67 1.22
A/CNK 1.08 1.03 0.73 1.01 1.15 0.91
Trace elements (in ppm):

Cs 4.0 5.1 3.0 6.1 6.1 2.6
Rb 108.6 143.2 5.6 109.8 88.8 94.8
Sr 75.2 47.8 211.2 151.5 163.7 67.0
Ba 476 679 29.3 541 659 346
Nb 4.17 6.64 1.05 8.59 9.31 4.63
Ta 0.35 0.58 0.08 0.65 0.72 0.39
Th 9.58 12.32 0.35 6.85 12.59 7.41
U 1.45 2.28 0.1 1.54 2.52 2.3
Pb 18.3 17.9 2.0 10.4 18.7 16.2
Zr 14.1 429 533 38.8 15.6 37.7
Hf 0.66 1.58 1.37 1.11 0.65 1.51
Y 16.85 40.11 15.38 439 3421 26.73
\% 9.3 6.2 150.1 102.5 67.5 15.9
Co 5.6 4.8 36.3 11.8 10.5 6.5
Ni 2.8 2.6 74.4 12.5 13.4 4.5
Cr 6.5 5.3 253.9 24.9 29.3 8.8
Mo 0.59 1.48 0.67 1.03 0.87 1.29
W 0.16 0.96 0.13 1.05 1.17 0.69
Cu 3.1 3.8 65.0 9.4 21.0 8.5
Zn 25.1 433 47.0 67.6 61.2 43.7
Cd 0.01 0.02 0.03 0.02 0.02 0.02
Ga 15.5 19.5 14.9 21.4 20.2 13.9
Ge 0.3 0.4 1.0 1.0 0.7 0.4
Sn 2.13 4.28 0.79 2.06 4.25 3.58
As 0.81 1.89 0.53 3.23 5.46 0.85
Sb 0.28 0.27 0.16 0.4 0.24 0.29
La 30.49 31.11 2.19 26.00 23.60 15.22
Ce 61.73 66.10 6.60 61.12 55.07 37.51
Pr 6.80 7.88 1.14 7.61 6.49 4.49
Nd 23.95 29.74 5.98 31.03 25.27 17.75
Sm 4.30 6.81 2.03 7.54 5.97 4.29
Eu 0.58 0.78 0.84 1.45 0.95 0.55
Gd 4.18 6.89 2.46 7.89 6.09 4.46
Tb 0.55 1.09 0.44 1.24 0.93 0.72
Dy 3.14 6.82 2.96 7.75 5.73 4.58
Ho 0.63 1.43 0.64 1.61 1.17 0.97
Er 1.71 3.94 1.74 4.35 3.11 2.69
Tm 0.26 0.59 0.26 0.64 0.44 0.41
Yb 1.70 3.76 1.66 4.02 2.67 2.61
Lu 0.24 0.53 0.24 0.58 0.36 0.38

729
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TABLE 3

(continued)
Sample No. ST-1 ICH-1 UTT-1 UTT-2 OTC-1 OTC-2
Locality Shirataki Ichinohashi Uttsu-dake Uttsu-dake Ochuube Ochuube
Rock type granite granite granite granite granite granite
Zircon age (Ma) 37.0 18.5 (45.0) 45.0 17.9 18.2
Major element contents (in %)
Si0, 65.93 73.76 70.86 70.46 72.46 72.36
ALO;3 15.49 13.48 14.46 14.46 14.53 13.95
Fey03 4.24 1.56 2.95 3.20 1.60 2.10
MnO 0.07 0.03 0.03 0.04 0.04 0.04
MgO 1.77 0.34 0.57 0.62 0.40 0.67
CaO 2.06 1.04 1.09 1.89 1.45 1.50
NayO 4.49 3.17 4.45 4.13 3.89 3.43
K,0 2.83 4.92 3.46 3.43 423 427
TiOy 0.64 0.28 0.45 0.49 0.24 0.33
P,05 0.15 0.06 0.09 0.11 0.08 0.10
LOI 1.79 0.66 1.08 0.72 0.37 0.53
Total 99.46 99.30 99.49 99.54 99.29 99.28
Parameters used for classification of Streckisen and Le Maitre (1979):
ANOR 33.92 13.18 17.90 28.32 19.80 19.97
Q 23.89 34.89 29.95 29.57 30.89 33.52
Parameters (molar ratios) for calculation of aluminum saturation index:
A/NK 1.48 1.28 1.31 1.38 1.32 1.36
A/CNK 1.09 1.08 1.11 1.04 1.07 1.07
Trace elements (in ppm):
Cs 2.4 3.8 35 35 8.0 8.6
Rb 92.5 103.0 75.3 833 50.4 50.8
Sr 1283 69.2 188.7 138.9 85.8 1294
Ba 465 653 725 623 571 1056
Nb 6.26 5.12 6.92 7.19 9.37 8.95
Ta 0.53 0.58 0.69 0.55 0.44 0.68
Th 8.3 13.87 9.22 9.84 17.44 11.07
U 1.91 2.65 1.94 2.3 2.27 2.66
Pb 10.4 25.0 7.2 9.1 21.5 25.1
Zr 22.4 39.5 71.1 72.5 15.8 26.4
Hf 0.98 1.55 2.55 2.59 0.7 0.95
Y 33.07 25.95 35.17 42.48 17.03 26.12
A% 61.4 14.3 17.7 21.2 10.3 27.9
Co 13.8 6.2 6.8 7.4 6.0 7.5
Ni 20.8 3.2 3.9 8.6 3.6 7.4
Cr 28.3 6.1 8.9 18.8 6.4 13.4
Mo 0.63 0.85 0.66 0.76 0.63 0.59
W 0.68 0.29 0.64 0.96 0.65 0.66
Cu 5.6 26.8 2.3 3.9 1.8 7.7
Zn 58.8 14.9 19.8 26.4 38.0 36.5
Cd 0.01 0.01 0.02 0.02 0.01 0.01
Ga 19.1 16.3 18.1 18.6 19.2 17.2
Ge 0.6 0.3 0.5 0.5 0.4 0.4
Sn 2.27 1.66 2.67 3.52 1.79 4.86
As 1.09 2.30 0.84 1.07 1.30 7.86
Sb 0.19 0.36 0.25 0.27 0.32 0.53
La 17.56 21.70 20.99 25.13 33.39 25.05
Ce 41.30 46.90 34.74 54.97 71.53 52.88
Pr 5.25 5.20 6.27 6.86 8.10 6.23
Nd 21.19 18.70 25.02 26.87 29.10 23.56
Sm 5.24 4.13 5.68 6.36 5.69 5.24
Eu 0.78 0.56 0.71 0.76 0.59 0.89
Gd 5.45 4.24 5.69 6.75 5.45 5.29
Tb 0.87 0.66 0.91 1.10 0.68 0.79
Dy 5.50 4.16 5.92 7.00 3.64 4.75
Ho 1.16 0.87 1.23 1.49 0.69 0.95
Er 3.19 2.46 3.43 4.11 1.69 2.54
Tm 0.47 0.38 0.54 0.61 0.21 0.38
Yb 3.00 2.52 3.48 3.80 1.24 2.38
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Fig. 7. Chemical characterization of the Hokkaido granitoids. (A) In the Q-ANOR classification
scheme of Streckeisen and Le Maitre (1979), the granitoids fall in the fields of granodiorite and “granite” (=
monzogranite and syenogranite). (B) Most granitoid samples are slightly peraluminous and all but one has
A/CNK values (Shand’s index) less than 1.1. Thus, the granitoids are of I-type. (C) In a binary plot of
Zr+Nb+Ce+Y vs. FeO*/MgO (Whalen and others, 1987), the granitoids show various degrees of fractional
crystallization. No rocks belong to A-type granite. (D) In a geotectonic classification of granitoids by Pearce
and others (1984), all the Hokkaido granitoids fall in the field of volcanic-arc granites.

and Kemp and others (2007a) gave 5 out of 6 dates. As demonstrated earlier, the clear
magmatic zoning, the range of Th/U ratios (>0.5) in zircon crystals and the simple
clustering of concordant or near-concordant data points provide strong evidence for
the zircon crystallization in magmatic liquids. The three distinct age groups must
represent three significant granitic intrusive episodes at 45, 37 and 18 Ma (fig. 11).

The majority of the K-Ar and fission-track (FT) dates can in principle be inter-
preted as the time of magmatic cooling but not the time of magmatic emplacement.
This is probably true for the cases of Otchube (U-Pb age = 18, K-Ar (biotite/WR) =
16.5/16.0 Ma), Aibetsu (U-Pb = 45.5, FT (zircon) = 38.9, FT (apatite) = 16.5 Ma), and
Nissho-toge (U-Pb = 18.6, K-Ar (biotite) = 16.0 Ma). On the other hand, a few K-Ar
(biotite) ages are identical within the error limits with their corresponding zircon U-Pb
ages, such as those of Ichinohashi and Uttsu-dake. This may suggest that the plutons
cooled very fast from magmatic to Ar isotope closure temperature of biotite at about
250 to 300 °C. In this case, the K-Ar ages can be regarded as the time of magma
emplacement.

In any case, figure 11 suggests that the Miocene peak at about 18 Ma must
represent the most pre-eminent tectonothermal event in Hokkaido. The age spectrum
(fig. 11) appears to show a continuous magmatic activity since 52 Ma, but we incline to
think that many of the “intermediate ages” do not represent significant thermal events.
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Fig. 8. REE distribution patterns and spidergrams for the Hokkaido granitoids and a gabbro. Note that
the older Eocene granitoids and the younger Miocene granitoids are quite similar in the trace element
distributions.

However, late Miocene granitic emplacements during 12 to 8 Ma have been well
documented (Ishihara and others, 1998; Ishihara, 2007).

Petrogenesis of the Granitoids—Constrained by Geochemical and Sr-Nd-Hf Isotopic
Compositions

The generation of these granitic rocks has been debated. In the northern half of
the chains, two models have been proposed for the generation of the Eocene granite:
one is related to ridge subduction and the other to arc magmatism due to change of
subduction polarity. For the Miocene granites no model has been proposed.

In the southern half, a model for the Eocene granitoids is also related to ridge
subduction, and a model for the Miocene granitoids calls for a mantle upwelling
related to the opening of the Japan and Kurile basins (Kimura and Kusunoki, 1997;
Usuki and others, 2006; Kemp and others, 2007a). In addition, some granitic rocks that
intruded into a regional metamorphic zone are thought to be derived by mixing of a
basic-to-intermediate magma and an acid magma of crustal partial melting (Owada
and others, 2006).

The granitoids of the present study were collected from several areas in the central
zone of Hokkaido extending N-S for more than 300 km. Besides, they were formed in
three magmatic stages; thus, any petrogenetic model attempting to relate all the rocks
is not realistic. However, it is possible to discuss the general mode of magma
generation based on the geochemical and isotopic characteristics documented in
preceding sections. The validity of proposed models can be tested with the geochemi-
cal and isotopic data.

In general, the granitoids show the typical arc magma signatures, including
light-REE enriched rare earth patterns with strong negative Eu anomalies, distinctive
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Fig. 9. (A) Whole-rock Sr-Nd isotopic compositions of the analyzed granitoids showing that all ey (t)
values are positive. The same scenario is found for Cenozoic volcanic rocks in Hokkaido (B). In (B), the four
data point showing slightly negative ey,(t) values are for the “S-type tonalite” xenoliths from the Nozuka-
dake area, Hidaka metamorphic belt (Owada and others, 2006).

negative Ta-Nb-Ti anomalies in the spidergrams, positive whole-rock €y4(t) values (+1
to +5), positive zircon gy(t) values (+10 to +18), and young whole rock Sm-Nd
model ages (400-1000 Ma), as well as young zircon Lu-Hf model ages (<400 Ma). Note
that little geochemical and isotopic difference exists between the Eocene and Miocene
granitoids. This suggests that their mode of generation and source rock nature were
rather similar but not differentiated by the age factor. The overall isotopic signatures
indicate that the granitoids and the bulk crust of Hokkaido must be quite “juvenile.”
However, the positive €y4(t) values (+1 to +5) are not so “mantellique”; they are lower
than that of the depleted mantle, thus some amount of older crustal contribution is
implied in the granite petrogenesis. In addition, the large range of zircon Hf isotope
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Fig. 10. Zircon Hf isotopic compositions. (A) Zircon grains of the same rock show a significant variation
in Hf isotopic composition, suggesting an open-system behavior during the fractional crystallization in the
magma chamber. (B) Consequently, the calculated Lu-Hf model ages also vary within a single rock.
Nevertheless, the ensemble of the dataset show relatively young model ages and highly positive £y4(t) values,

indicating the broadly juvenile characteristics of the Hokkaido granitoids.

compositions also attests to the contribution of recycled crust. A crude estimate of the
proportion of juvenile/recycled components is shown in figure 12. The estimate was
done using a simple two-component mixing calculation, assuming the two end-
members to be mantle-derived basaltic rocks (= mantle) and old continental crust (=
crust). The mixing proportions for all granitoid samples can be calculated using the

following equation:

X" = Nd, X (& — &)/[& X (Nd,, — Nd,) — (&" X Nd,, — & X Nd,)] X 100
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Fig. 11. Summary of the available age data (new and literature) for the intrusive rocks from Hokkaido.
Literature data source: Arita and others (1993, 2001), Honma and Fujimaki (1997), Ishihara and Terashima
(1985), Ishihara and others (1998), Kawakami and others (2006), Kawano and Ueda (1967), Kemp and
others (2007a), Kimbrough and others (1994), Koshimizu and others (1988), Koshimizu and Kim (1986),
Kubo and others (1984), Maeda and others (1990), Nakagawa (1992), Okamoto and Honma (1983),
Okamura and others (2003), Ono (2002), Owada and others (1997, 2006), Saheki and others (1995),
Shibata (1968), Shibata and others (1975), Shibata and Ishihara (1979, 1981), Zeniya and others (1996).

where X™ = % mantle-derived juvenile component (represented by basalt); €, €", €™ =
Nd isotopic compositions of the crust, rock measured, and mantle component,
respectively. Nd., Nd,,, = Nd concentrations in the crust and mantle components,
respectively. The inset was taken from Jahn (2004), and the parameters used are: €™ =
+8, € = —12 (NE China and Inner Mongolia), —30 (Central Mongolia and Transbai-
kalia), —15 (Altai Mountains), —4 (Junggar), —15 (Kazakhstan), Nd,, = 15 ppm, and
Nd. = 25 ppm. For the granitoids of Hokkaido, €™ = +10 and €° = —10 were used.

We conclude that the juvenile or mantle component in the protoliths of the
Hokkaido granitoids is between 65 to 95 percent. As displayed in the inset of figure 12,
among the various tectonic terranes of the CAOB, the Junggar crust, as represented by
its Paleozoic granitoids (500-300 Ma), has the most juvenile characteristics, with 60 to
100 percent mantle component. Thus, Hokkaido is most comparable with the Junggar
terrane regarding the crustal evolution.

In the earlier review of the geology of Hokkaido (section II), we presented that the
central Hokkaido is occupied by the Sorachi-Yezo and Hidaka Belts. The Sorachi-Yezo
Belt is a Cretaceous-Paleogene forearc basin and accretionary complex; whereas the
Hidaka Belt is a Paleogene arc complex in the north and the Hidaka metamorphic belt
in the south. In a crustal section proposed by Ueda (2005), the likely source region for
granitoid generation, the lower to middle crust, is composed of subducted oceanic
crust (pillowed basalt), seamount, accretionary complex and a sedimentary cover
sequence. The accretionary complex includes ophiolite mélange and other compo-
nents of “ocean plate stratigraphy.” Partial melting of such lithological assemblages
would produce granitic magmas with juvenile isotopic characteristics as shown in this
study.
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Ishihara and others (1998) noted that a distinctive feature of the late Cenozoic
plutonism in the north-central Hokkaido is that granitoids and gabbroids occur in an
equal amount (120 vs 110 km?) and are closely associated. The granitoids tend to occur
in the whole region, but the gabbroids are restricted to the western edge of the Hidaka
belt. Since the emplacement times of granitoids and gabbroids are similar (ca. 18 Ma),
the plutonism is considered as bimodal in character. Moreover, bimodal magmatism is
generally known to occur in an extensional tectonic regime, therefore, many models
are in favor of the generation of the Hokkaido Miocene granitoids in a back-arc setting.
On the other hand, the Eocene granotoid magmas were probably produced by melting
of subducted accretionary complexes in supra-subduction zones. The accretionary
complexes were likely dominated by juvenile or mantle-derived lithological assem-
blages as argued from the Sr-Nd-Hf isotopic signatures.

Juvenile Crustal Growth and Comparison with Other Parts of Japan

The formation of the Japanese Islands has been taken as a standard model for
accretionary orogeny. It was proposed that the most important cause of the orogeny is
the subduction of oceanic ridge, by which the continental mass increases through the
transfer of granitic melt from the subducting oceanic crust to the orogenic belt
(Maruyama, 1997). Sengor and Natal’in (1996) named the orogenic complexes
“Nipponides,” consisting predominantly of Permian to Recent subduction-accretion
complexes with few fragments of old continental crust, and further pointed out the
resemblance in orogenic style between Japan and the Central Asian Orogenic Belt
(CAOB). Consequently, the Japanese Islands are essentially built up by juvenile crust.
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Fig. 13. Nd-Sr isotopic plots of granitoids from SW Japan (original data are from Jahn, 2010 and the
cited references).

However, based on the available Sr-Nd isotopic data, Jahn (2010) showed that a large
proportion of the granitoids of SW Japan have Proterozoic Sm-Nd model ages, high
initial ®’Sr/®°Sr ratios and negative €y, (T) values (fig. 13). These isotopic data are in
strong contrast with those of two celebrated accretionary orogens: the Central Asian
Orogenic Belt and Arabian-Nubian Shield, but are quite comparable with those
observed in SE China and Taiwan, or in classical collisional orogens in the European
Hercynides and Caledonides (Jahn, 2004). This raises questions about the bulk
composition or type of material accreted in accretionary complexes, and negates the
hypothesis that the Nipponides contains very few fragments of older continental crust
(Sengor and Natal’in, 1996). Jahn (2010) concluded that the subduction-accretion
complexes in SW Japan were composed in significant amount of recycled continental
crust, probably of Proterozoic age. The scenario is comparable with that in Taiwan.

However, further research has revealed that the real juvenile crust was produced
in other parts of Japan, rather than in the beststudied SW Japan. As demonstrated in
preceding sections, Hokkaido as a whole provides an excellent example of juvenile
crustal addition to the global continental crust. Figure 14 illustrates the essential Nd-Sr
isotopic plots for the granitoids from NE Japan (Hokkaido included). The data of
granitoids (sensu lato) from the Kitakami and Abukuma Mountains and the Niigata
area are shown for comparison with that of the granites and rhyolites from Hokkaido.
Note that many of them are new and unpublished data.

Figure 14 shows that the majority of the data points have positive gy4(T) values
and initial ¥’Sr/®°Sr ratios of =0.7055. The data of Abukuma granitoids straddle the
€na(T) zero-line but generally form a negative correlation with the rest of the data
points. By contrast, the data of the Niigata granitoids (shown in blue squares) seem to
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Fig. 14. Nd-Sr isotopic plots of granitoids from NE Japan (Hokkaido included). Individual source of
data are not listed herein, but the original data-set used in this compilation is available upon request.

form a separate group distinguished from the rest but is comparable with the data
array of SW Japan (fig. 13). Note that the data arrays in figures 13 and 14 are highly
contrasted. The juvenile-crust-dominated features in NE Japan are replaced by the
recycled-crust-dominated characteristics of SW Japan. This indicates that the architec-
ture and crustal evolution of the two major parts of the Japanese Islands are quite
distingguished. Note that the isotopic data displayed in figures 13 and 14 [gy4(T) vs
(¥"Sr/®°Sr),] involve rocks of different ages, so their display on the same plane is not
strictly valid. In theory, we should have adjusted all the data points to the same time
line. However, the adjusted vectors for a time difference less than 100 Ma would be too
small to be detected in the figures, so the calculated initial ratios were plotted directly
on the same plane.

The comparable isotopic compositions and the occurrence of the Niigata grani-
toids to the west of the Tanakura Tectonic Line lend support to the idea that the
tectonic boundary or suture zone between NE and SW Japan before the Cenozoic is
more logically represented by the Tanakura Tectonic Line, but not the Itoigawa-
Shizuoka Fault.

CONCLUSIONS

The present study leads to the following conclusions:

1. Zircon U-Pb geochronology revealed three distinct periods of granitoid emplace-
ment in central Hokkaido, at 45, 37 and 18 Ma.

2. Geochemical analyses show that the granitoids comprise granodiorite, monzo-
granite and syenogranite; they are weakly peraluminous and possess volcanic arc
characteristics. They are not S-type granites. All the granitoids, regardless of their ages
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‘(Eocene or Miocene), have similar REE patterns and spidergrams, typical of Phanero-
zoic granitoids.

3. Whole-rock Sr-Nd and zircon Hf isotopic data indicate that the granitoids are
quite juvenile and likely generated by partial melting of sources dominated by
mantle-derived rocks, and in matured arc settings. Recycled ancient crustal rocks are
not a significant component in the source regions of the granitoids, and probably the
entire Hokkaido crust.

4. The literature data show that the Miocene volcanic rocks (rhyolites, dacites and
andesites) from Hokkaido possess Sr-Nd isotopic characteristics comparable with the
granitoids, hence the plutonic granitoid and volcanic felsic magmas were probably
derived from similar juvenile sources.

5. The crustal development of Hokkaido is most comparable with that of the
Junggar Terrane of the Central Asian Orogenic Belt. Together with the Arabian-
Nubian Shield, they document the best examples of juvenile crust growth.
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