EFFECT OF ORGANIC LIGANDS AND HETEROTROPHIC BACTERIA ON WOLLASTONITE DISSOLUTION KINETICS

O. S. POKROVSKY, L. S. SHIROKOVA, P. BÉNÉZETH, J. SCHOTT, and S. V. GOLUBEV

Géochimie et Biogéochimie Experimental, LMTG, CNRS-OMP-Université Paul-Sabatier, 14, Avenue Edouard Belin 31400, Toulouse, France

ABSTRACT. Wollastonite (CaSiO $_3$) dissolution rates were measured at 25°C in 0.01 M NaCl using a mixed-flow reactor as a function of pH (5 to 12) and concentration of forty organic ligands. Mostly stoichiometric dissolution was observed at these conditions. For seven ligands (acetate, citrate, EDTA, catechol, glutamic acid, 2,4-dihydroxybenzoic acid, glucuronic acid), batch adsorption experiments and electrokinetic measurements performed as a function of pH and ligand concentration confirmed the interaction of ligands with >CaOH $_2$ * sites and allowed quantification of their adsorption constants. The effect of investigated ligands on wollastonite dissolution rate was modeled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. A positive correlation between surface adsorption constant and the stability constant of the corresponding reaction in homogeneous solution was observed.

At neutral and weakly alkaline pH, the following total dissolved concentrations of ligands are necessary to double the rate of wollastonite dissolution: EDTA (10^{-4} M), phosphate ($1.5 \cdot 10^{-4}$ M), catechol ($3 \cdot 10^{-4}$ M), 8-hydroxyquinoline, gallic acid or adipate ($5 \cdot 10^{-4}$ M), 3,4-DHBA ($7 \cdot 10^{-4}$ M), PO $_3^-$ ($7.5 \cdot 10^{-4}$ M), glutamate (0.002 M), citrate (0.003 M), malate or 2,4-DHBA (0.004 M), phthalate or succinate (0.005 M), tartrate (0.006 M), thioglycolate (0.008 M), aspartame (0.01 M), gluconate, ascorbate (> 0.01 M), malonate, diglycolate or lactate at pH 8.4 (0.02 M), formate or fumarate (0.05 M), oxalate (> 0.05 M), bicarbonate (0.075 M), lactate at pH 5.6 (0.1 M), acetate (> 0.1 M), salicylate (0.15 M), humic acids (> 54 mg/L of dissolved organic carbon, DOC), gum xanthan (1.5-2.0 g/L). Sorbitol, mannitol, glucose, glucosamine, saccharose, fulvic acids and silica at pH \sim 7 exhibit weakly inhibiting or no effect up to concentration of 0.1 M. The presence of the following ligands leads to a decrease of dissolution rates by a factor of 2: silica at pH 10.7 (2 · 10⁻⁴ M), glucuronic acid (0.001 M), algae exudates (30 mg/L DOC), mannit (0.02 M), urea (>0.05 M), pectin (>15 g/L), alginic acid (> 2 g/L).

Overall, results of this study demonstrate that high concentrations (0.001-0.01 M) of organic ligands, whether they are originated from organic matter, enzymatic degradation or bacterial metabolic activity, are necessary to appreciably enhance wollastonite dissolution. This is further corroborated by batch experiments on live and dead cultures of soil bacteria *Pseudomonas aureofaciens* interaction with wollastonite. The release rates of both Ca and Si are only weakly affected by the presence of live or dead bacterial cells in inert electrolyte solution and in nutrient media: there is only \sim 20 percent-increase of dissolution rate in experiments with live cultures compared to dead cultures. However, the reproducibility of rate measurements in ligand-free solutions at $7 \le pH \le 8$ achieves \pm 30 percent. Therefore, the effect of extracellular organic products on the weathering rate of Ca-bearing minerals is expected to be weak and the acceleration of "basic" silicate rocks dissolution in natural settings in the presence of soil bacteria is likely solely due to the pH decrease.

Key words: Wollastonite, Organic ligands, Rhizospheric bacteria, Dissolution, Kinetics.

Corresponding author: E-mail: oleg@lmtg.obs-mip.fr

INTRODUCTION

It has been known for a long time that the weathering of basic rocks (Ca- and Mg-bearing silicates) controls the CO₂ uptake from the atmosphere and thus the climate of the earth at the long-term scale (for example, Berner, 1992; Dupré and others, 2003). Among the factors, controlling the intensity of this process, solution pH, pCO₂ and organic compounds produced during enzymatic degradation of vegetation litter or the exudates of soil bacteria and roots are believed to be the most important. While the effect of pH and pCO₂ on "basic" silicates dissolution kinetics is rather well characterized (Rimstiddt and Dove, 1986; Knauss and others, 1993; Oelkers and Schott, 2001; Pokrovsky and Schott, 2001; Golubev and others, 2005) the effect of organic ligands is still poorly understood (Grandstaff, 1977, 1986; Wogelius and Walther, 1991). At the same time, interaction of organic ligands with basic silicates and basalts turns out to be a very interesting proxy for paleo-weathering conditions (Neaman and others, 2005a; 2005b). Indeed, it has been argued (Antweiler and Drever, 1983; Drever, 1994) that the organic ligands should have much higher effect on the dissolution of basic silicates compared to aluminosilicates. However, this contradicts the observation of weak adsorption of organic ligands on Mg centers of brucite surface and their weak effect on this mineral's dissolution kinetics (Pokrovsky and others, 2005). This contrasts to strong interaction of organic ligands with aluminum, both at the mineral surface (Kummert and Stumm, 1980; Stumm, 1992) and in aqueous solution (Martell and others, 1997) leading to acceleration of aluminosilicates dissolution by organic matter (Heyes and Moore, 1992; Stillings and others, 1996; Oelkers and Schott, 1998). To resolve these contradictions, we attempted, in the present study, rigorous measurements of ligands-affected wollastonite (CaSiO₃) dissolution in which we were able to separate the effect of pH from that of organic ligands using a mixed-flow reactor system. Wollastonite was chosen as a simple and model mineral for basic silicates, frequently used as representative of silicates dissolution at the Earth surface (Peters and others, 2004). Besides, the calcium surface centers of this mineral can serve as proxies for Ca sites of other more complex silicates. Since hydrolysis of Ca—O bond is often the rate-limiting step for Ca-bearing mineral dissolution (Schott and others, 2009), understanding of ligand interaction with Ca sites of wollastonite may help to predict the reactivity of other Ca-bearing silicates.

It is known that, in addition to carbonic acid and simple carboxylic and aromatic compounds routinely identified in soil solutions (Kaurichev and others, 1963; Whitehead, 1964; Manley and Evans, 1986; Leyval and Berthelin, 1991), microbes can produce extracellular acid and neutral polysaccharides, uronic acids (galacturonic, guluronic), peptides and aminoacids (Ullman and others, 1996; Welch and others, 1999). Mycobionts such as lichens are known to exude various low molecular weight organic carboxylic acids (oxalic, citric, tartaric, gluconic, lactic) and polyphenolic compounds called "lichen acids" (Adamo and Violante, 2000). While the effects of simple and complex organic molecules and polymers on the dissolution of metal oxides (Sigg and Stumm, 1981; Bondietti and others, 1993; Biber and others, 1994; Kraemer and Hering, 1997; Kraemer and others, 1998; Axe and Persson and others, 2001; Duckworth and Martin, 2001) and aluminosilicates (Huang and Keller, 1970; Huang and Kiang, 1972; Manley and Evans, 1986; Lundstrom and Ohman, 1990; Ochs and others, 1993; Drever and Stillings, 1997; Welch and others, 1999; Welch and Ullman, 1999; van Hees and others, 2002), or on iron mobilization from silicates (Schalscha and others, 1967; White and Yee, 1985; Watteau and Berthelin, 1994; Liermann and others, 2000; Santelli and others, 2001; Bonneville and others, 2009) have been widely described, their interaction with Ca or Mg-bearing silicates is not well characterized except some works with olivine (Wogelius and Walther, 1991; Olsen and Rimstidt, 2008). In our previous works (Pokrovsky and others, 2005; Golubev and Pokrovsky, 2006; Golubev and others, 2006), the influence of organic ligands on brucite, diopside and smectite dissolution has been modeled using a surface complexation approach. It has been demonstrated that very high concentrations of naturally-relevant organic ligands (0.01-0.1 M) are necessary to significantly enhance or inhibit brucite dissolution and thus the effect of extracellular organic products on the weathering rate of Mg-bearing minerals in natural settings is expected to be weak. The question remains how far this conclusion can be extended to other alkali-earth bearing minerals such as calcium silicates. The main goal of the present study, therefore, is to use wollastonite as a model to study the effect of naturally-occurring organic ligands and chemical analogs of bacterial metabolites and cell envelopes on all Ca-bearing silicates in aqueous solutions.

The second motivation for this work is to quantitatively access the effect of microbial activity on wollastonite dissolution. There are several recent studies dealing with quantifying the effect of bacteria on basalt and granite rock dissolution (Wu and others, 2007, 2008). However, due to the complexity of whole rock systems, assessing the elementary mechanisms that control the element release in the mineral-bacteria system is rather difficult. On the other hand, extensive studies on alumosilicates (Barker and others, 1997; Bennett and others, 2001) and calcite (Friis and others, 2003; Luttge and Conrad, 2004; Davis and others, 2007) dissolution in the presence of bacteria cannot be directly applied to basic silicates and wollastonite dissolution because of different reaction mechanisms involved in these interactions. The use of a pure mineral specimen with a reference culture of soil bacteria offers the possibility of directly testing, for the first time, the effect of live and dead bacteria on calcium and silica release rate from the silicate mineral. We choose a typical rhizospheric soil bacteria, Pseudomonas aureofaciens, which is relatively well studied from the viewpoint of metal adsorption and is known to produce or not abundant exopolysaccharides depending on the type of substrate they use for growth (Pokrovsky and others, 2008). It has been also shown that a soil strain of genera *Pseudomonas* is capable of producing 2-ketogluconic acid from glucose and thus dissolving Ca, Zn, Mg silicates, wollastonite, apophyllite and olivine via formation of Ca-2 ketogluconate (Webley and others, 1960; 1963) however, no quantitative parameters of the process were assessed.

MATERIALS AND METHODS

Materials

Natural wollastonite crystals characterized in previous work (Golubev and others, 2005) were used in this study. The ultrasonically-cleaned 100 to 200 µm size fraction having a specific surface area of $690 \pm 30 \text{ cm}^2/\text{g}$ was selected for dissolution rate measurements. For adsorption experiments, that required high surface area in solution, wollastonite fine powder <10 µm was ground in an agate mortar for 3 hours. To eliminate the surface defects produced by grinding, prior to the experiments this powder was heated at 550°C during 6 hrs and aged during 7 days under nitrogen atmosphere in a solution of pH=10.8. Its specific surface area was 4.7 m²/g as measured by 3-point N₂ adsorption using the B.E.T. method. All solutions were prepared from $18 \,\mathrm{M}\Omega$ ultrapure water (MilliQ Plus system) having a blank of dissolved organic carbon < 0.05 ppm. The pH of the isoelectric point of this powder was 2.2 to 2.5 as determined by Oelkers and others (2009). Investigated inorganic and organic ligands were in the form of sodium salts or pure acids of analytical grade purchased from Fluka, Aldrich or Sigma. We used several families of organic compounds, representing both individual organic acids identified in soil solutions and groundwaters and chemical analogs of microbial exometabolites, functional groups of cell surface envelopes and various specific binding ligands. The ligands selected in this study can be considered as analogs of functional groups for dissolved organic matter, bacterial cell envelopes and their exometabolites. They included monocarboxylic acids (acetate and formate), di(tri)carboxylic acids (lactate, malate, malonate, fumarate, succinate, tartrate, adipate, gluconate, oxalate, citrate and diglycolate) and chelates (EDTA and EGTA). Aromatic compounds used in this work can be considered as analogs of aromatic groups of natural polymers or extracellular microbial chelates [catechol, 8-hydroxychinolin, 2,4-Dihydroxybenzoic acid (2,4-DHBA), 3,4-Dihydroxybenzoic acid (3,4-DHBA), 4-Hydroxybenzoic acid, gallic acid, oxine, phthalate and salicylate], and polysaccharides (glucose, saccharose, D-mannit and xylose), aminoacids (aspartate, glutamate, glycine), alcohols (sorbitol, mannitol). In addition, miscellaneous compounds (ascorbate, thioglycolate and urea) and some inorganic ligands (phosphate, metaphosphate and carbonate) were also used. Besides these simple synthetic compounds, natural ligands such as soil humic and fulvic acids, phytoplankton exudates, commercial acid and neutral (that is, Welch and Vandevivere, 1994) polysaccharides such as bacterial gum xanthan, pectin from citrus peel, alginate from brown algae, and glucosamine as analogs of microbial extracellular polysaccharides and peptidoglycan were also tested with respect to their effect on wollastonite dissolution.

Bacterial Cultures

The bacterial strain of soil aerobic gram-negative bacteria Pseudomonas aureofaciens CNMN PsB-03 was obtained from laboratory of Plant Mineral Nutrition and Hydric Regime (Institute of Plant Genetics and Physiology, Moldovan Academy of Sciences, Chishinau, Moldova). The specific strain was isolated from soybean root-adhering (rhizosferic) soil for their capability of producing large amounts of gel-forming exopolysacharide (EPS) on a sucrose-peptone (SP) medium (Behrens and Ringpfeil, 1963). On sugar-poor medium (0.4% succinic acid, SA, Meyer and Abdallah, 1978), this strain provides only poor synthesis of EPS. The *Pseudomonas* sp. was maintained at 4°C in SA media (as broth and agar plate cultures). For biomass accumulation the strain was cultered in SP and SA media for 48 hrs at 28°C. Cells were harvested at the beginning of stationary phase. Two samples of P. aureofaciens PsB-03 biomass were used in the present study. First, cells were grown in nutritive medium with sucrose as a single carbon source, which yields an abundant EPS synthesis labeled "SP culture", and the second, cells were grown in nutritive medium with succinic acid as a single carbon source, which produces very poor EPS, called "SA culture". The chemical composition of growth media was as follows: SP, 40 g/L sucrose, 15 g/L peptone, 5 g/L NaCl and 1 g/L Na₉HPO₄; SA, 4 g/L succinic acid, 1 g/L (NH₄)₂SO₄, 0.6 g/L K₂HPO₄, 0.3 g/L KH₂PO4, 0.1 g/L MgSO₄. In addition to the differences in the amount of EPS produced on SP and SA media, the qualitative monosaccharide composition of produced exopolymers is also different (Emnova and others, 2007). In the EPS produced on SP media, fructose constituted 76 percent of total sugars, and the second dominant monosaccharide was glucose (11%). The monosaccharides from EPS produced on SA media are composed of 50 percent glucose, 22 percent fructose, and 14 percent mannose. Small amounts (<10% of total sugars) of rhamnose, ribose, xylose, and galactose were present in both EPS samples. These data indicate that the polysaccharide levan (polyfructan) is likely EPS of P. aureofaciens in medium SP, and glucan and some other heteropolymers are present in medium SA.

The biomass of live bacteria and diatom cell suspensions were quantified by measuring humid (centrifuged 15 min at 10,000 rpm) and dry (liophylized) weight. Before the inoculation, cells were rinsed twice in appropriate fresh culture media or sterile 0.01 M NaCl solution using centrifugation at $4500 \times \mathrm{g}$ (~ 500 mL of solution for 1 g of wet biomass) to remove, as possible, the adsorbed metals and cell excudates from the surface. The conversion factors humid/dry(liophylised) weight for studied microorganisms were the following: EPS-rich (SP culture), 3.6; EPS-poor (SA culture), 5.0.

Typical live biomass concentration during batch experiment was in the range of 0.5 to 4 g humid/L. Dead cultures were prepared by autoclaving at 130°C during 30 min SA and SP cultures suspension collected at the stationary state. They were subsequently rinsed using appropriate sterile media or 0.01 M NaCl and diluted to final concentration of 1.5 g humid/L.

Ligand Sorption Experiments

Batch adsorption experiments were carried out in 30 mL polypropylene plastic vials. Solutions of 0.01 M NaCl were equilibrated with < 10 μm wollastonite powder (4.7 m²/g, see Materials section) of 57 g/L producing 268 m²/L total surface area in the reactor. Ligand (L) addition from 0.01 or 0.001 M stock solutions was made using a calibrated automatic pipette to achieve the initial ligand concentration of 70 \pm 10 μM for all ligands except acetate for which the initial concentration was set at 450 μM in order to increase the adsorption yield. Suspensions were shaken in the thermostated chamber at 25 \pm 0.5°C. Preliminary kinetic experiments demonstrated that the equilibrium distribution of two selected ligands (acetate and citrate) between solution and solid phase was achieved in less than 2 days, but two weeks was taken as final equilibration time for all ligands. Prior to the analysis, suspensions were centrifuged and solutions were filtered through a 0.22 μm Nylon filter.

Analyses

Solution pH was measured using a combination glass electrode calibrated on the activity scale with NIST buffers (pH = 4.002, 6.865, and 9.180 at 25° C). Precision of pH measurements was \pm 0.002 units (0.1 mV). Total calcium ([Ca²⁺]_{tot}) concentration was measured by flame atomic absorption spectrophotometry using a Perkin Elmer 5100 PC spectrometer equipped with an AS-90 autosampler, with an uncertainty of \pm 0.5 percent and a detection limit of 0.5 µM. To achive such precision, we performed multiple replicates of the same sample (5 replicats) and completely calibrated the system after each 5 samples. Monomeric silica concentration was measured by automated spectrophotometry with molybdate blue using Technicon analyzer with an uncertainty of ± 1 percent and a detection limit of 0.3 μ M. Alkalinity was determined following a standard HCl titration procedure with an uncertainty of ± 1 percent and a detection limit of $5 \cdot 10^{-5}$ M. Phosphate and acetate were analyzed using a Dionex HPLC equipped with a Gilson autoinjector with an uncertainty of \pm 2 percent and a detection limit of 0.05 ppm. The concentration of organic ligands was measured as total dissolved organic carbon using a TOC Shimadzu 5000 analyzer with an uncertainty of 5 percent and a detection limit of $0.2 \text{ mg C}_{\text{org}}/\text{L}$.

The MINTEQA2 computer program (Allison and others, 1991) was used to calculate the equilibrium species distribution in the ${\rm CaSiO_3\text{-}H_2O\text{-}NaCl\text{-}ligand}$ system. This program combines interfaces and homogeneous solution equilibria and mass balance calculations. Stability constants for ${\rm Ca^{2^+}}({\rm aq})$ complexation with all ligands were taken from the Critical Database (Martell and others, 1997) and are listed in table 1.

Wollastonite Dissolution Experiments

Mixed-flow bacteria-free dissolution experiments.—Steady-state dissolution rates were obtained at $25.0 \pm 0.2^{\circ}$ C in 0.01 M NaCl and distinct solution compositions and pH using a thermostated mixed-flow reactor (see Pokrovsky and Schott, 2004 for details). Mechanical steady-state in reactor was achieved after 12 hrs of reaction, but the chemical steady state was typically attained after 24 hrs. Each experiment involved new wollastonite powder which was reacted with consequently increasing ligand concentrations. For each steady-state condition, 4 to 5 measurements of Ca concentration and pH and one flow rate measurement were performed and used for calculating the

Ligands used in the present study and their acid-base (**pK**₁, **pK**₂, **pK**₃) and aqueous stability (log K° aq (Ca-L)) constants taken from the database

L	CL	ma) hu vi Sar)		an anorf ar	***************************************	## **	##
Ligand	Cnemical formula and description	pr ⁻ 1, pr ⁻ 2, pr ⁻³	pr', pr', pr', 10g r' aq (Ca-L) $\log K_{\mathrm{Ca-L}}$	log K _{Ca-L}	$\mathbf{k_L}^{\mathtt{T}}$ / $\mathbf{k_Ca}$	$\mathbf{K}_{\mathrm{L}}^{\mathrm{T}}$	K_{Ca}^{T}
Acetic acid	СН3СООН	3.745	1.18	1.74	0.7	1.5·10 ⁻¹³ (pH=6.7) 2.5·10 ⁻¹⁴ (pH=10.7)	2.5·10 ⁻¹³ (pH=6.7) 3.2·10 ⁻¹⁴ (pH=10.7)
Formic acid	НСООН	3.75	1.43	1.48	2.0	4.5·10 ⁻¹³ (pH=6.7)	2.3·10 ⁻¹³ (pH=6.7)
Lactic acid	СН3СН(ОН)СООН	3.86	1.45	1.57	2.4-3.3	1.1·10 ⁻¹² (pH=5.5) 3.3·10 ⁻¹³ (pH=8.5)	4.5·10 ⁻¹³ (pH=5.5) 1.1·10 ⁻¹³ (pH=8.5)
Oxalic acid	H00C = C00H	1.25; 4.27	2.76	2.30	0.4-1.0	$3.0 \cdot 10^{-13} \text{ (pH=6.5)}$ $1.0 \cdot 10^{-14} \text{ (pH=10.9)}$	3.0·10 ⁻¹³ (pH=6.5) 2.4·10 ⁻¹⁴ (pH=10.9)
Fumaric acid	нооссн - снсоон	3.02; 4.48	2.00	2.30	2.2	$3.4 \cdot 10^{-13} \text{ (pH=7.0)}$	$1.6 \cdot 10^{-13} \text{ (pH=7.0)}$
Citric acid	C ₃ H ₅ O(COOH) ₃	3.13; 4.76; 6.40	3.51	2.43	2.0-3.4	1.2·10 ⁻¹² (pH=7.2) 5.3·10 ⁻¹⁴ (pH=10.7)	3.5·10 ⁻¹³ (pH=7.2) 2.7·10 ⁻¹⁴ (pH=10.7)
Malic acid	НООССН ₂ СНОНСООН		2.72	2.26	3.7	$7.0 \cdot 10^{-13} \text{ (pH=6.5)}$	$1.9 \cdot 10^{-13} \text{ (pH=6.5)}$
Tartaric acid	$\mathrm{C}_4\mathrm{H}_6\mathrm{O}_6$	3.04; 4.37	2.80	2.28	0.6-3.3	2.6·10 ⁻¹³ (pH=9.1) 1.4·10 ⁻¹⁴ (pH=11.0)	8.0·10 ⁻¹⁴ (pH=9.1) 2.6·10 ⁻¹³ (pH=11.0)
Phtalic acid	$C_6H_4(COOH)_2$	2.95; 5.41	2.45	2.24-2.40	1.2-3.1	4.0·10 ⁻¹³ (pH=6.9) 3.2·10 ⁻¹⁴ (pH=10.9)	1.3·10 ⁻¹³ (pH=6.9) 2.7·10 ⁻¹⁴ (pH=10.9)
Malonic acid	$CH_2(COOH)_2$	2.85; 5.70	2.43	2.40	2.6	4.5·10 ⁻¹³ (pH=7.0)	$1.7 \cdot 10^{-13} \text{ (pH=7.0)}$
Adipic acid	$(\mathrm{CH}_2)_4(\mathrm{CO}_2\mathrm{H})_2$	4.42; 5.42	2.19	2.24	4.7	$9.1 \cdot 10^{-13} \text{ (pH=6.7)}$	$1.9 \cdot 10^{-13} \text{ (pH=6.7)}$
D-gluconate	$HOCH_2(CHOH)_4COOH$	3.46#	1.21	2.00	3.7	3.7·10 ⁻¹³ (pH=8.4)	$1.0 \cdot 10^{-13} \text{ (pH=8.4)}$
Succinic acid	$\mathrm{C_4H_4Na_2O_4}$	4.21; 5.64	2.00	2.08	4.3	5.2·10 ⁻¹³ (pH=8.4)	$1.2 \cdot 10^{-13} \text{ (pH=8.4)}$
D-glucuronic	5-carboxy-D- glucopyranose	12.04#	1.64	2.30	0.1	$2.0 \cdot 10^{-14} (pH=6.6)$	1.4·10 ⁻¹³ (pH=6.6)
EDTA	[CH ₂ N(CH ₂ CO ₂ H) ₂] ₂	10.95; 6.27; 2.69; 2.00	10.65# for Ca-L 5.78 for Ca-HL 3.66 for Ca-H2L	3.48 4.70 4.30	14.7 (pH = 7.7) 62.5 (pH = 9.4) 8.7 (pH = 10.9)	2.2·10-12 (pH=7.7) 1.5·10-13 (pH=7.7) 2.5·10-12 (pH=9.4) 4.1·10-14 (pH=9.4) 2.6·10-13 (pH=10.9) 3.0·10-14 (pH=10.9)	1.5·10-13 (pH=7.7) 4.1·10-14 (pH=9.4) 3.0·10-14 (pH=10.9)

Table 1 (continued)

Lancas I	Chamist form	0/1 0/1 0/1	(non-more)	**	## ##	#	## ,
Ligand	Cnemical iormula and description	pr. 1, pr. 2, pr. 3	pr'1, pr'2, pr'3, 10g r' aq (Ca-L) $\log K_{Ca-L}$	log K _{Ca-L}	$\mathbf{K}_{\mathrm{L}}^{\mathrm{T}}$ / $\mathbf{K}_{\mathrm{Ca}}^{\mathrm{Ca}}$	${ m k}_{ m L}^{ m T}$	$K^{\mathtt{r}}_{\mathrm{ca}}$
$ m H_2EGTA^{2-}$	$C_{12}H_{24}N_2O_{10}^{2}$	$9.40^{#}$; $8.79^{#}$; 2.70 ; 1.90	10.86 for Ca-L 3.81 for Ca-HL	3.70	4.7	8.0·10 ⁻¹³ (pH=6.1)	1.7·10 ⁻¹³ (pH=6.1)
$ m H_2Catechol^\circ$	$C_6H_4(OH)_2$	9.45; 13.00	4.0	2.85	2.5 – 6.0	1.5·10 ⁻¹² (pH=6.3) 5.3·10 ⁻¹⁴ (pH=10.7)	2.5·10 ⁻¹³ (pH=6.3) 2.1·10 ⁻¹⁴ (pH=10.7)
8-Hydroxyquinoline	c C ₉ H ₇ NO	4.92; 9.82	3.27	2.70	4.4	5.9·10 ⁻¹³ (pH=8.3)	1.35·10 ⁻¹³ (pH=8.3)
$H_2(2,4\text{-DHBA})$				2.48	3.3	$5.0 \cdot 10^{-13} (pH=7.0)$	$1.5 \cdot 10^{-13} (pH=7.0)$
$^{a}\mathrm{H}_{2}(3,4\text{-DHBA}^{-})$				2.90	4.3	$1.52 \cdot 10^{-12} \text{ (pH=7.4)}$	2.9·10 ⁻¹³ (pH=7.4)
Gallic acid	$\mathrm{C_7H_6O_5}$	4.44; 9.11; 11.40*		2.40	10.4	1.45·10 ⁻¹² (pH=7.0)	$1.4 \cdot 10^{-13} (pH=7.0)$
Ascorbic acid	$\mathrm{C_6H_7O_6}$	4.02; 11.35	1.05 for Ca-HL	2.04	4.5	5.0·10 ⁻¹³ (pH=7.4)	1.1·10 ⁻¹³ (pH=7.4)
Orthophospate	$\mathrm{H_2PO_4}^{ ext{-}}$		2.66	3.00	16.7	$3.6 \cdot 10^{-12} \text{ (pH=6.9)}$	2.15·10 ⁻¹³ (pH=6.9)
Metaphosphate	$\mathrm{H}_{2}\mathrm{PO}_{3}^{-}$	2.05	3.47	2.60	7.3	3.0·10 ⁻¹² (pH=7.3)	4.1·10 ⁻¹³ (pH=7.3)
^b Humate (COO')		4.5; 9-10	2.0	2.6	5.6	$2.0 \cdot 10^{-12} \text{ (pH=6.75)}$	3.6·10 ⁻¹³ (pH=6.75)
^b Fulvate (COO ⁻)		4.5; 9-10		2.7	0.5	$1.0 \cdot 10^{-12} \text{ (pH=6.4)}$	$2.0 \cdot 10^{-13} \text{ (pH=6.4)}$
Algae excudates		4.5; 6-7; 9-10		3.0	0.03	$7.0 \cdot 10^{-15} \text{ (pH=6.7)}$	$2.5 \cdot 10^{-13} \text{ (pH=6.7)}$
Salicylic acid	$C_6H_4(OH)COOH$	2.974; 13.7		1.30	2.8	$7.0 \cdot 10^{-13} \text{ (pH=6.5)}$	$2.5 \cdot 10^{-13} \text{ (pH=6.5)}$
Thioglycolate	SH-CH2COO	3.64; 10.61		1.60	6.3	1.45·10 ⁻¹² (pH=6.6)	2.3·10 ⁻¹³ (pH=6.6)
Oxydiacetate	$O(CH_2COOH)_2$	3.01; 4.36	4.28	2.48	2.6	4.5·10 ⁻¹³ (pH=7.3)	1.75·10 ⁻¹³ (pH=7.3)
Aspartic acid	HO ₂ CCH(NH ₂)CH ₂ CO ₂ H 1.99; 3.90; 10.00	1.99; 3.90; 10.00	2.5	2.48	2.5	1.4·10 ⁻¹² (pH=7.3)	5.7·10 ⁻¹³ (pH=7.3)
Glutamic acid	$C_5H_9NO_4$		2.06	2.78	2.9	4.8·10 ⁻¹³ (pH=7.1)	$1.6 \cdot 10^{-13} (pH=7.1)$
Sorbitol	D-gluco-Hexitol, C ₆ H ₁₄ O ₆			2.30	1.6	$6.0 \cdot 10^{-13} \text{ (pH=5.8)}$	3.7·10 ⁻¹³ (pH=5.8)
Mannitol	$\mathrm{C_6H_{14}O_6}$			1.7	1.3	5.9·10 ⁻¹⁴ (pH=10.9)	4.5·10 ⁻¹⁴ (pH=10.9)
D(+)-Glucose	D-gluco-Hexose	12.28		1.48	2.0	$6.0 \cdot 10^{-13} \text{ (pH=6.1)}$	$3.0 \cdot 10^{-13} (pH=6.1)$
Saccharose	β -D-Fructofuranosyl- α -D-glucopyranoside	12.57; 13.45		0.00	1.0	1.2·10 ⁻¹³ (pH=8.4)	1.2·10 ⁻¹³ (pH=8.4)

(continued) Table 1

			(managed)				
Ligand	Chemical formula and $~pK^\circ_{1}, pK^\circ_{2}, pK^\circ_{3}~log~K^\circ$ aq (Ca-L) $~log~K^*_{\rm Ca-L}$ description	pK°1, pK°2, pK°3	log K° aq (Ca-L) lo	$\mathbf{g} \ \mathrm{K}_{\mathrm{ca-L}}^*$	$k_{\rm L}^{\#} \ / \ k_{\rm Ca}^{\#}$	k _L	$k_{\mathrm{Ca}}^{\#}$
D-Mannit				1.88	0.11	2.5·10 ⁻¹⁵ (pH=10.9)	2.5·10 ⁻¹⁵ (pH=10.9) 2.2·10 ⁻¹⁴ (pH=10.9)
UREA	$(NH_2)_2CO$			2.48	9.0	$1.8 \cdot 10^{-14} \text{ (pH=11.0)}$	1.8·10 ⁻¹⁴ (pH=11.0) 3.0·10 ⁻¹⁴ (pH=11.0)
Pectin ^c	1-4 α-galacturonic acid polymer methoxy groups	4 - ~ . 	5 80	44	0.25	$9.0 \cdot 10^{-14} (\mathrm{pH} = 6.0)$	9.0·10 ⁻¹⁴ (pH=6.0) 3.2·10 ⁻¹³ (pH=6.0)
	galacturonic acid and 10% methoxyl content			:	}	2.5·10 ⁻¹⁴ (pH=7.8)	2.5·10 ⁻¹⁴ (pH=7.8) 1.55·10 ⁻¹³ (pH=7.8)
	Microbial polysaccharide produced by Xanthomonas					;	:
Gum Xanthan ^d	D-glucosse, D-mannose, D-glucuronic acid, pyruvite.	4.5 – 5.5		2.30	25	5.5·10 ⁻¹² (pH=7.5)	5.5·10 ⁻¹² (pH=7.5) 2.2·10 ⁻¹³ (pH=7.5)
Alginic acid	$(M_r = 32 - 200 \text{ kD};$ 4 mM COO'g alginate)	4.5	3.40 ± 0.2 at pH = 6-7	2.3	9.0	8.0·10 ⁻¹⁴ (pH=7.0)	8.0·10 ⁻¹⁴ (pH=7.0) 1.4·10 ⁻¹³ (pH=7.0)
Glucosamine	$C_6H_{13}NO_5$	7.58*	2.0	2.3	1.1	2.4·10 ⁻¹³ (pH=6.9)	$2.4 \cdot 10^{-13} \text{ (pH=6.9)} 2.2 \cdot 10^{-13} \text{ (pH=6.9)}$

^a Rogers and Bennett (2004); ^b 10 μeq COO⁻ per mg DOC; ^c Postulated M.W. = 65,000; ^d Postulated M.W. = 10,000.
The surface adsorption constants (K_{Ca-1}²) are fitted from kinetic data.

* stands for I = 0.1 M.
All aqueous complexation constants are taken from Martell and others (1997) except for alginate (Gregor and others, 1996) and for pectine (Schlemmer, 1989).

average dissolution rate. We used a criterion of average Ca concentration at steady state as \pm 3 percent at $[{\rm Ca^{2^+}}]_{\rm tot} > 10^{-4}\,{\rm M}$ and \pm 7 to 10 percent at $[{\rm Ca^{2^+}}]_{\rm tot} < 10^{-4}\,{\rm M}$, measured after achieving 3 times mechanical steady state. All experiments were performed at far from equilibrium conditions with respect to Ca-L insoluble salts with Ca (log $\Omega_{\rm Ca-L(s)} < -0.5$).

Batch dissolution experiments with bacteria.—The aim of these experiments was to compare, under identical solution conditions, the Ca and Si release rate from wollastonite placed in contact with dead and live bacterial cultures. The batch reactors used to study wollastonite-bacteria interaction consisted of sterile 500 mL polystyrene culture flasks with vented caps (Biosilico). All manipulations were conducted in sterile laminar hood box (class 100). For all experiments, 0.5 g of sterile 50 to 100 μm wollastonite (BET specific surface area of 1300 cm²/g) were placed in 250 mL sterile solution producing a solid concentration of 2.5 g/L. We conducted eight experiments, four involving live SA and SP cultures, (in SA and SP nutrient solution and in 0.01 M NaCl solution), and four with dead (autoclaved) biomass (in SA, SP media and in 0.01 M NaCl). The exact chemical composition of succinic acid and sucrose-peptone culture media is given in the Bacterial Cultures section. The reactors were inoculated with 1 to 2 mL of fresh SA or SP cultures or the fixed amount of dead biomass and placed on rotative shaker (120 rpm) at 25 ± 1°C for 7 days. Sterile controls were routinely run both for nutrient media and 0.01 M NaCl solutions and did not demonstrate any bacterial contamination. Twice per day, 10 mL aliquots of homogeneous mineral suspension + bacteria were collected using sterile serological pipettes and transferred in sterile polystyrene vials for Ca, Si, pH and cell biomass measurements. The solid/fluid ratio remained constant during experiments and the concentration of bacteria was not affected by the sampling. Ca and Si were measured in 0.22 µm filtrates and pH and cell biomass were measured in unfiltered samples.

RESULTS AND DISCUSSION

Ligand Adsorption

Results of seven adsorption isotherms performed at far from surface sites saturation conditions are presented in figure 1. It can be seen that the surface concentration of all studied ligands decreases with increase of pH which suggests an anion-like adsorption behavior. Assuming the dominant species interacting with ligands at the wollastonite-H₂O interface are hydrated Ca centers >CaOH₂ $^+$ and >CaOH $^\circ$ (Schott and others, 2002, 2009), whose protonation/deprotonation constants are given by

$$> \text{CaOH}^{\circ} + \text{H}^{+} = > \text{CaOH}_{2}^{+} \qquad K_{1}$$
 (1)

$$> \text{CaOH}^{\circ} = > \text{CaO}^{-} + \text{H}^{+} \qquad K_{2}$$
 (2)

the surface concentration of a Ca-ligand complex, >CaL $^{1-n}$, can be deduced from its formation reaction:

$$> \text{CaOH}_2^+ + \text{L}^{n-} = > \text{CaL}^{l-n} + \text{H}_2\text{O}, \quad K^*_{CoL}$$
 (3)

with

$$K^*_{Ca:L} = \frac{\{> CaL^{1-n}\}}{\{> CaOH_2^+\}[L^{n-1}]} \cdot \exp\left(\frac{zF\Psi_0}{RT}\right)$$
 (4)

where $\{>i\}$ and $[L^{n-}]$ represent the surface concentration of the *i*th species and the aqueous concentration of ligand L, $zF\Psi_0$ is the electrostatic term with F standing for Faraday constant, and z and Ψ_0 being the species charge and wollastonite surface potential, respectively. A rigorous analytical expression of adsorbed ligand concentra-

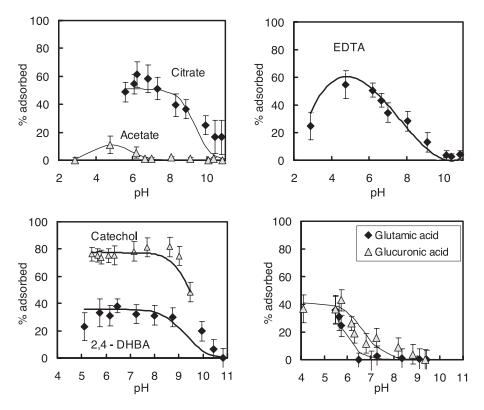


Fig. 1. Adsorption of acetate, citrate, EDTA, 2,4-DHBA, catechol, glutamic and glucuronic acids on wollastonite surface as a function of pH. Solid lines were generated using equation 6 with surface adsorption constants listed in table 2. Note that to fit the EDTA adsorption edge, we used different set of adsorption constants depending on pH, consistent with results of kinetic study (see *Modeling of Ligand-Affected Wollastonite Dissolution section below*).

tion as a function of pH and surface protonation/deprotonation or ligand adsorption constants leads to nonlinear equation with respect to adsorbed ligand concentration as a function of pH and requires precise knowledge of K_I and K_2 , not available at the present time due to the lack of wollastonite titration data (see Oelkers and other, 2009, for discussion). Therefore, in this study, numerical approach was used for fitting the percentage adsorbed ligand as a function of pH.

In our adsorption experiments, surface ligand concentrations are low and ionic strength variations are insignificant. As a result, ligand sorption does not yield a significant variation of the electrostatic term (eq 4). Within the Surface Complexation Model (SCM), total concentration of surface sites (S_T) is given by

$$S_T = \{ > \text{CaOH}_2^+ \} + \{ > \text{CaOH}^\circ \} + \{ > \text{CaO}^- \} + \{ > \text{CaL}^{1-n} \}$$
 (5)

Assuming that i) the concentration of >CaO $^-$ being negligible at our experimental conditions and ii) the adsorption of organic anions and neutral molecules occurs on positively charged >CaO $^+$ 2 sites, the pH-dependence of adsorption can be described as

$$\Gamma_{ads} = \{ > CaL^{1-n} \} = \frac{S_T \cdot K_{CaL}^* \cdot [L^{n-}]}{1 + A + K_{CaL}^* \cdot [L^{n-}]}$$
(6)

Table 2 Experimental parameters of Eqn. 6 describing the adsorption of ligands on wollastonite surface. The value of K_2 is fixed at 10^{-12} . Experimental conditions: 25°C, 0.01 M NaCl, 50 g/L, 4.7 m^2/g .

Ligand	K_1	$K*_{Ca-L}$
		(experimental)
Acetate	10^{6}	55 ± 5
Glutamate	$1.5 \cdot 10^5$	650 ± 50
EDTA	10^{6}	200 - 50000 #
Glucuronic acid	3.10^{6}	300 ± 50
Citrate	10^{9}	320 ± 30
Catechol	10^{9}	1600 ± 200
2,4-DHBA	10 ⁹	250 ± 50

[#]—For EDTA, different K^*_{CoL} were used depending on pH, because all three dominnat species— H_2 EDTA 2 –, HEDTA 3 – and EDTA 4 –—can be adsorbed at the wollsatonite surface.

where

$$A = (K_2 + a_{H+})/(K_1 \cdot a_{H+}^2) \tag{7}$$

as follows from the mass balance consideration (eqs 1, 2, 3 and 5). Equation 6 allows us to model each of the experimental ligand's adsorption isotherms using acid-base constants of surface sites protonation/deprotonation, K1 and K2, and ligand adsorption constant, K^*_{Ca-L} , as it is illustrated in figure 1 where the solid lines represent a fit of experimental data using equation. 6. Thus generated values of surface adsorption constants are listed in table 2. These constants should be considered only as fitted mathematical variables, given that the concentration of Ca and Si sites at the wollastonite surface is highly non-stoichiometric in the acidic and circumneutral pH range (Oelkers and others, 2009) and thus the mass balance equation (eq 5) may be not valid in the full range of ligand adsorption pH. Note, however, that the adsorption constants K^*_{Coll} are comparable with corresponding values in aqueous solution while the surface protonation constants K1 and K2 are similar to those of Ca-bearing minerals such as calcite (Pokrovsky and others, 2001) and fluorapatite (Wu and others, 1991). The adjustable K1 values for catechol, DHBA and citric acid adsorption are different from those for other ligands and from those used in the dissolution rate modeling (see below). It can be partially due to complexation of these ligands with surface silica centers, not taken into account in our adsorption model, like it is known in solution for DHBA (Rogers and Bennett, 2004), catechol-aqueous silica interaction and citrateaqueous germanium interaction (Pokrovski and Schott, 1998).

To get further insights on macroscopic factors controlling organic ligand adsorption on wollastonite surface, electrophoretic measurements of zeta-potential were performed as a function of pH and organic ligand concentration (fig. A1, Appendix 1). It can be seen from this figure that the addition of 0.017 mM organic ligand shifts the zeta-potential to more positive values. This can be explained by adsorption of catechol on negatively-charged >SiO $^-$ groups and thus the decrease of overall negative surface potential, in accord with reaction 3. At the same time, addition of 1 mM of ligand does not induce any significant change in wollastonite zeta-potential at neutral pH although it is certain that the adsorption of these ligands on wollastonite surface at pH = 6–7 occurs (figs. 1B, 1C, and 1G). Therefore, it is most likely that this adsorption happens in the deep surface layers containing both >CaOH $_2^+$ and SiOH $_2^+$ groups. These layers are located beneath the first,

Ca-proton exchanged surface layer which is represented solely by >SiOH groups and which exerted an overall control on CaSiO $_3$ surface potential. A thorough discussion of exchanged layer composition and its impact on silicates zeta potential and surface charge is given in Oelkers and others (2009).

Wollastonite Steady-State Dissolution Kinetics in the Presence of Ligands

Results of ~ 400 steady-state dissolution experiments performed at $6 \leq pH \leq 11$ and far from equilibrium conditions are listed in the table A3 of the Appendix 3. Included in these tables are ligand concentrations, outlet fluid pH, [Si]tot and [Ca²⁺]_{tot}, and logarithms of steady-state wollastonite dissolution rates. According to SEM observations of unreacted (fig. 2A) and reacted (figs. 2B-H) wollastonite's grains, the presence of ligands yields an etching of wollastonite edge surfaces (fig. 2D, catechol) and appearance of corrosion pits (2C, acetate and 2E, EDTA) oriented along the crystallographic axis. Pectin (fig. 2F) exhibiting inhibiting effect on dissolution leads to disaggregation of the fibers that, apparently, stabilizes the surface and prevents etch pits formation whereas the humic acid seems to attack preferentially some zones of the crystals (2G). Typically, the specific surface area of powder after 48 to 96 hrs of reaction increases by 20 to 30 percent. However, similarly to what is observed for proton- and ligand-promoted brucite dissolution (Pokrovsky and Schott, 2004; Pokrovsky and others, 2005), the flux of dissolved calcium in the course of experiments stays constant within ± 10 percent. As a result, dissolution rate values listed in Appendix 3 were normalized to the B.E.T. surface area of the initial powders.

Ligands investigated in this study can be distributed among two groups according to their influence on dissolution rates. This is illustrated in figure 3 where wollastonite dissolution rates are plotted as a function of free or total ligand concentration in solution. The addition of "catalysts" at neutral and weakly alkaline pH leads to an increase of the dissolution rate with the following relative effectiveness: EDTA > phosphate at pH 6.8; > gallic acid > metaphosphate PO_3^- > catechol > 8-hydroxyquinoline ~ adipate > 3,4-DHBA \gg glutamate > citrate > malate ~ 2,4-DHBA > phthalate > tartrate > thioglycolate > gluconate ~ ascorbate ~ succinate > malonate ~ aspartame \ge fumarate > ~ diglycolate ~ lactate at pH 8.4; > formate \ge oxalate > bicarbonate > lactate at pH 5.6; \ge acetate > salicylate > humic acids > gum xanthan. On the other hand, glucuronic acid, algae exudates, mannitol, urea, pectin and alginate at neutral pH and silica at pH 10.7 lead to a decrease of wollastonite dissolution rate (fig. 3). Sorbitol, glucose, saccharose, mannitol, glucosamine, fulvic acids and silica at pH ~ 7 exhibit weakly inhibiting or no effect up to concentration of 0.1 M.

In near-neutral and alkaline solutions investigated in the present study, wollastonite demonstrate a stoichiometric Ca and Si release, despite the fact that the linkages of silicate chains in wollastonite is influenced by underlying structure (Casey, 2008). In particular, wollastonite is known to form a near-surface amorphous region enriched in silicon and hydrogen, and depleted in calcium (Casey and others, 1993; Schott and others, 2009). However, the rates listed in table A3 and given in figure 3 are in most cases stoichiometric. Moreover, there is no systematic differences in $R_{\rm Ca}$ and $R_{\rm Si}$ as a function of ligand concentration for variety of ligands, from weakly-complexing carboxyaltes to chelates. A good example is catechol (exp. 28_1 to 28_6 and W33-W45 of table A3) which is known to form stable complexes with Si in aqueous solution (and, presumably, at the surface) but do not yield any differences in Si and Ca fluxes.

There are some cases when non-stoichiometric element release was observed, mostly at the highest concentration of ligand. For example, Ca oxalate and apatite precipitation could interfere with the rates measurements at elevated oxalate and phosphate concentrations. Enhanced Ca release compare to Si at elevated (0.01-0.03 M) citrate, tartrate, phtalate and urea concentrations (experiments in alkaline solutions, Appendix A3) is most likely linked to specific interaction of these ligands with Ca

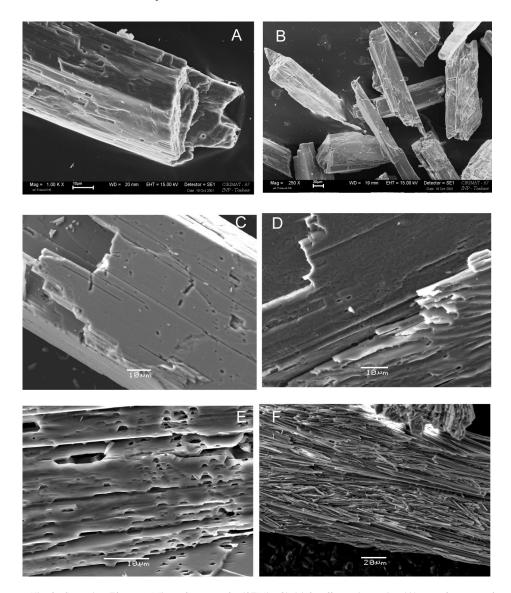


Fig. 2. Scanning Electron Microphotographs (SEM) of initial wollastonite grains (A), powder reacted at pH 7 in 0.01 M NaCl without ligands (B), grains reacted with acetate (exp 23_8 , 0.1 M, pH = 7.3, 26 hrs) (C), catechol (exp W48, 0.05 M, pH = 10.7, 32 hrs) (D), EDTA (exp 27, 0.01 M, pH = 7.0, 24 hrs) (E), and pectin (exp W86, 50 g/L, pH = 7.8) (F).

site on the surface; however the exact geometry and molecular structure can be determined only by *in-situ* spectrosocpic techniques.

Modeling of Ligand-Affected Wollastonite Dissolution

The effect of ligands on wollastonite dissolution at neutral to basic conditions can be modeled within the framework of the surface coordination approach assuming the overall dissolution rate is the sum of all the different parallel dissolution reactions promoted at Ca centers by various reactants/ligands which compete for available

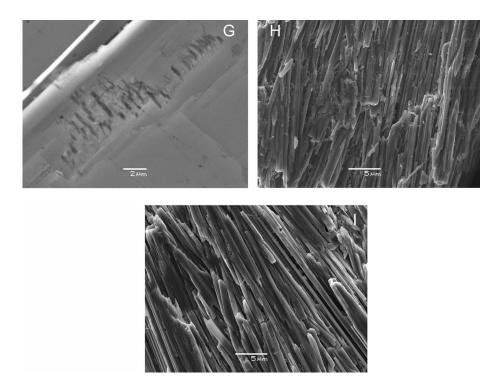


Fig. 2 continued. G: Effect of humic acid (experiment 34) on wollastonite dissolution at pH = 6.7, [DOC] = 53 mg/L, exposure time 36 hrs; H: Effect of alginate (experiment 60-7); I: Gallic acid, exp No 65.

surface sites (Wieland and others, 1988; Stumm, 1992). The effectiveness of ligands depends both on the nature of their functional groups, molecular structure and thermodynamic stability of the surface complexes they form. It is well known that especially efficient are ligands whose functional groups contain two or more oxygen donors and which can form bi- or multidentate mononuclear surface chelates (Stumm, 1992, 1997). In contrast, ligands forming bi- or polynuclear complexes, that can bridge two or more metal centers at the surface lattice, are known to slow down dissolution.

According to this scheme, the rate of ligand-controlled dissolution is proportional to the concentration of the surface metal complex >CaL¹⁻ⁿ which can be deduced from reaction (4) stability constant. In the presence of a ligand, the wollastonite forward dissolution rate at neutral to basic pHs is thus the sum of H₂O- and ligand-controlled dissolution, similar to that of brucite (Pokrovsky and Schott, 2004) and carbonates (Jordan and others, 2007; Pokrovsky and others, 2009):

$$R_{+} = k_{Ca} \cdot \{ > CaOH_{2}^{+} \} + k_{L} \cdot \{ > CaL^{1-n} \}$$
 (8)

Combination of equations (4-8) yields

$$R_{+} = k_{Ca} \cdot \left(\frac{S_{T}}{1 + A + K_{CaL}^{*} \cdot \lceil L^{n-} \rceil} \right) + k_{L} \cdot \frac{S_{T} \cdot K_{CaL}^{*} \cdot \lceil L^{n-} \rceil}{1 + A + K_{CaL}^{*} \cdot \lceil L^{n-} \rceil}$$
(9)

where A is given by equation 7 and k_{Ca} is a forward dissolution rate constant in the absence of ligands at a given ionic strength, k_L is a rate constant in the presence of ligand L, and K_{Ca-L}^* stands for the adsorption constant of the ligand on wollastonite >CaOH $_2$ ⁺ sites.

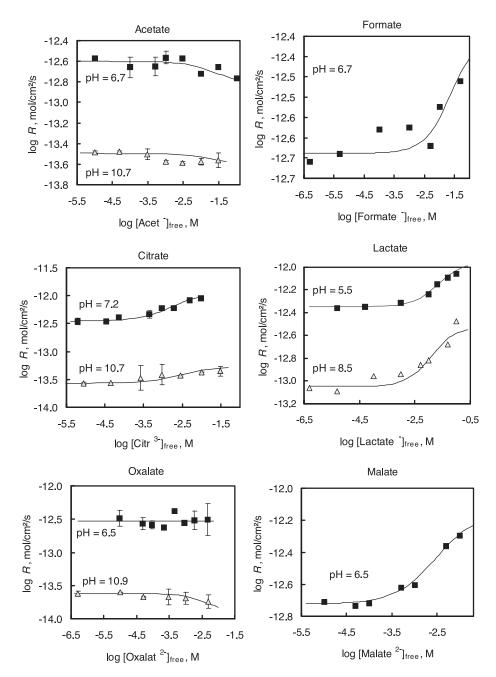


Fig. 3. Dissolution rate of wollastonite at 25° C, 0.01 M NaCl as a function of ligand concentration. The lines represent the model fit using equation 10. The uncertainties stem from the difference of Ca and Si release rate and are within the symbol size unless shown.

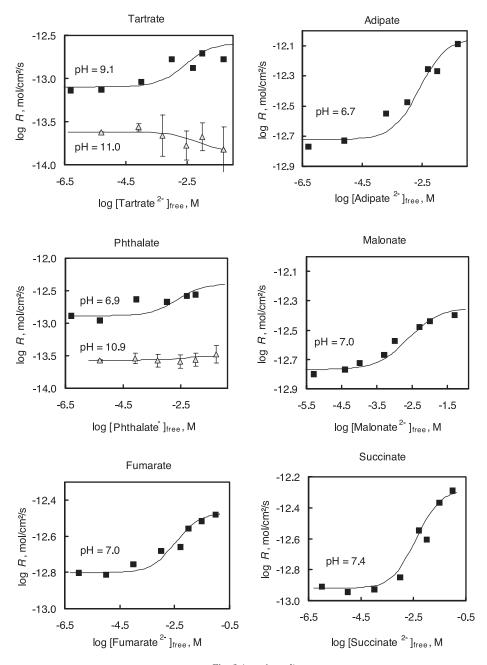


Fig. 3 (continued).

The number of data points obtained for a given ligand in this study (that is, typically 7-8 rate measurements corresponding to different concentrations) is not enough to constrain wollastonite surface speciation in the presence of ligand. However, equation (9) can be simplified assuming at the constant pH of our experiments that ligand sorption on mineral surface follows a Langmurian adsorption isotherm (Ligand Adsorption section) with $S_T \approx \{>CaOH_2^+\}^* + \{>CaL^{1-n}\}$:

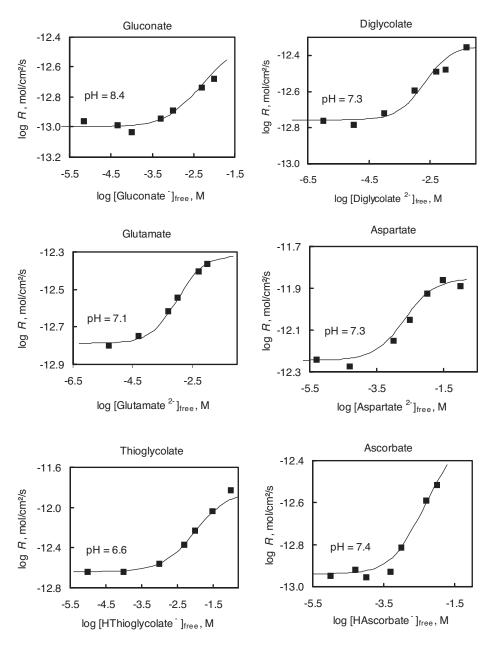


Fig. 3 (continued).

$$R_{+} = k_{Ca}^{\sharp} \cdot \left(1 - \frac{K_{CaL}^{*} \cdot [L^{n-}]}{1 + K_{CaL}^{*} \cdot [L^{n-}]}\right) + k_{L}^{\sharp} \cdot \frac{K_{CaL}^{*} \cdot [L^{n-}]}{1 + K_{CaL}^{*} \cdot [L^{n-}]}$$
(10)

In this equation, $k_{Ca}^{\#}$ and $k_{L}^{\#}$ are the apparent kinetic constants treated as fitting parameters. Strictly speaking, they depend on ionic strength and pH but can be considered constant given that all experiments were performed in 0.01 M Na(L)Cl

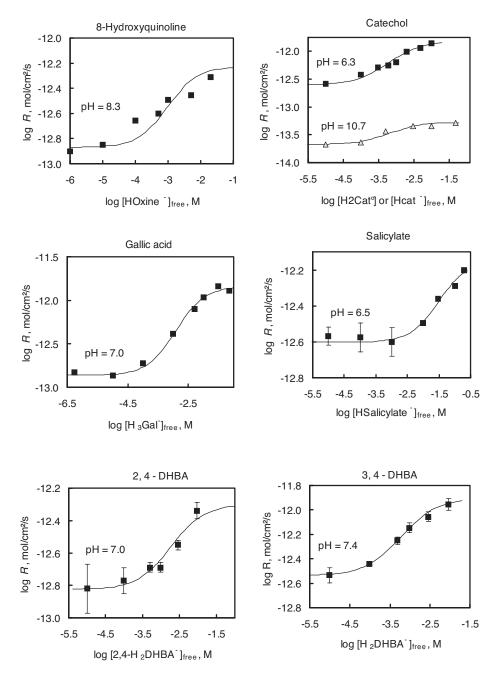


Fig. 3 (continued).

solutions and the pH value was kept constant in a series of experiments with each given ligand. Since the pH value varies among experiments with different ligands within 0.5 to 1 pH units, the variations of \pm 0.2 to 0.3 log units for the $k_{Ca}^{\#}$ constant used to model were accepted. Note that these variations are within the range of experimental

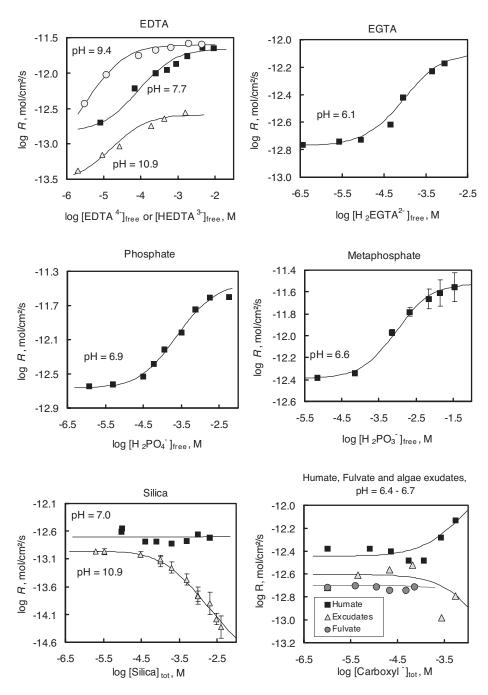


Fig. 3 (continued).

reproducibility of the dissolution rates measured in ligand-free system at neutral pHs (Appendix 2).

Application of eq (10) to model the experimental dependence of wollastonite dissolution on ligand concentration requires accurate values of K_{Ca-L}^* for the ligands

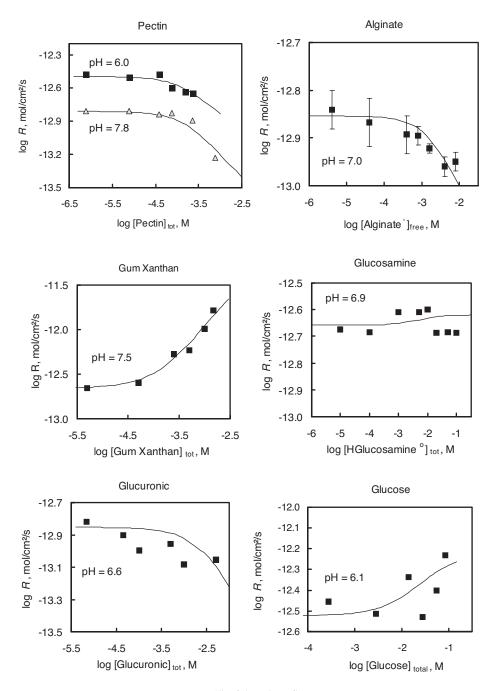


Fig. 3 (continued).

investigated in this study. For several ligands, these constants are available from the batch ligand adsorption experiments (*Ligand Adsorption* section). For other ligands, K_{Ca-L}^* values were generated from the fitting of dissolution rate dependences on aqueous ligand concentrations. The fitting procedure performed by "trial and error"

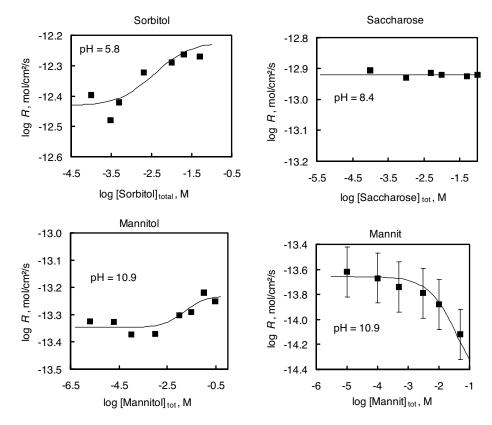


Fig. 3 (continued).

consisted in assuming that the values of the equilibrium constants for ligands adsorption were the same as the corresponding values for Ca-ligand association reactions in aqueous solution (Schindler and Stumm, 1987), table 1. The values of $k_L^{\#}$ were set first equal to $k_{Ca}^{\#}$ assuming no inhibition or catalyses occurs. Then, the values of rate constants $k_{L}^{\#}$ were allowed to increase/decrease in order to fit the experimental dependence of dissolution rate on ligand concentration using equation 10. The values of k_{Ga}^{μ} at a given pH for each ligand were determined for the lowest ligand concentration; consistent with those determined in the absence of ligands as a function of pH (Appendix 2). When fitting was not possible with the selected value of K_{GeL}^* it was allowed to vary within one order of magnitude from the initial settings. A \leq 20 percent difference between measured and modeled (eq 10) rate values at each ligand concentration was taken as a criterion of goodness of fit. The final values of constants used in equation 10 are listed in table 1. The uncertainties attached to these values correspond to the range of best fits obtained by varying the k_L^* and K_{Ca-L}^* . The degree to which equation 10 can be used to describe the effect of investigated ligands on wollastonite dissolution rate can be assessed in figure 3. The solid curves depicted in these figures were computed with equation 10 using values of K_{Ca-L}^* , k_L^* and k_{Ca}^* listed in table 1. The close correspondence between the solid curves and experimental data for a very broad range of a ligand's aqueous concentration demonstrates the validity of equation 10. It is important to note that, the values of surface adsorption constants for acetate, citrate, EDTA, catechol, glucuronic, glutamic and 2,4-DHBA acids generated by fitting the rate data are in agreement with those directly measured in batch adsorption experiments.

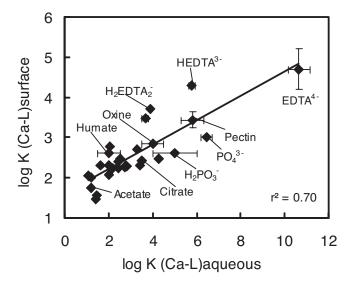


Fig. 4. Plot of stability constants at 25°C for >CaOH $_2$ ⁺-ligand surface complexes (log K(Ca-L) $_{\rm surface}$) vs. the stability constants of Ca-ligand aqueous complexes (log K(Ca-L) $_{\rm aqueous}$). The values of aqueous complexes stability constants are from Martell and others, 1997, Table 1. Stability complexes for Ca²⁺-H $_2$ EDTA²⁻ and Ca²⁺-HEDTA³⁻ were assessed via linear correlation between acetate, oxalate, citrate and EDTA complexes of Ca²⁺(aq) and NpO $_2$ ⁺(aq), the constants for the latter are available from Pokrovsky and Choppin, 1997 and Pokrovsky and others, 1998. The solid line represents a linear regression.

It follows from the fitting procedure employed in this study that the stability constants for surface adsorption reactions correlate with corresponding values for association reactions in homogeneous aqueous solution as it is the case for other simple oxides (Schindler and Stumm, 1987; Ludwig and others, 1996; Pokrovsky and others, 2005). Such correlation is depicted in figure 4. High uncertainty for both surface and aqueous complex stability constants when log K < 2 explains some of the scatter in this correlation.

Since the limiting step of wollastonite dissolution seems to be the breaking of Ca—O bonds, the structure and stability of complexes that ligands form with surface reactive site. The reactivity of a given surface site depends on its chemical structure including i) hydroxylation or protonation of particular ion; ii) the number of coordinatively unsaturated bonds with mineral lattice, reflected in the site geometry, and iii) the length of the cation-anion bonds at the mineral surface (that is, Ganor and others, 2009). The sequence of rate constants listed in table 1 shows that carboxylic acids like acetate, lactate and formate, that are known to form monodendate surface complexes on oxides, promote dissolution to a much less extent than those that form surface chelates (citrate, EDTA). The catalyzing effect of bicarbonate at neutral pH observed in this study for wollastonite is in agreement with the results of Bruno and others (1992) and Pokrovsky and others (2005) for hematite and brucite, respectively. Natural polymers such as humic and fulvic acids at their concentrations typical for natural waters (10 ± 5 mg DOC/L) do not exhibit any measurable effect on wollastonite dissolution, although some increase of dissolution is observed in the presence of 30 to 50 mg DOC/L of humic acid, consistent with previous results for oxides (Hering, 1995). The catalyzing effect of H₂PO₄⁻ at neutral pH is rather unusual and was not, to our knowledge, reported earlier in the literature, given that this ligand is notoriously known as being an inhibitor of dissolution of Ca-containing minerals such as calcite (Morse, 1974). It is possible that the distance Ca-SiO₃-Ca in wollastonite,

being much larger than Ca-CO₃-Ca in carbonates, does not allow phosphate to bridge two adjacent metal centers. At the same time, one or two hydrogen of H₂PO₄⁻ molecule can be used for protonation of Ca centers thus increasing the reactivity of the whole mineral. Note that dihydrogen phosphate accelerated the dissolution of brucite in neutral solution but orthophosphate decreased the rates in alkaline solutions (Pokrovsky and others, 2005). Dihydrogen phosphate also increase the rate of magnesite dissolution at pH 7.8 (Jordan and others, 2007). For many ligands, the relations between their molecular structure and their effect on the reactivity of the brucite-water interface are the same as for goethite. Thus, dihydrogen phosphate accelerates the dissolution of goethite and iron oxy(hydr)oxides at pH<5 by increasing their surface protonation via the formation of mononuclear negatively charged complexes (Bondietti and others, 1993). In neutral and weakly alkaline solutions it is known to form binuclear or multinuclear surface complexes as shown by ATR (Tejedor-Tejedor and Anderson, 1986; Tejedor-Tejedor and others, 1990, 1992) and XAFS studies (Rose and others, 1996; 1997) and to inhibit goethite dissolution.

The strong effect of two hydroxyl-bearing ligands, ascorbate and citrate, can be understood in view of the marked affinity of their hydroxyl groups for surface Mg and Ca as is the case for calcite (Geffroy and others, 1999), dolomite (Pokrovsky and Schott, 2001), brucite (Pokrovsky and others, 2005) smectite (Golubev and others, 2006), and diopside (Golubev and Pokrovsky, 2006). Among the aliphatic ligands, tridentate citrate was also reported to have the greatest effect on elements release from granite and basalt (Neaman and others, 2005a, 2006). Finally, EDTA, EGTA, some aromatic compounds (oxine, catechol, DHBA) both of which being likely to form very stable five-membered chelate rings with surface Ca ions, present the strongest catalyzing effect on wollastonite dissolution. Among all aromatic ligands, gallic acid exhibit the strongest catalyzing effect because of highest steric symmetry of its molecule. Unusually strong effect of gallic acid on Ca-bearing mineral reactivity has been noted earlier in CaCO₃ precipitation experiments (Pokrovsky and Savenko, 1994). Gallate was also reported to increase the rate of granite and basalt dissolution to the greatest extent among aromatic ligands (Neaman and others, 2005a, 2006). Note that the values of surface adsorption and kinetic constants for wollastonite dissolution measured in the present study for acetate, lactate, oxalate, citrate, EDTA, catechol, oxine, ascorbate and dihydrogen phosphate are similar to those obtained earlier for ligand-promoted dolomite and brucite dissolution which is also controlled by the hydrolysis of alkali-earth metal surface centers (Pokrovsky and Schott, 2001; Pokrovsky and others, 2005, 2009).

The inhibiting effect of complex molecules considered as analogs of bacterial exudates and cell envelopes (alginate, pectin), can be understood following the approach developed by Welch and co-authors (Welch and Vandevivere, 1994; Welch and others, 1999) for ligand-affected alumosilicate dissolution. It has been established by these authors that, similar to wollastonite, long chain acid polysaccharides such as pectin, algae exudates, glucuronic and alginic acid and mannitol inhibit the dissolution rate of silicates because they bind "irreversibly" to multiple sites on the mineral surface thus forming multi-nuclear complexes. Though all the sugars have hydroxyl groups on adjacent carbon atoms, they are not able to form bidentate complexes with metal ions due to steric hindrance. Therefore, interactions of neutral polysaccharide molecules (sorbitol, mannitol, glucose, saccharose) with cations or mineral surfaces are limited to weak outer-sphere complexes and hydrogen bonding and thus they exhibit weak effect on wollastonite dissolution rates. This result corroborates previous works of Ullman and others (1996) on polymers of neutral sugars which demonstrated that starch, cellulose, polysucrose, and gum xanthan have no effect on alumosilicates dissolution rates up to concentrations of 1 g/L.

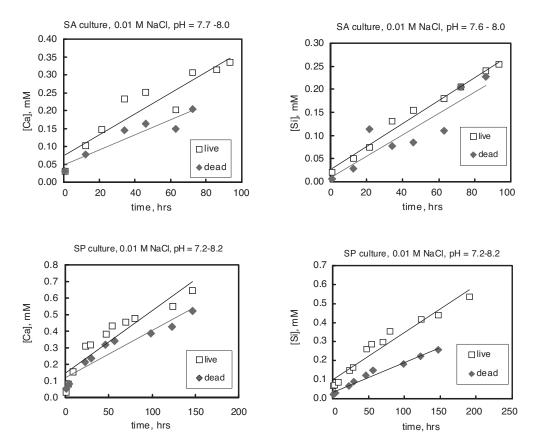


Fig. 5. Ca and Si release from wollastonite at 25°C in the presence of live and dead soil bacteria in inert electrolyte solution (0.01 M NaCl).

Calcium and Silica Release Rate in the Presence of Bacteria

Results of Ca and Si release from wollastonite in 0.01 M NaCl and in nutrient media in the presence of live and dead *Pseudomonas aureofaciens* are presented in figures 5 and 6, respectively. Concentrations of both Ca and Si increase quasi-linearly with time in all types of experiments. The pH varied within \pm 0.2–0.3 units. The correlation coefficient varies from 0.9 to 0.99 with the exception of Si release in SP media ($r^2 = 0.64 \cdot 0.77$). Taking into account that *I*) all solutions are strongly undersaturated with respect to wollastonite, all other possible Ca silicates and amorphous silica and 2) there is no effect of aqueous Ca and Si concentration on wollastonite forward dissolution rates in neutral solution (Schott and others, 2009), one can quantify the far-from equilibrium dissolution rates for each individual experiment using the equation which can be rigorously applied over the whole duration of the experiment:

$$R = (d[Ca, Si]_{tot}/dt)/s$$
(11)

where t (s) designates the elapsed time, [Ca, Si]_{tot} (mol/L) stands for the concentration of calcium and silica released from the solid, and s (cm²/L) is the powder B.E.T. surface area. Results are listed in table 3. The uncertainties on these rates can be evaluated as \pm 20 percent. The rates measured in 0.01 M NaCl agree within \pm 0.3 log units with those of abiotic experiments in mixed-flow reactor (fig. A2 of Appendix 2).

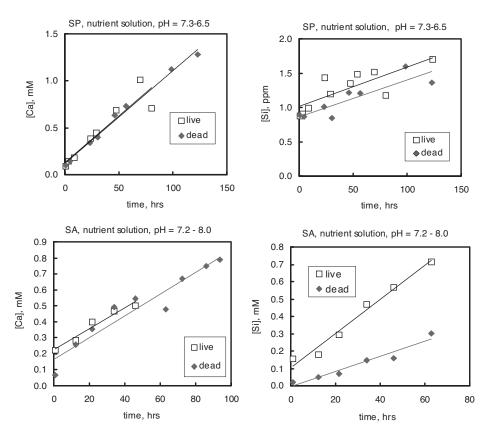


Fig. 6. Ca and Si release from wollastonite in the presence of live and dead soil bacteria in nutrient solution.

In the nutrient media, containing 40 g/L sucrose+15 g/L peptone and 0.01-0.007 M phosphate (SP) or 4 g/L succinic acid (SA), the rates are a factor of 2 to 3 higher than those in 0.01 M NaCl. Both solution pH (0.3 to 0.5 units lower in nutrient media compared to 0.01 M NaCl) and the presence of high concentration of organic matter and di-hydrogen phosphate can be responsible for this difference. At similar solution conditions (0.01 M NaCl or nutrient media, pH stable within \pm 0.3 units), the presence of live bacteria accelerates the rates of Ca and Si release from wollastonite by 10 to 30 percent compared to the presence of dead bacteria. Two exceptions are Si release in SP (EPS-rich) and SA (EPS-poor) culture demonstrating, respectively, 37 and 55 percent higher rates for live cells compared to dead biomass. Taking into account results of all eight experiments and using statistical treatment, the silica and calcium release rates are 26 ± 24 percent and 12 ± 16 percent, respectively, higher for live cultures compared to dead biomass at similar solution conditions (pH, ionic strength, concentration of nutrients). Considering the absolute rate uncertainty in this pH range of \pm 30 percent that stems both from the pH variation of \pm 0.2 to 0.3 units during the course of an experiment and the rate reproducibility in mixed-flow reactor with ligand-free systems (see Appendix 2), we conclude that the \sim 20 percent difference between dead and live bacteria experiments is within the experimental uncertainty. Therefore, the effect of live bacteria on Ca and Si release rate from wollastonite is not significant. Note that the present result corroborates the recent work of Jacobson

TABLE S

Wollastonite dissolution rates (mol/cm²/s) in nutrient media and inert electrolyte solution (0.01 M NaCl) in the presence of dead and live Pseudomonas aureofaciens. Experimental conditions: 25°C, pH = 7.2-8.2, CaSiO₃ powder of 50–100 μ m with SSA_{BET} = 1300 cm²/g at concentration of 2.5 g/L, dead biomass concentration 1.5 g humid/L, duration 120–150 hrs.

Media and bacteria	$\log R_{\mathrm{Ca}}$	$\log R_{\mathrm{Si}}$
SP media, live	-12.07	-12.31
SP media, dead	-12.07	-12.34
SP culture, live, 0.01 M NaCl	-12.50	-12.63
SP culture, dead, 0.01 M NaCl	-12.62	-12.71
SA media, live	-12.25	-12.08
SA media, dead	-12.23	-12.43
SA culture, live, 0.01 M NaCl	-12.60	-12.67
SA culture, dead, 0.01 M NaCl	-12.74	-12.87

and Wu (2009) who demonstrated the similarity of calcite dissolution rate in biotic and abiotic experiments with heterotrophic *Burkholderia fungorum*. The main conclusion of these authors is that, depending on nutritient regime, the solution pH acts as the main governing factor of calcite dissolution in the presence of bacteria. Therefore, implementation of mineral–bacteria interaction in chemical weathering codes requires solely the information on solution chemistry that can be directly assessed from macroscopic measurements of interstitial soil solutions.

Effect of Organic Ligands and Bacteria on Ca, Mg-Bearing Silicates Weathering in Natural Environments

The concentration range of various carboxylic ligands (oxalic, citric, malonic, succinic, lactic, formic, acetic), detected in soil solutions, spans from 10^{-6} to 10^{-4} M (Hue and others., 1986; Hongve and others, 2000). Stevenson (1991) reported the ranges 10^{-3} to $4 \cdot 10^{-3}$ and $8 \cdot 10^{-5}$ to $3 \cdot 10^{-4}$ for aliphatic and aromatic organic ligands in contemporary soil solutions, respectively. In table 4, we calculated, based on results of the present study, the concentrations of ligands necessary to triple the rates of wollastonite at pH around 7. For most ligands, very high concentrations (0.001-0.1 M), are necessary to appreciably affect the rates. Threshold rate-affecting concentrations for strong complexants, aromatic compounds and chelates, are lower $(n \cdot 10^{-5}$ $n \cdot 10^{-3}$ M, table 4) but this is still an order or two of magnitude higher than those ever detected in soil solutions or groundwaters. Thus, for individual organic ligand such as carboxylic, amino acids, or aromatic compounds, the effect on mineral dissolution rates should be negligible under conditions of natural settings. While for simple carboxylic acids, direct comparison between ligands concentration in natural environments and in our laboratory experiments is possible, such a comparison is not straightforward for (1) typical functional groups of natural polyelectrolyte (humic or fulvic acids) and (2) microbial exudates and analogs of bacterial cell envelopes as we discuss below. In the first case, typical concentration of carboxylic groups in humic or fulvic acids is 10^{-4} mol per 10 μ mol of DOC (Oliver and others, 1983) and the ratio between carboxylic and phenolic groups is 3.5:1 (Perdue and Ritchie, 2003). This suggests that for typical DOC level of surface continental waters (10 \pm 5 mg DOC/L),

Table 4

Concentration of ligands necessary to triple (to increase log R by half an order of magnitude) the rates of wollastonite dissolution at 25°C and neutral pH

Ligands	Concentration
Acetate	> 0.1 M
Formate	> 0.05 M
Lactate	> 0.07 M
Malic acid	> 0.01 M
Malonate	> 0.05 M
Succinate	0.02 M
Fumarate	> 0.1 M
Tartrate	> 0.05 M
Adipate	0.05 M
Gluconate	> 0.05 M
Oxalate	> 0.01 M
Citrate	0.01 M
Salicylate	0.2 M
Phthalate	> 0.1 M
Ascorbate	> 0.05 M
Thioglycolic acid	0.02 M
Diglycolic acid	> 0.05 M
EDTA	30 μΜ
EGTA	50 μM
	•
Live P. aureofaciens (SP media)	> 30 g humid/L
Live P. aureofaciens (SA media)	> 30 g humid/L
Catechol	0.0015 M
8-Hydroxychinolin	0.005 M
2,4-Dihydroxybenzoic acid	0.01 M
3,4-Dihydroxybenzoic acid	0.003 M
Gallic acid	0.002 M
Phosphate	30 μΜ
Metaphosphate	0.001 M
Aspartate	0.1 M
Glutamate	> 0.01 M
Sorbitol	> 0.01 M
Mannitol	> 0.1 W
Glucose	> 0.5 M
Saccharose	> 0.1 W > 0.1 M
Humic acid	> 100 mg DOC/L
Exudates of algae	> 50 mg DOC/L
Gum Xanthan	7 g/L
Pectin	weakly inhibiting
D-mannit	inhibiting
Glucoronic acid	inhibiting
Alginic acid	inhibiting
Glucosamine	> 0.1 M
HCO ₃	> 0.1 M

rather low concentrations of carboxylic (8 mM) or aromatic (\sim 2 mM) acids reproduce the natural soil environments. It follows from the results of this study that these concentrations are at the lower limit that is necessary to appreciably affect the rates. Only in surface horizons of interstitial soil solutions, at the concentration level of 50 to 100 mg/L of DOC, the effect of organic matter on mineral dissolution should be detectable. However, unaltered minerals rarely present in the surface soil horizons, whereas the concentration of DOC in deep (mineral) soil horizons rarely exceeds 5 to 10 mg/L. The DOC level of groundwater is 2 to 3 times lower and thus the effect of organic matter on mineral dissolution is less likely. Note however, that although the bulk soils do not contain enough concentration of organic ligands to appreciably increase weathering rates, other specific environments, such as rhizosphore, at fungal hyphae, and near decaying organic matter, could support higher concentrations of organics. For this, high-resolution *in-situ* analysis of organic ligands in soil microenvironments are lacking.

For bacterial metabolites and components of cell envelopes, concentrations of 1 to 10 g/L are necessary to modify the rates (table 4). Mean concentrations of bacteria are 300 to 600, 2000 to 2500, and 1200 to 1600 millions of cell/g soil for taiga, podzol and step soils, respectively (Aristovskaya, 1965). Typical bacterial concentration in forest soil is around 4800 millions cell/cm³ (Torsvik and others, 2002), while microbial abundance in deep subsurface environments ranges between 10⁵ and 10⁸ cells/cm³ and does not decrease with depth (Balkwill, 1989). Assuming: i) the minimal bacterial cell volume of $1 \mu m^3$, ii) specific density of cell biomass of $\sim 1 \text{ g/cm}^3$, iii) cell envelopes constitute up to 60 percent of total cell mass, iv) water proportion in soil is 10 to 30 percent, one can calculate that concentration of bacterial organic matter in the form of extracellular polysaccharides (EPS) in soil water varies between 1 and 30 g/L. These EPS are known to be composed of sugars such as glucose, galactose, mannose, N-acetylglucosamine and sugar acids such as glucuronic and galacturonic acid (that is, Sutherland, 1977; Christensen and Characklis, 1990; Welch and Vandevivere, 1994). It follows from the results of this study that most of these compounds either do not affect or decrease the rates of wollastonite. Among all polysaccharides tested, only commercial gum xanthan produced by Xanthomonas campestris and comprised of glucose, mannose, glucuronic acid and pyruvite leads to dissolution rate increase, still, its effect is visible at concentration ≥ 2.5 g/L and up to 10 g/L of this substance is necessary to appreciably increase the rates. Therefore, although concentration of organic matter in soil is enough to affect the rates of wollastonite dissolution in the vicinity of microbial cells, it still remains to determine whether this effect is inhibiting like for pectin, glucuronic residues, alginate or accelerating like for gum xanthan. Our single example of EPS-poor and EPS-rich rhizospheric bacteria P. aureofaciens unambiguously demonstrates the weak or negligible effect of the live compared to dead cell presence on Ca and Si release from wollastonite in neutral solutions. In order to appreciably affect the rates, significant increase of bacterial concentration compared to the one used in our experiments is necessary. In fact, linear extrapolation of 20 percent rate increase in the presence of live bacteria (1-4 g humid/L in this work) to the 300 percent rate increase requires the live biomass concentration of 20 to 60 g humid/L. This is the maximal possible range of bacterial concentration in some specific microenvironments. It should be noted that the extrapolation from culture experiments to soil conditions also requires the knowledge of bacterial concentration on a mineral surface, which is not available at the moment. Besides, it remains to be tested whether P. aureofaciens can be representative for other soil and groundwater microorganisms. For example, another soil gram-positive bacteria (Bacillus mucilaginosus), are known to have the ability to dissolve silicates via their acidic exopolysaccharides (Belkanova and others, 1985, 1987); and it was shown that the adsorption of silicate ions on the EPS macromolecules decreases Si concentration in solution and thus shifts the reaction towards its products (Malinovskaya and others, 1990). In this regard, a quantitative assessment of plants and microbial activity impact on basic rock weathering on a global scale (that is, Berner, 1992; Drever, 1994) will require detailed characterization and sufficient statistics both on concentration of microbial biomass and of their exometabilites produced in response to the change of environmental conditions.

CONCLUDING REMARKS

The present study corroborates previous works on organic ligands effect on "basic" (Ca, Mg)-bearing oxides and silicates dissolution and should help to better understand the weathering of these minerals in natural settings. As the breaking of Me—O bonds via the hydration of surface Me centers control the dissolution of many Mg-Ca oxides and silicates in neutral to alkaline solutions (periclase, Wogelius and others, 1995, Mejias and others, 1999; forsterite, Wogelius and Walther, 1992; Pokrovsky and Schott, 2000; orthosilicates, Casey, 1991, Casey and Westrich, 1992; chrysotile, Bales and Morgan, 1985; biotite, Malmstrom and Banwart, 1997; pyroxenes and amphiboles, Brantley, 2004 and Brantley and Chen, 1995), one can expect that the ligands-calcium surface sites interactions are similar for wollastonite and other divalent metal silicates. Indeed, the effect of organic ligands (ascorbate, phthalate, citrate and acetate) on forsterite and bronzite dissolution (Wogelius and Walther, 1991, 1992, and Grandstaff, 1977, 1986) and, as recently studied, effect of ~20 different ligands on diopside and smectite dissolution (Golubev and others, 2006 and Golubev and Pokrovsky, 2006) is quite comparable to that for wollastonite measured in the present study.

It follows from the results of this study that the effect of all studied organic ligands on wollastonite and, possibly, other Ca, Mg-bearing silicate dissolution at concentrations relevant to those found in natural soil environments should be quite weak. In order to increase wollastonite dissolution rate by a factor of ~ 3 , very high concentrations of most organic ligands (0.01-0.1 M) and live bacteria (10-50 g humid/L) are required. Such concentrations can be met only in soil microenvironments built up around bacteria adhering to mineral surfaces (Ehrlich, 1981; Vandevivere and others, 1994). This is in contrast to aluminosilicates whose dissolution rates in bulk soil solutions are greatly enhanced in the presence of a minor amount of organic acids forming strong surface and aqueous complexes with aluminum (Amrhein and Suarez, 1988; Lundstrom and Ohman, 1990; Fein and others, 1995; Oelkers and Schott, 1998; Oelkers and Gislason, 2001).

Therefore, despite the huge variability of tested organic substances and various environmental conditions (pH from 6 to 12, live and dead bacteria), the effect of both microorganisms and their potential exometabolites on Ca and Si release rate from wollastonite is of second order importance compared to that of solution pH. Since soil solution pH is controlled by several complex reactions including both minerals and organic substances, only if the bacteria affect solution pH at the solid surface, then they should impact the dissolution. As a result, the overall effect of the presence of biota on Ca silicate dissolution may be much less than usually anticipated.

An important consequence of the relatively weak effect of bacterial cell components and microbial exometabolites on wollastonite (and, possibly, other Ca-Mgbearing silicates) reactivity in aqueous solutions is that the impact of plants and biota on "basic" mineral chemical weathering in soils may be weaker than generally argued for (alumino)silicates. Indeed, the main factor controlling the aluminosilicates dissolution—aqueous activity of dissolution inhibitor $Al^{3+}(aq)$ —is not important for Ca, Mg-bearing silicates since the far-from-equilibrium rates of the latter's are not controlled by the presence in solution of mineral constituents (Ca, Mg, Si, at least in the neutral pH range, Schott and others, 2009). The complexation of oranic ligands with

aqueous and surface Al and complexation of Al with bacterial surface will be the main mechanisms of bacterial influence on alumosilicates dissolution via aqueous Al³⁺ removal from solution thus decreasing its inhibiting effect and the supersaturation value with respect to secondary Al-phases. In contrast, speciation of Ca and Mg in solution is weakly affected by the presence of biota and the adsorption of organic matter on the surface of basic silicates is weak. As a result, the atmospheric CO₂ consumption on the land and Ca, Mg-associated transport of aqueous bicarbonate ions linked to basic silicates weathering is unlikely to be strongly influenced by the biological activity in soils.

Acknoweledgments

The authors are grateful to S. A. Welch and an anonymous reviewer for useful and insightful reviews. This work was supported by the ANR CO₂-FIX, Young Researchers grant of CNRS-INSU "ATIP sur Programmes" allocated to O.P. and European Associated Laboratory LEAGE. The authors are grateful to A. Castillo and C. Causserand for their continuous help with experimental and analytical parts of this study, respectively. Insightful discussions with E. H. Oelkers, J. Viers and V. S. Savenko are gratefully acknowledged.

Appendix 1

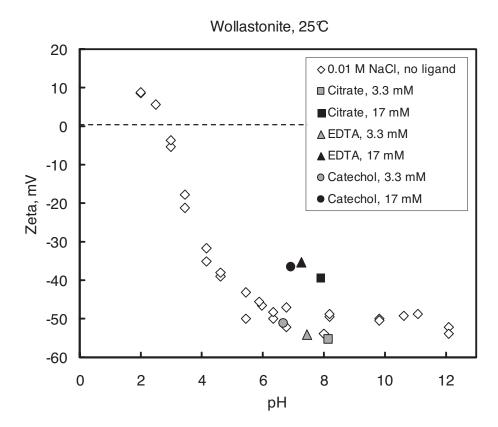


Fig. A1. Electrophoretic measurements of wollastonite zeta-potential in the presence of organic ligands.

APPENDIX 2

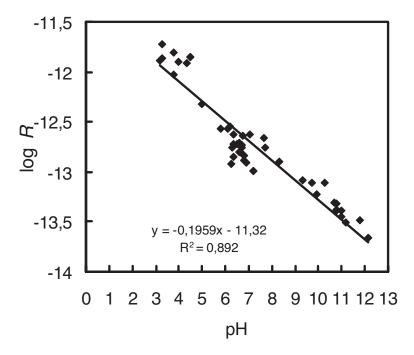


Fig. A2. Dissolution rate of woll astonite (R, mol/cm²/s) as a function of pH in ligand-free system at 25°C and 0.01 M NaCl.

Appendix 3

Table A3
Summary of wollastonite powder dissolution experiments performed in the presence of different ligands. N.D. stands for not determined. R units are mol/cm²/s.

N		anas jor not aete						
	ligand	[Ligand], M	[Ca], M	[Si], M	pН	log R _{Ca}		log Ray
23_1	Acetate	1.00E-05	1.35E-05	1.27E-05	6.59	-12.56	-12.59	-12.57
23_2	Acetate	1.00E-04	1.37E-05	8.50E-06	6.68	-12.55	-12.76	-12.66
23_3	Acetate	5.00E-04	1.35E-05	8.90E-06	6.43	-12.56	-12.74	-12.65
23_4	Acetate	1.00E-03	1.54E-05	1.17E-05	6.47	-12.50	-12.62	-12.56
23_5	Acetate	3.00E-03	1.32E-05	1.34E-05	6.74	-12.58	-12.57	-12.57
23_6	Acetate	1.00E-02	N.D.	9.40E-06	6.98	N.D.	-12.72	-12.72
23_7	Acetate	0.03	1.06E-05	1.08E-05	6.67	-12.66	-12.65	-12.66
23_8	Acetate	0.1	8.40E-06	8.46E-06	6.74	-12.77	-12.77	-12.77
W11	Acetate	1.00E-05	1.50E-05	1.50E-05	10.8	-13.39	-13.38	-13.39
W14	Acetate	5.00E-05	1.20E-05	1.22E-05	10.6	-13.49	-13.47	-13.48
W17	Acetate	3.00E-04	1.30E-05	9.90E-06	10.8	-13.45	-13.56	-13.51
W20	Acetate	1.00E-03	9.50E-06	9.80E-06	10.8	-13.58	-13.57	-13.58
W23	Acetate	3.00E-03	9.20E-06	9.60E-06	10.7	-13.59	-13.58	-13.59
W26	Acetate	1.00E-02	9.00E-06	1.01E-05	10.7	-13.6	-13.55	-13.58
W29	Acetate	3.00E-02	1.50E-05	1.53E-05	10.8	-13.59	-13.73	-13.66
59-1	Formiate	1.00E-06	2.22E-05	2.57E-05	6.7	-12.69	-12.63	-12.66
59-2	Formiate	1.00E-05	3.06E-05	3.18E-05	6.5	-12.65	-12.63	-12.64
59-3	Formiate	1.00E-04	3.61E-05	3.68E-05	6.5	-12.58	-12.58	-12.58
59-4	Formiate	1.00E-03	3.91E-05	3.48E-05	6.5	-12.55	-12.60	-12.58
59-5	Formiate	5.00E-03	3.43E-05	3.29E-05	6.6	-12.61	-12.63	-12.62
59-6	Formiate	1.00E-02	4.09E-05	4.03E-05	6.7	-12.52	-12.53	-12.53
59-7	Formiate	5.00E-02	4.90E-05	4.71E-05	6.8	-12.45	-12.47	-12.46
55-1	Lactate	1.00E-06	1.43E-05	1.44E-05	8.5	-13.06	-13.06	-13.06
55-2	Lactate	1.00E-05	9.90E-06	9.80E-06	8.45	-13.09	-13.09	-13.09
55-3	Lactate	1.00E-04	1.38E-05	1.30E-05	8.4	-12.94	-12.97	-12.96
55-4	Lactate	1.00E-03	1.40E-05	1.46E-05	8.6	-12.95	-12.93	-12.94
55-5	Lactate	5.00E-03	1.81E-05	1.65E-05	8.6	-12.84	-12.88	-12.86
55-6	Lactate	1.00E-02	1.93E-05	1.80E-05	8.6	-12.80	-12.83	-12.82
55-7	Lactate	5.00E-02	2.44E-05	2.68E-05	8.7	-12.70	-12.66	-12.68
55-8	Lactate	1.00E-01	3.98E-05	4.10E-05	8.4	-12.48	-12.47	-12.48
46_1	Lactate	1.00E-05	1.15E-05	1.10E-05	5.38	-12.35	-12.37	-12.36
46_2	Lactate	1.00E-04	1.20E-05	1.16E-05	5.36	-12.34	-12.35	-12.35
46_2								
	Lactate	1.00E-03	1.30E-05	1.25E-05	5.35	-12.30	-12.32	-12.31
46_4	Lactate	0.01	1.52E-05	1.55E-05	5.53	-12.24	-12.23	-12.24
46_5	Lactate	0.02	1.80E-05	1.90E-05	5.32	-12.16	-12.14	-12.15
46_6	Lactate	0.05	2.10E-05	2.05E-05	5.54	-12.09	-12.10	-12.10
46_7	Lactate	0.1	2.36E-05	2.39E-05	5.55	-12.06	-12.06	-12.06
46_8	Lactate	0.2	2.82E-05	2.72E-05	5.52	-11.97	-11.98	-11.98
		[Oxalat ²⁻] _{free}						
24_1	10 ⁻⁵ M Oxalate	9.64E-06	2.03E-05	1.20E-05	6.47	-12.38	-12.61	-12.49
24_2	5x10 ⁻⁵ M Oxalate	4.80E-05	1.60E-05	1.05E-05	6.45	-12.48	-12.66	-12.57
24 3	10 ⁻⁴ M Oxalate	9.30E-05	1.43E-05	1.09E-05	6.47	-12.53	-12.64	-12.58
24 4	2x10 ⁻⁴ M Oxalate	2.18E-04	1.23E-05	1.06E-05	6.55	-12.60	-12.66	-12.63
24_5	5x10 ⁻⁴ M Oxalate	4.60E-04	2.09E-05	1.96E-05	6.63	-12.37	-12.39	-12.38
24_5	0.001 M Oxalate		1.24E-05		6.45	-12.60	-12.51	-12.55
		9.18E-04		1.53E-05				
24_7	0.002 M Oxalate	1.84E-03	1.12E-05	2.05E-05	6.41	-12.65	-12.38	-12.52
24_8	0.005 M Oxalate	4.60E-03	9.08E-06	2.68E-05	6.43	-12.74	-12.27	-12.51
W35	Oxalate	5.00E-07	8.50E-06	9.80E-06	10.6	-13.66	-13.59	-13.63
W38	Oxalate				10.8			
		1.00E-05	9.70E-06	9.30E-06		-13.60	-13.61	-13.61
	Oxalate	5.00E-05	1.29E-05	6.55E-06	11	-13.67	-13.66	-13.61 -13.67
W41 W44	Oxalate	5.00E-05 3.00E-04	1.29E-05 1.07E-05	6.55E-06 5.93E-06	11 11	-13.67 -13.55	-13.66 -13.8	-13.61 -13.67 -13.68
W44 W47	Oxalate Oxalate	5.00E-05 3.00E-04 1.00E-03	1.29E-05 1.07E-05 9.80E-06	6.55E-06 5.93E-06 6.15E-06	11 11 11.1	-13.67 -13.55 -13.60	-13.66 -13.8 -13.79	-13.61 -13.67 -13.68 -13.70
W44	Oxalate	5.00E-05 3.00E-04 1.00E-03 5.00E-03	1.29E-05 1.07E-05	6.55E-06 5.93E-06	11 11	-13.67 -13.55	-13.66 -13.8	-13.61 -13.67 -13.68 -13.70 -13.74
W44 W47	Oxalate Oxalate Oxalate	5.00E-05 3.00E-04 1.00E-03 5.00E-03	1.29E-05 1.07E-05 9.80E-06 5.90E-06	6.55E-06 5.93E-06 6.15E-06	11 11 11.1 11.05	-13.67 -13.55 -13.60 -13.84	-13.66 -13.8 -13.79 -13.64	-13.61 -13.67 -13.68 -13.70 -13.74
W44 W47 W50 N	Oxalate Oxalate Oxalate ligand	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand ⁿ] _{free}	1.29E-05 1.07E-05 9.80E-06 5.90E-06	6.55E-06 5.93E-06 6.15E-06 8.80E-06	11 11 11.1 11.05 pH	-13.67 -13.55 -13.60 -13.84 log R _{Ca}	-13.66 -13.8 -13.79 -13.64 log R _{Si}	-13.61 -13.67 -13.68 -13.70 -13.74 log R _z
W44 W47 W50 N 25_1	Oxalate Oxalate Oxalate ligand 10 ⁻³ M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand ⁿ] _{free} 6.15E-06	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05	11 11.1 11.05 pH 6.57	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a
W44 W47 W50 N 25_1 25_2	Oxalate Oxalate Oxalate ligand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand ⁿ⁻] _{free} 6.15E-06 3.45E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05	11 11.1 11.05 pH 6.57 6.71	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52 -12.46	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46
W44 W47 W50 N 25_1 25_2 25_3	Oxalate Oxalate Oxalate Iigand 10° M Citrate 5x10° M Citrate 10° M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand*] _{free} 6.15E-06 3.45E-05 7.09E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.83E-05	11 11.1 11.05 pH 6.57 6.71 6.68	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52 -12.46 -12.40	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39
W44 W47 W50 N 25_1 25_2 25_3 25_4	Oxalate Oxalate Oxalate Uxalate Digand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate 5x10 ⁻⁶ M Citrate 0 ⁻⁴ M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand ⁿ⁻] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.83E-05 1.88E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52 -12.46 -12.40 -12.39	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39 -12.33
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5	Oxalate Oxalate Oxalate Iigand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate 10 ⁻⁴ M Citrate 10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand ⁿ⁻] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.78E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.83E-05 2.79E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28 -12.22	-13.66 -13.8 -13.79 -13.64 log R_{Si} -12.52 -12.46 -12.40 -12.39 -12.22	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39 -12.33 -12.22
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6	Oxalate Oxalate Oxalate Iigand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate 10 ⁻⁴ M citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand*] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.78E-05 2.79E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.83E-05 2.79E-05 2.86E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23	-13.66 -13.8 -13.79 -13.64 log R_{Si} -12.52 -12.46 -12.40 -12.39 -12.22 -12.21	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.46 -12.39 -12.33 -12.22 -12.22
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻³ M Citrate 5x10 ⁻³ M Citrate 5x10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.002 M Citrate 0.005 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.78E-05 4.04E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23 -12.07	-13.66 -13.8 -13.79 -13.64 log R_{Si} -12.52 -12.46 -12.39 -12.22 -12.21 -12.09	-13.61 -13.67 -13.68 -13.70 -13.74 log R ₂ -12.46 -12.49 -12.39 -12.33 -12.22 -12.22
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_6 25_6 25_7 25_8	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate 10 ⁻⁴ M citrate 10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand*] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.78E-05 4.04E-05 4.67E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23 -12.07 -12.01	-13.66 -13.8 -13.79 -13.64 log R_{Si} -12.52 -12.46 -12.39 -12.22 -12.21 -12.09 -12.07	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39 -12.33 -12.22 -12.22 -12.08
W44 W47 W50 N 25_1 25_2 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12	Oxalate Oxalate Oxalate Oxalate Iigand 10° M Citrate 5x10° M Citrate 10° M Citrate 5x10° M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.001 M Citrate 0.01 M Citrate Citrate 0.01 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 4.04E-05 4.67E-05 1.28E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 7.67	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 -12.28 -12.22 -12.23 -12.07 -12.01	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52 -12.46 -12.40 -12.39 -12.22 -12.21 -12.09 -12.07	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39 -12.33 -12.22 -12.22 -12.04
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12 W15	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻³ M Citrate 5x10 ⁻³ M Citrate 10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Citrate Citrate Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.79E-05 4.04E-05 4.67E-05 1.28E-05 1.28E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23 -12.07 -13.45 -13.56	-13.66 -13.8 -13.79 -13.64 log R_{si} -12.52 -12.46 -12.49 -12.22 -12.21 -12.09 -12.07 -13.50 -13.57	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.39 -12.33 -12.22 -12.02 -13.48 -13.48
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12	Oxalate Oxalate Oxalate Oxalate ligand 10° M Citrate 5x10° M Citrate 10° M citrate 0.001 M Citrate 0.002 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Citrate Citrate Citrate Citrate Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 4.04E-05 4.67E-05 1.28E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06 7.10E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 7.67	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 -12.28 -12.22 -12.23 -12.07 -12.01	-13.66 -13.8 -13.79 -13.64 log R _{Si} -12.52 -12.46 -12.40 -12.39 -12.22 -12.21 -12.09 -12.07	-13.61 -13.67 -13.68 -13.70 -13.74 log R ₂ -12.46 -12.39 -12.33 -12.22 -12.02 -13.48 -13.48
W44 W47 W50 N 25_1 25_2 25_3 25_5 25_6 25_7 25_8 W12 W15	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻³ M Citrate 5x10 ⁻³ M Citrate 10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Citrate Citrate Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 ND 1.88E-05 2.40E-05 2.79E-05 4.04E-05 4.67E-05 1.28E-05 1.28E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23 -12.07 -13.45 -13.56	-13.66 -13.8 -13.79 -13.64 log R_{si} -12.52 -12.46 -12.49 -12.22 -12.21 -12.09 -12.07 -13.50 -13.57	-13.61 -13.67 -13.68 -13.70 -13.74 log R _s -12.46 -12.39 -12.33 -12.22 -12.04 -13.48 -13.57 -13.48
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12 W15 W18	Oxalate Oxalate Oxalate Oxalate ligand 10° M Citrate 5x10° M Citrate 10° M citrate 0.001 M Citrate 0.002 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Citrate Citrate Citrate Citrate Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand*] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.79E-05 4.04E-05 4.67E-05 1.28E-05 2.01E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.89E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06 9.00E-06	11 11. 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.6 10.9	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.39 -12.28 -12.22 -12.23 -12.07 -13.45 -13.45 -13.56 -13.25	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \begin{array}{c} \textbf{log R}_{Si} \\ -12.52 \\ -12.46 \\ -12.39 \\ -12.22 \\ -12.21 \\ -12.07 \\ -13.50 \\ -13.570 \\ -13.70 \\ -13.60 \\ \end{array}$	-13.61 -13.67 -13.68 -13.70 -13.74 log R ₂ -12.46 -12.39 -12.32 -12.22 -12.22 -12.08 -13.48 -13.57 -13.48
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12 W15 W18 W21 W24	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻⁵ M Citrate 5x10 ⁻³ M Citrate 10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-03	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.79E-05 4.04E-05 1.28E-05 1.05E-05 2.10E-05 2.10E-05 1.45E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.89E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-06 9.00E-06 1.25E-05	11 11. 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.6 10.9 10.75	-13.67 -13.50 -13.84 log R_{Ca} -12.39 ND -12.39 -12.28 -12.23 -12.07 -12.01 -13.45 -13.25 -13.25 -13.23	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \mbox{log R_{Si}} \\ -12.52 \\ -12.46 \\ -12.40 \\ -12.39 \\ -12.21 \\ -12.09 \\ -12.7 \\ -13.50 \\ -13.57 \\ -13.70 \\ -13.60 \\ -13.46 \\ \end{array}$	-13.61 -13.67 -13.68 -13.70 -13.74 log R ₂ -12.46 -12.33 -12.22 -12.22 -12.04 -13.48 -13.57 -13.48 -13.42 -13.44
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12 W15 W18 W21 W24 W27	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻⁵ M Citrate 5x10 ⁻⁵ M Citrate 5x10 ⁻⁶ M Citrate 0.001 M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand"] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 1.00E-02	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.79E-05 4.04E-05 1.28E-05 1.28E-05 2.01E-05 2.10E-05 2.10E-05 1.45E-05 1.45E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.83E-05 1.88E-05 2.79E-05 2.86E-05 4.02E-05 1.10E-05 9.60E-06 7.10E-06 9.00E-06 1.25E-05 1.50E-05	11 11. 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.6 10.9 10.75 10.7	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 -12.39 -12.22 -12.23 -12.01 -13.45 -13.25 -13.25 -13.23 -13.41	-13.66 -13.8 -13.79 -13.64 log R_{SI} -12.52 -12.46 -12.39 -12.22 -12.21 -12.09 -12.07 -13.50 -13.50 -13.60 -13.40	-13.61 -13.67 -13.68 -13.70 -13.74 log R, -12.46 -12.49 -12.39 -12.33 -12.22 -12.04 -13.48 -13.42 -13.44 -13.44 -13.44 -13.44
W44 W47 W50 N 25 1 25-2 25-3 25-4 25-5 25-6 25-7 25-8 W12 W15 W18 W21 W24 W27 W30	Oxalate Oxalate Oxalate Oxalate Iigand 10° M Citrate 5x10° M Citrate 10° M Citrate 5x10° M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-04 1.00E-02 3.00E-02	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.79E-05 4.67E-05 1.28E-05 1.28E-05 1.05E-05 2.10E-05 1.45E-05 1.45E-05 1.55E-05 2.65E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06 1.25E-05 1.50E-05 1.50E-05	11 11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.6 10.9 10.75 10.7	-13.67 -13.55 -13.60 -13.84 log R _{Ca} -12.39 ND -12.29 -12.23 -12.07 -13.45 -13.25 -13.23 -13.23 -13.23 -13.24 -13.25	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \textbf{log R_{Si}} \\ -12.52 \\ -12.46 \\ -12.40 \\ -12.39 \\ -12.22 \\ -12.21 \\ -12.09 \\ -13.57 \\ -13.57 \\ -13.70 \\ -13.60 \\ -13.46 \\ -13.37 \\ -13.44 \\ \end{array}$	-13.61 -13.67 -13.68 -13.70 -13.74 -12.46 -12.49 -12.33 -12.22 -12.08 -12.04 -13.48 -13.42 -13.43 -1
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 6 25_7 25 8 W12 W15 W18 W21 W24 W27 W30 W2	Oxalate Oxalate Oxalate Iigand 10-3 M Citrate 5x10-3 M Citrate 5x10-4 M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Malate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-02 3.00E-02	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 4.04E-05 4.67E-05 1.28E-05 1.05E-05 2.10E-05 1.45E-05 1.55E-05 2.55E-05 2.55E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-06 7.10E-06 7.10E-06 9.00E-06 1.25E-05 1.50E-05 3.40E-06	11 11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.7 10.9 10.75 10.7 10.7	-13.67 -13.50 -13.84 log R _{Ca} -12.39 ND -12.29 -12.23 -12.07 -12.07 -12.07 -13.45 -13.25 -13.25 -13.25 -13.37 -13.41 -13.37 -13.25 -13.25	$\begin{array}{c} -13.66 \\ -13.89 \\ -13.79 \\ -13.64 \\ \hline \textbf{log R_{Si}} \\ -12.52 \\ -12.40 \\ -12.29 \\ -12.22 \\ -12.20 \\ -12.22 \\ -12.09 \\ -13.50 \\ -13.57 \\ -13.70 \\ -13.46 \\ -13.37 \\ -13.44 \\ -13.44 \\ -12.67 \\ \end{array}$	-13.61 -13.67 -13.68 -13.70 -13.74 log R _s -12.46 -12.39 -12.33 -12.22 -12.08 -13.48 -13.42 -13.48 -13.42 -13.48 -13.42 -13.44 -13.37 -13.35 -12.71
W44 W47 N 25_1 25_2 25_3 25_4 25_5 25_6 25_7 25_8 W12 W12 W18 W21 W24 W27 W30 W2 W2 W2 W2 W2 W3 W5 W5 W5 W6 W6 W7 W7 W7 W7 W7 W7 W7 W7 W7 W7	Oxalate Oxalate Oxalate Oxalate ligand 10 ⁻³ M Citrate 5x10 ⁻³ M Citrate 5x10 ⁻⁴ M Citrate 5x10 ⁻⁴ M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Malate Malate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand"] free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-02 3.00E-02 1.00E-05 5.00E-05 5.00E-05	1.29E-05 9.80E-06 5.90E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.78E-05 1.28E-05 1.28E-05 2.01E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.05E-05 2.05E-05 2.05E-05 2.05E-05 2.05E-05 2.05E-05 2.05E-05 2.05E-05	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.83E-05 1.88E-05 2.79E-05 2.86E-05 2.86E-05 9.60E-06 7.10E-06 9.00E-06 1.25E-05 1.72E-05 3.40E-06	11 11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.6 10.9 10.75 10.7 10.7 6.60 6.40	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 -12.39 -12.22 -12.23 -12.01 -13.45 -13.25 -13.25 -13.23 -13.13 -13.26 -12.76	-13.66 -13.8 -13.79 -13.64 -12.52 -12.46 -12.40 -12.29 -12.21 -12.07 -13.50 -13.57 -13.70 -13.44 -12.67 -12.71	-13.61 -13.67 -13.68 -13.70 -13.74 log R ₂ -12.46 -12.39 -12.33 -12.22 -12.08 -13.48 -13.42 -13.44 -13.35 -13.71 -13.35
W44 W47 W50 N 25_1 25_2 25_2 25_3 25_4 25_5 25_6 25_7 25_6 W12 W15 W15 W24 W24 W27 W30 W2 W5 W8	Oxalate Oxalate Oxalate Oxalate Oxalate ligand 10° M Citrate 5x10° M Citrate 10° M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.005 M Citrate Malate Malate Malate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand" free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-02 1.00E-05 5.00E-05 5.00E-05 5.00E-05 1.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.78E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.46E-05 1.45E-05 2.10E-05 2.10E-05 2.45E-05 2.5E-05 2.65E-05 2.90E-06 2.90E-06	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06 1.25E-05 1.50E-05 1.50E-05 3.40E-06 3.10E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.7 10.7 10.7 10.7 6.60 6.40 6.50	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 ND -12.39 -12.22 -12.23 -12.07 -13.45 -13.25 -13.23 -13.24 -13.25 -13.23 -13.24 -13.25 -12.75 -12.74	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \textbf{log R_{Si}} \\ -12.52 \\ -12.46 \\ -12.40 \\ -12.29 \\ -12.22 \\ -12.21 \\ -12.09 \\ -13.50 \\ -13.57 \\ -13.70 \\ -13.46 \\ -13.34 \\ -12.67 \\ -12.67 \\ -12.71 \end{array}$	-13.61 -13.67 -13.74 log R _s -12.46 -12.39 -12.33 -12.22 -12.04 -13.48 -13.57 -13.48 -13.47 -13.44 -13.37 -13.57 -13.44 -13.77 -13.45 -13.47 -13.
W44 W47 W50 N 25_1 25_2 25_3 25_4 25_5 6 25_7 25 8 W12 W15 W18 W21 W24 W27 W30 W2 W5 W8 W11	Oxalate Oxalate Oxalate Iigand 10-3 M Citrate 5x10-3 M Citrate 5x10-4 M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.01 M Citrate Malate Malate Malate Malate Malate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand**] _{free} 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-02 1.00E-05 5.00E-04 5.00E-05 5.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.79E-05 4.04E-05 1.28E-05 1.28E-05 2.10E-05 2.10E-05 1.45E-05 2.5E-05 2.5E-05 2.5E-05 2.90E-06 2.70E-06 2.90E-06 3.90E-06	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.89E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-06 7.10E-06 7.10E-06 1.25E-05 1.72E-05 3.40E-06 3.10E-06 3.10E-06 3.10E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.64 7.67 7.67 10.7 10.7 10.7 10.7 10.7 6.60 6.40 6.55	-13.67 -13.56 -13.84 log R _{Ca} -12.39 ND -12.29 -12.23 -12.07 -12.07 -12.01 -13.45 -13.23 -13.41 -13.37 -12.22 -12.21 -12.22 -12.27 -12.07 -13.07 -12.07	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \textbf{log R_{Si}} \\ -12.52 \\ -12.40 \\ -12.24 \\ -12.29 \\ -12.22 \\ -12.20 \\ -13.50 \\ -13.57 \\ -13.70 \\ -13.46 \\ -13.37 \\ -13.64 \\ -13.27 \\ -12.$	-13.61 -13.67 -13.68 -13.70 -13.74 log R _a -12.46 -12.46 -12.39 -12.22 -12.22 -12.22 -12.24 -13.48 -13.47 -13.37 -13.57 -13.48 -13.42 -13.44 -13.77 -12.74 -12.74
W44 W47 W50 N 25 1 25 25 25 25 3 25 4 25 5 5 25 6 25 7 25 8 W12 W15 W18 W21 W24 W27 W30 W2 W5 W8	Oxalate Oxalate Oxalate Oxalate Oxalate ligand 10° M Citrate 5x10° M Citrate 10° M Citrate 0.001 M Citrate 0.002 M Citrate 0.005 M Citrate 0.005 M Citrate Malate Malate Malate	5.00E-05 3.00E-04 1.00E-03 5.00E-03 [Ligand" free 6.15E-06 3.45E-05 7.09E-05 4.42E-04 9.24E-04 1.91E-03 4.87E-03 9.74E-03 1.00E-05 5.00E-05 3.00E-04 1.00E-03 3.00E-02 1.00E-05 5.00E-05 5.00E-05 5.00E-05 1.00E-05	1.29E-05 1.07E-05 9.80E-06 5.90E-06 [Ca], M 1.89E-05 2.40E-05 2.78E-05 2.78E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.46E-05 1.45E-05 2.10E-05 2.10E-05 2.45E-05 2.5E-05 2.65E-05 2.90E-06 2.90E-06	6.55E-06 5.93E-06 6.15E-06 8.80E-06 [Si], M 1.39E-05 1.59E-05 1.88E-05 2.79E-05 2.86E-05 3.84E-05 4.02E-05 1.10E-05 9.60E-06 1.25E-05 1.50E-05 1.50E-05 3.40E-06 3.10E-06	11 11.1 11.05 pH 6.57 6.71 6.68 7.12 7.27 7.64 7.67 10.7 10.7 10.7 10.7 10.7 6.60 6.40 6.50	-13.67 -13.55 -13.60 -13.84 log R_{Ca} -12.39 ND -12.39 -12.22 -12.23 -12.07 -13.45 -13.25 -13.23 -13.24 -13.25 -13.23 -13.24 -13.25 -12.75 -12.74	$\begin{array}{c} -13.66 \\ -13.8 \\ -13.79 \\ -13.64 \\ \hline \textbf{log R_{Si}} \\ -12.52 \\ -12.46 \\ -12.40 \\ -12.29 \\ -12.22 \\ -12.21 \\ -12.09 \\ -13.50 \\ -13.57 \\ -13.70 \\ -13.46 \\ -13.34 \\ -12.67 \\ -12.67 \\ -12.71 \end{array}$	-13.61 -13.67 -13.68 -13.70

Table A3 (continued)

N	ligand	[Ligand ⁿ⁻] _{free}	[Ca], M	[Si], M	pН	log R _{Ca}	log R _{Si}	log Ra
52-1	Tartrate	1.00E-06	8.20E-06	8.80E-06	9.2	-13.15	-13.12	-13.14
52-2	Tartrate	1.00E-05	1.04E-05	1.13E-05	8.9	-13.13	-13.16	-13.13
52-3	Tartrate	1.00E-04	9.90E-06	1.06E-05	9	-13.05	-13.02	-13.04
52-4	Tartrate	1.00E-03	1.83E-05	1.87E-05	9.2	-12.78	-12.77	-12.78
52-5	Tartrate	5.00E-03	1.64E-05	1.60E-05	9.1	-12.87	-12.88	-12.88
52-6	Tartrate	1.00E-02	2.14E-05	2.65E-05	9.2	-12.75	-12.66	-12.71
52-7	Tartrate	5.00E-02	3.21E-05	1.30E-05	9.1	-12.58	-12.97	-12.78
W34	Tartrate	1.00E-05	1.07E-05	1.06E-05	10.95	-13.62	-13.62	-13.62
W37	Tartrate	1.00E-04	1.15E-05	9.30E-06	10.85	-13.52	-13.61	-13.57
W40	Tartrate	5.00E-04	1.45E-05	4.80E-06	11.00	-13.42	-13.90	-13.66
W43	Tartrate	3.00E-03	1.05E-05	4.25E-06	11.00	-13.60	-13.95	-13.78
W46	Tartrate	1.00E-02	1.16E-05	5.50E-06	11.05	-13.51	-13.84	-13.68
W49	Tartrate	5.00E-02	2.05E-05	1.00E-05	11.05	-13.56	-14.09	-13.83
57-1	Phthalate	1.00E-06	1.50E-05	1.78E-05	6.8	-12.92	-12.85	-12.89
57-2	Phthalate	1.00E-05	1.35E-05	1.51E-05	6.8	-12.98	-12.93	-12.96
57-3	Phthalate	1.00E-04	3.09E-05	3.11E-05	6.5	-12.63	-12.63	-12.63
57-4	Phthalate	1.00E-03	2.40E-05	2.65E-05	6.9	-12.69	-12.65	-12.67
57-5	Phthalate	5.00E-03	3.47E-05	2.94E-05	6.8	-12.54	-12.62	-12.58
57-6	Phthalate	1.00E-02	3.54E-05	3.36E-05	7.0	-12.55	-12.57	-12.56
W52	Phthalate	1.00E-05	9.90E-06	1.10E-05	10.7	-13.55	-13.58	-13.57
W55	Phthalate	1.00E-04	1.34E-05	9.00E-06	11.0	-13.46	-13.62	-13.54
W58	Phthalate	5.00E-04	1.28E-05	7.82E-06	11.0	-13.47	-13.68	-13.58
W61	Phthalate	3.00E-03	1.24E-05	7.60E-06	10.9	-13.49	-13.69	-13.59
W64	Phthalate	1.00E-02	1.32E-05	8.26E-06	11.0	-13.46	-13.66	-13.56
W67	Phthalate	5.00E-02	1.70E-05	9.55E-06	11.0	-13.35	-13.61	-13.48
W44	Malonate	1.00E-05	7.00E-06	8.20E-06	6.95	-12.78	-12.82	-12.80
W46	Malonate	5.00E-05	7.80E-06	8.80E-06	7.05	-12.79	-12.75	-12.77
W48	Malonate	1.00E-04	6.90E-06	7.70E-06	6.70	-12.75	-12.70	-12.73
W50	Malonate	5.00E-04	8.20E-06	8.30E-06	6.85	-12.67	-12.67	-12.67
W45	Malonate	1.00E-03	9.90E-06	1.08E-05	6.90	-12.59	-12.56	-12.58
W47	Malonate	5.00E-03	1.20E-05	1.36E-05	7.10	-12.51	-12.45	-12.48
W49	Malonate	1.00E-02	1.40E-05	1.40E-05	7.15	-12.44	-12.44	-12.44
W51	Malonate	5.00E-02	1.70E-05	1.71E-05	7.05	-12.35	-12.45	-12.40
53-1	Adipate	1.00E-06	5.70E-06	5.70E-06	6.65	-12.78	-12.76	-12.77
53-2	Adipate	1.00E-05	7.40E-06	6.70E-06	6.80	-12.68	-12.75	-12.73
53-3	Adipate	2.00E-04	5.20E-06	5.40E-06	6.62	-12.55	-12.48	-12.55
53-4	Adipate	1.00E-03	1.14E-05	1.07E-05	6.66	-12.46	-12.49	-12.48
53-5	Adipate	5.00E-03	1.79E-05	1.64E-05	6.70	-12.24	-12.27	-12.26
53-6	Adipate	1.00E-02	1.43E-05	1.55E-05	6.75	-12.33	-12.30	-12.27
53-7	Adipate	5.00E-02	1.89E-05	2.18E-05	6.75	-12.11	-12.07	-12.09
64-1	Fumarate	1.00E-06	1.84E-05	1.37E-05	7.05	-12.74	-12.87	-12.80
64-2	Fumarate	1.00E-05	1.42E-05	1.50E-05	6.92	-12.82	-12.80	-12.81
64-3	Fumarate	1.00E-04	2.00E-05	1.51E-05	6.94	-12.69	-12.82	-12.75
64-4	Fumarate	1.00E-03	2.14E-05	1.75E-05	7.00	-12.64	-12.72	-12.68
64-5	Fumarate	0.005	2.15E-05	1.87E-05	6.93	-12.63	-12.69	-12.66
64-6	Fumarate	0.01	2.75E-05	2.64E-05	6.92	-12.55	-12.57	-12.56
64-7	Fumarate	0.03	2.79E-05	2.84E-05	7.13	-12.52	-12.51	-12.52
64-8	Fumarate	0.1	3.07E-05	3.19E-05	7.08	-12.48	-12.47	-12.48
63-1	Succinate	1.00E-06	1.05E-05	9.19E-06	7.40	-12.88	-12.94	-12.91
63-2	Succinate	1.00E-05	1.02E-05	8.60E-06	7.46	-12.91	-12.98	-12.94
63-3	Succinate	1.00E-04	1.18E-05	8.06E-06	7.44	-12.85	-13.01	-12.93
63-4	Succinate	1.00E-03	1.24E-05	1.04E-05	7.38	-12.81	-12.89	-12.85
63-5	Succinate	0.005	2.23E-05	2.40E-05	7.45	-12.56	-12.53	-12.55
63-6	Succinate	0.01	1.99E-05	2.03E-05	7.42	-12.61	-12.60	-12.6
63-7	Succinate	0.03	3.71E-05	3.31E-05	7.37	-12.34	-12.39	-12.37
63-8	Succinate	0.1	4.48E-05	3.94E-05	7.36	-12.26	-12.32	-12.29
W23	D-gluconate	1.00E-05	3.70E-06	4.10E-06	8.30	-13.01	-12.9	-12.96
W26	D-gluconate	5.00E-05	3.50E-06	4.30E-06	8.30	-13.03	-12.95	-12.99
W29	D-gluconate	1.00E-04	3.20E-06	4.00E-06	8.30	-13.08	-12.99	-13.04
W32	D-gluconate	5.00E-04	4.30E-06	4.70E-06	8.30	-12.97	-12.92	-12.95
W35	D-gluconate	1.00E-03	4.80E-06	5.00E-06	8.40	-12.90	-12.88	-12.89
W38	D-gluconate	5.00E-03	6.60E-06	7.50E-06	8.60	-12.77	-12.7	-12.74
W41	D-gluconate	1.00E-02	7.50E-06	7.90E-06	8.59	-12.70	-12.66	-12.68
W24	D-glucuronic	1.00E-05	7.50E-06	8.20E-06	6.60	-12.84	-12.80	-12.82
W27	D-glucuronic	5.00E-05	5.80E-06	7.30E-06	6.60	-12.95	-12.85	-12.90
W30	D-glucuronic	1.00E-04	5.70E-06	6.10E-06	6.65	-13.01	-12.98	-13.00
W33	D-glucuronic	5.00E-04	5.00E-06	6.20E-06	6.70	-13.00	-12.91	-12.96
W36	D-glucuronic	1.00E-03	4.20E-06	4.80E-06	6.60	-13.11	-13.06	-13.09
W39	D-glucuronic	5.00E-03	4.70E-06	4.80E-06	6.70	-13.06	-13.05	-13.06
_		[HEDTA ³⁻]		_				
27_1	0.01 M NaCl	8.00E-06	0 46E-06	8.20E-06	7.52	-12.66	-12.73	-12.70
27_1 27_2	10 ⁻⁴ M EDTA	6.70E-05	2.68E-05	2.67E-05	7.15	-12.22	-12.73	-12.70
				4.50E-05		-12.22	-12.22	
27_3	3x10 ⁻⁴ M EDTA 6x10 ⁻⁴ M EDTA	2.50E-04 5.00E-04		4.50E-05 5.29E-05	7.74			-12.01
	OXIU MEDIA	5.00E-04	4.91E-05	J.47E-U3	7.70	-11.97	-11.94	-11.95
27_4 27_5	0.001 M EDTA	9.00E-04		6.15E-05	7.73	-11.87	-11.87	-11.87

Table A3 (continued)

N	ligand	[Ligand ⁿ⁻] _{free}	[Ca], M	[Si], M	pН	log R _{Ca}	log R _{Si}	log R _{avg}
	1150HH	[HEDTA ³⁻]	[], 171	10119 111	P11	Tog Itta	TOS INSI	Tog Tavg
27_5	0.001 M EDTA	9.00E-04	6.17E-05	6.15E-05	7.73	-11.87	-11.87	-11.87
27_6	0.002 M EDTA	1.83E-03	8.00E-05	7.80E-05	7.73	-11.76	-11.77	-11.76
27_7	0.005 M EDTA	4.64E-03	1.07E-04	1.03E-04	7.70	-11.63	-11.65	-11.64
27_8	0.01 M EDTA	9.23E-03	1.05E-04	9.94E-05	7.55	-11.64	-11.66	-11.65
		[EDTA ⁴]	4.050.05			40.40		
22_10 22_11	0.00001 M EDTA 0.0001 M EDTA	1.00E-06 1.16E-05	1.85E-05 4.37E-05	1.63E-05 4.46E-05	9.44 9.04	-12.40 -12.03	-12.45 -12.02	-12.43 -12.02
22 12	0.0001 M EDTA 0.0005 M EDTA	8.66E-05		8.28E-05	9.20	-12.03	-11.75	-11.76
22_13	0.001 M EDTA	2.48E-04	9.67E-05		9.41	-11.68	-11.67	-11.68
22_14	0.002 M EDTA	6.50E-04	1.06E-04	1.08E-04	9.54	-11.64	-11.63	-11.64
22_15	0.005 M EDTA	0.00194		1.21E-04	9.47	-11.58	-11.58	-11.58
22_16 W10	0.01 M EDTA 0.00001 EDTA	0.00448 2.00E-06	1.21E-04 1.70E-05	1.18E-04 1.51E-05	9.38	-11.58 -13.35	-11.59 -13.40	-11.59
W13	0.00001 EDTA 0.00005 EDTA	9.00E-06		2.55E-05	10.7	-13.14	-13.18	-13.16
W16	0.0001 EDTA	2.60E-05		3.50E-05	10.8	-13.02	-13.05	-13.04
W19	0.0005 EDTA	1.87E-04	7.60E-05	7.70E-05	10.9	-12.75	-12.74	-12.75
W22	0.001 EDTA	4.30E-04		9.10E-05	10.9	-12.66	-12.63	-12.65
W25	0.003 EDTA	1.62E-03	1.05E-04	1.11E-04	11.0	-12.57	-12.55	-12.56
W3	0.000001 EGTA	[H ₂ EGTA ²⁻] 4.00E-07	2.40E.06	2.40E-06	6.15	-12.76	-12.77	-12.77
W6	0.000001 EGTA 0.000005 EGTA	3.00E-06		2.40E-06 2.70E-06	6.10	-12.78	-12.77	-12.74
W9	0.00001 EGTA	1.00E-05		2.90E-06	6.10	-12.76	-12.69	-12.73
W12	0.00005 EGTA	5.00E-05		3.00E-06	6.10	-12.56	-12.67	-12.62
W15	0.0001 EGTA	1.00E-04		5.30E-06	6.05	-12.39	-12.45	-12.42
W18 W21	0.0005 EGTA 0.001 EGTA	5.00E-04	1.41E-05 1.05E-05	1.53E-05 9.60E-06	6.20 6.13	-12.25 -12.15	-12.21 -12.19	-12.23 -12.17
VV Z 1	0.001 EGTA	1.00E-03	1.05E-05	7.00E-00	0.13	-12.13	-12.19	-12.1/
28_1	0.01 M NaCl	[H ₂ Cat°] 1.00E-05	1 22F-05	9.20E-06	6.37	-12.52	-12.64	-12.58
28_2	10 ⁻⁴ M Catechol	1.00E-04	1.57E-05	1.53E-05	6.54	-12.42	-12.43	-12.42
28_3	3x10 ⁻⁴ M Catechol	3.00E-04	2.12E-05	2.10E-05	6.49	-12.28	-12.29	-12.28
28_4	6x10 ⁻⁴ M Catechol	6.00E-04		2.33E-05	6.60	-12.25	-12.25	-12.25
28_5	10 ⁻³ M Catechol 2x10 ⁻³ M Catechol	1.00E-03		2.63E-05	6.41	-12.20	-12.19	-12.20
28_6 28_7	5x10 ⁻³ M Catechol	2.00E-03 5.00E-03	4.01E-05 4.85E-05	4.03E-05 4.88E-05	6.35 6.30	-12.01 -11.94	-12.01 -11.93	-12.01 -11.94
28 8	0.01 M Catechol	1.00E-02	5.80E-05	5.96E-05	6.22	-11.86	-11.84	-11.85
		[HCat ⁻]						
W33	Catechol	1.00E-05	8.30E-06	7.60E-06	10.7	-13.66	-13.69	-13.68
W36	Catechol	1.00E-04	8.70E-06	6.40E-06	10.7	-13.64	N.D.	-13.64
W39	Catechol	5.00E-04	1.50E-05	1.25E-05	10.6	-13.41	-13.47	-13.44
W42 W45	Catechol Catechol	3.00E-03 1.00E-02	1.62E-05 1.66E-05	1.85E-05 1.78E-05	10.4 10.7	-13.37 -13.36	-13.31 -13.32	-13.34 -13.34
W48	Catechol	5.00E-02	2.00E-05	N.D.	10.7	-13.28	N.D.	-13.28
		[H-Oxine ⁻]						
54-1	8-Hydroxyquinoline	0.000001	1.21E-05	1.28E-05	8.3	-12.92	-12.88	-12.90
54-2	8-Hydroxyquinoline	1.00E-05	1.84E-05	1.93E-05	8.5	-12.86	-12.84	-12.85
54-3	8-Hydroxyquinoline	1.00E-04	2.93E-05	2.95E-05	8.5	-12.69	-12.66	-12.68
54-4 54-5	8-Hydroxyquinoline 8-Hydroxyquinoline	5.00E-04 1.00E-03	3.89E-05 4.53E-05	5.39E-05 4.70E-05	8.2 8.1	-12.64 -12.50	-12.56 -12.48	-12.60 -12.49
54-6	8-Hydroxyquinoline	5.00E-03	4.77E-05	4.89E-05	8.2	-12.46	-12.45	-12.46
54-7	8-Hydroxyquinoline	2.00E-02	6.80E-05	6.50E-05	8.4	-12.30	-12.32	-12.31
·		[H ₂ DHBA ⁻]						_
W69	2,4 – Dihydroxybenzoic acid, 10 ⁻⁵ M	9.80E-06	6.90E-06	3.30E-06	7.0	-12.67	-12.97	-12.82
W72	2,4 – Dihydroxybenzoic acid, 10 ⁻⁴ M 2,4 – Dihydroxybenzoic acid, 5x10 ⁻⁴ M	9.80E-05	7.00E-06	4.50E-06	6.2	-12.68	-12.85	-12.77
W75 W78	2,4 – Dihydroxybenzoic acid, 5x10 ⁻¹ M	4.90E-04 9.50E-04	7.00E-06 6.70E-06	5.90E-06 6.80E-06	6.3 6.7	-12.65 -12.71	-12.72 -12.66	-12.69 -12.69
W81	2,4 – Dihydroxybenzoic acid, 3x10 ⁻³ M	2.90E-03	8.50E-06	9.10E-06	7.4	-12.57	-12.52	-12.55
W84	2,4 - Dihydroxybenzoic acid, 0.01 M	9.23E-03	1.36E-05	1.56E-05	7.5	-12.38	-12.29	-12.34
		[H ₂ DHBA ⁻]						
W70	3,4 – Dihydroxybenzoic acid, 10 ⁻⁵ M	9.80E-06	8.80E-06	6.20E-06	6.9	-12.47	-12.6	-12.54
W73	3,4 – Dihydroxybenzoic acid, 10 ⁻⁴ M 3,4 – Dihydroxybenzoic acid, 5x10 ⁻⁴ M	9.80E-05	9.60E-06	9.36E-06	7.3	-12.45	-12.42	-12.44
W76 W79	3,4 – Dihydroxybenzoic acid, 5x10 ⁻ M 3,4 – Dihydroxybenzoic acid, 10 ⁻³ M	4.90E-04 9.50E-04	1.55E-05 1.68E-05	1.70E-05 1.91E-05	6.9 7.3	-12.28 -12.18	-12.22 -12.11	-12.25 -12.15
W82	3,4 – Dihydroxybenzoic acid, 3x10 ⁻³ M	2.90E-03	2.22E-05	2.57E-05	7.5	-12.09	-12.02	-12.06
W85	3,4 - Dihydroxybenzoic acid, 0.01 M	9.23E-03	2.59E-05	3.08E-05	7.5	-12.00	-11.91	-11.96
		[H ₃ Gal ⁻]						
65-1	Gallic acid	5.50E-07	3.03E-05	2.25E-05	7.04	-12.76	-12.89	-12.83
65-2	Gallie acid	1.00E-05	2.75E-05	2.61E-05	6.94	-12.85	-12.87	-12.86
65-3 65-4	Gallic acid Gallic acid	1.00E-04 1.00E-03	3.64E-05 7.67E-05	3.38E-05 7.44E-05	6.88 7.05	-12.71 -12.38	-12.74 -12.39	-12.72 -12.38
65-5	Gallic acid	0.005	1.36E-04	1.60E-04	6.81	-12.38	-12.39	-12.36
65-6	Gallic acid	0.01	1.80E-04	2.11E-04	6.85	-12.00	-11.93	-11.97
65-7	Gallic acid	0.03	2.20E-04	2.97E-04	6.95	-11.90	-11.77	-11.84
65-8	Gallic acid	0.07	2.05E-04	2.72E-04	7.09	-11.95	-11.83	-11.89

Table A3 (continued)

N	ligand	[Ligand ⁿ⁻] _{free}	[Ca], M	[Si], M	pН	log R _{Ca}	lnσ R	log R _{avg}
14	nganu	[HAscorbate]	,	[31], 141	pm	rog reca	iog ixsi	iog ivavg
W1	10 ⁻⁵ M Ascorbic acid	1.00E-05	2.52E-06	2.80E-06	7.30	-12.97	-12.94	-12.96
W4	5 x10 ⁻⁵ M Ascorbic acid	5.00E-05	2.40E-06	2.88E-06	7.20	-12.97	-12.88	-12.90
W7	10 ⁻⁴ M Ascorbic acid	1.00E-04	2.32E-06	2.64E-06	7.30	-12.98	-12.93	-12.96
W10	0.0005 M Ascorbic acid	5.00E-04	2.16E-06	2.56E-06	7.30	-12.96	-12.9	-12.93
W13	0.001 M Ascorbic acid	1.00E-03	3.80E-06	3.90E-06	7.40	-12.82	-12.81	-12.82
W16	0.005 M Ascorbic acid	5.00E-03	6.10E-06	5.60E-06	7.35	-12.57	-12.61	-12.59
W19	0.01 M Ascorbic acid	1.00E-02	8.10E-06	6.00E-06	7.50	-12.45	-12.58	-12.52
		$[H_2PO_4]$						
31_1	1e-5 M PO ₄	5.07E-06	2.30E-05	2.00E-05	7.05	-12.59	-12.65	-12.62
31_2	2e-5 M PO ₄	1.19E-06	2.10E-05	2.08E-05	6.90	-12.65	-12.65	-12.65
31_3	5e-5 M PO ₄	3.20E-05	2.60E-05	2.86E-05	6.80	-12.55	-12.51	-12.53
31_4	1e-4 M PO ₄	6.00E-05	3.62E-05	3.90E-05	6.89	-12.40	-12.37	-12.39
31_5 31_6	2e-4 M PO ₄ 5e-4 M PO ₄	1.15E-04 3.20E-04	5.24E-05 8.16E-05	6.04E-05 1.02E-04	6.93 6.79	-12.25 -12.06	-12.19 -11.97	-12.22 -12.01
31_0	1e-3 M PO ₄	7.40E-04	1.15E-04	1.64E-04	6.61	N.D.	-11.75	-11.75
31 8	3e-3 M PO ₄	1.80E-03	1.42E-04	2.31E-04	6.85	N.D.	-11.61	-11.61
31_9	0.01 M PO ₄	5.79E-03	1.51E-04	2.39E-04	6.87	N.D.	-11.60	-11.60
	<u> </u>	[H ₂ PO ₃ -]						
39 1	10 ⁻⁵ M NaPO ₃	7.00E-06	1.97E-05	1.91E-05	6.61	-12.38	-12.39	-12.38
39 2	10 ⁻⁴ M NaPO ₃	7.00E-05	2.03E-05	2.11E-05	6.52	-12.35	-12.33	-12.34
39_3	10 ⁻³ M NaPO ₃	7.00E-04	4.77E-05	5.30E-05	6.85	-11.99	-11.94	-11.97
39_4	0.003 M NaPO ₃	2.10E-03	7.00E-05	8.60E-05	6.69	-11.83	-11.74	-11.78
39_5	0.01 M NaPO _{3éz}	7.00E-03	8.44E-05	1.27E-04	6.70	-11.75	-11.57	-11.66
39_6	0.02 M NaPO ₃	1.40E-02	9.00E-05	1.53E-04	6.62	-11.72	-11.49	-11.61
39_7	0.05 M NaPO ₃	3.50E-02	1.00E-04	1.75E-04	6.44	-11.68	-11.43	-11.56
22.1	2-10 ⁵ MN-HGO		2.21E.05	1.000.05	6.00	12.61	12.66	12.62
32_1 32_2	2 x 10 ⁻⁵ M NaHCO ₃ 10 ⁻⁴ M NaHCO ₃		2.21E-05 1.63E-05	1.98E-05 1.54E-05	6.90 7.02	-12.61 -12.74	-12.66 -12.76	-12.63 -12.75
32_2	5 x 10 ⁻⁴ M NaHCO ₃		1.26E-05	1.34E-05	7.53	-12.74	-12.76	-12.73
32_4	0.001 M NaHCO ₃		1.66E-05	1.75E-05	7.90	-12.74	-12.72	-12.73
32_5	0.002 M NaHCO ₃		1.80E-05	1.86E-05	8.42	-12.71	-12.69	-12.70
32_6	0.005 M NaHCO ₃		2.02E-05	1.96E-05	8.56	-12.66	-12.67	-12.67
32_7	0.01 M NaHCO ₃		2.10E-05	2.15E-05	8.62	-12.64	-12.63	-12.64
32_8	0.05 M NaHCO ₃		3.73E-05	3.78E-05	8.54	-12.39	-12.38	-12.39
32_9	0.1 M NaHCO ₃		4.80E-05	5.16E-05	8.44	-12.29	-12.26	-12.27
33_1 33_2	0.001 M NaOH 2 x 10 ⁻⁵ M Na ₂ CO ₃		1.33E-05 4.36E-06	9.03E-06 4.26E-06	11.08 11.03	-12.86 -13.36	-13.03 -13.37	-12.95 -13.36
33_2	5 x 10 ⁻⁵ M Na ₂ CO ₃		3.95E-06	3.47E-06	10.52	-13.40	-13.37	-13.42
33_3	10 ⁻⁴ M Na ₂ CO ₃		2.75E-06	3.35E-06	11.15	-13.56	-13.47	-13.52
33_5	2 x 10 ⁻⁴ M Na ₂ CO ₃		2.60E-06	3.90E-06	11.16	-13.59	-13.41	-13.50
33_6	4 x 10 ⁻⁴ M Na ₂ CO ₃		2.20E-06	2.60E-06	11.18	-13.66	-13.58	-13.62
33_7	10 ⁻³ M Na ₂ CO ₃		2.00E-06	3.10E-06	11.17	-13.70	-13.51	-13.60
33_8	2 x 10 ⁻³ M Na ₂ CO ₃		2.14E-06	3.62E-06	11.17	-13.67	-13.43	-13.55
33_9	5 x 10 ⁻³ M Na ₂ CO ₃		(3.4±0.2)E-6	5.03E-06	10.93	-13.47	-13.30	-13.38
34_0	Humics, $[DOC] = 0.1 \text{ mg/L}$	0.1	2.25E-05	2.00E-05	6.75	-12.36	-12.41	-12.38
34_1	Humics, [DOC] = 0,8 mg/L	0.8	2.31E-05	1.93E-05	6.80	-12.35	-12.42	-12.38
34_2 34_3	Humics, [DOC] = 2,24 mg/L Humics, [DOC] = 5,46 mg/L	2.24 5.46	2.26E-05 1.75E-05	1.83E-05 1.65E-05	6.76 6.74	-12.36 -12.47	-12.45 -12.49	-12.40 -12.48
34_3 34_4	Humics, [DOC] = 5,46 mg/L Humics, [DOC] = 11,3 mg/L	11.3	1.64E-05	1.65E-05 1.64E-05	6.73	-12.47	-12.49	-12.48
34_5	Humics, [DOC] = 26,5 mg/L	26.5	2.63E-05	2.52E-05	6.80	-12.27	-12.29	-12.28
34_6	Humics, [DOC] = 53,8 mg/L	53.8	3.64E-05	3.72E-05	6.70	-12.13	-12.12	-12.13
36_6	0,01 M NaCl, [DOC] =0 mg/L	0.1	N.D.	8.64E-06	6.87	N.D.	-12.72	-12.72
36_1	Diatoms exudates, [DOC] = 0,45 mg/L	0.45	1.29E-05	9.45E-06	6.42	-12.54	-12.68	-12.61
36_2	Diatoms exudates, [DOC] = 2,1 mg/L	2.1	1.30E-05	1.15E-05	6.46	-12.54	-12.59	-12.56
36_3	Diatoms exudates, [DOC] = 6,7 mg/L	6.7	N.D.	1.38E-05	6.76	N.D.	-12.52	-12.52
36_4	Diatoms exudates, [DOC] = 27,4 mg/L	27.4	N.D.	4.50E-06	6.81	N.D.	-12.98	-12.98
36_5	Diatoms exudates, [DOC] = 54 mg/L	54	N.D.	7.40E-06	6.79	N.D.	-12.79	-12.79
35_6	0,01 M NaCl, [DOC] =0.1 mg/L	0.1	9.30E-06	8.46E-06	6.35	-12.70	-12.74	-12.72
35_1	Fulvies, [DOC] = 0.4 mg/L	0.4	1.10E-05	8.20E-06	6.37	-12.64	-12.76	-12.70
35_2	Fulvies [DOC] = 1.1 mg/L	1.1	1.02E-05	8.50E-06	6.38	-12.67	-12.75 -12.78	-12.71 -12.74
35_3 35_4	Fulvics, $[DOC] = 2.1 \text{ mg/L}$ Fulvics, $[DOC] = 4.8 \text{ mg/L}$	2.1 4.8	9.20E-06 9.80E-06	7.90E-06 7.60E-06	6.41 6.42	-12.71 -12.68	-12.78 -12.79	-12.74
35_5	Fulvics, [DOC] = 7.2 mg/L	7.2	1.05E-05	7.45E-06	6.40	-12.63	-12.79	-12.74
		7.2	1.002.00		00	12.03	12.70	

766

Table A3 (continued)

N	ligand	[Ligand]	[Ca], M	[Si], M	pН	log R _{Ca}	log R _{Si}	log R _{avg}
		[HSalicyl ⁻]						
38_1	10 ⁻⁵ M Salicylate	1.00E-05	1.40E-05	1.11E-05	6.76	-12.52	-12.62	-12.57
38_2 38_3	10 ⁻⁴ M Salicylate 10 ⁻³ M Salicylate	1.00E-04 1.00E-03	1.47E-05 1.45E-05	1.05E-05 9.89E-06	6.75 6.75	-12.50 -12.52	-12.65 -12.68	-12.57 -12.60
38_4	0.01 M Salicylate	0.01	1.55E-05	1.51E-05	6.51	-12.49	-12.50	-12.50
38_5	0.03 M Salicylate	0.03	2.14E-05	2.15E-05	6.65	-12.36	-12.36	-12.36
38_6	0.1 M Salicylate	0.1	2.51E-05	N.D.	6.45	-12.29	N.D.	-12.29
38_7	0.2 M Salicylate	0.2	3.10E-05	N.D.	6.52	-12.20	N.D.	-12.20
40.4	40.5 14 mil 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[SH-CH ₂ COO ⁻]	4.450.05			40.00	40.00	
40_1 40_2	10 ⁻⁵ M Thioglycolate (SH-CH2COOH) 10 ⁻⁴ M Thioglycolate (SH-CH2COOH)	1.00E-05 1.00E-04	1.17E-05 1.24E-05	9.80E-06 9.32E-06	6.76 6.75	-12.60 -12.58	-12.68 -12.70	-12.64 -12.64
40_2	10 ⁻³ M Thioglycolate (SH-CH2COOH)	1.00E-04 1.00E-03	1.44E-05	1.15E-05	6.75	-12.51	-12.70	-12.56
40_4	0.005 M Thioglycolate (SH-CH2COOH)	0.005	2.14E-05	1.86E-05	6.51	-12.34	-12.40	-12.37
40_5	0.01 M Thioglycolate (SH-CH2COOH)	0.01	2.73E-05	2.72E-05	6.65	-12.23	-12.23	-12.23
40_6	0.03 M Thioglycolate (SH-CH2COOH)	0.03	4.20E-05	4.31E-05	6.65	-12.04	-12.03	-12.04 -11.83
40_7	0.1 M Thioglycolate (SH-CH2COOH)	0.1 [Oxydiacetate ²⁻]	6.90E-05	7.07E-05	6.62	-11.83	-11.82	-11.03
51-1	Diglycolic acid	1.00E-06	2.02E-05	2.02E-05	7.20	-12.76	-12.76	-12.76
51-2	Diglycolic acid	1.00E-05	1.86E-05	1.90E-05	7.35	-12.79	-12.78	-12.79
51-3	Diglycolic acid	1.00E-04	2.17E-05	2.21E-05	7.25	-12.72	-12.72	-12.72
51-4	Diglycolic acid	1.00E-03	2.86E-05	2.95E-05	7.25	-12.6	-12.59	-12.60
51-5	Diglycolic acid	5.00E-03	3.99E-05	3.83E-05	7.25	-12.48	-12.5	-12.49
51-6 51-7	Diglycolic acid Diglycolic acid	1.00E-02 5.00E-02	3.97E-05 5.53E-05	3.99E-05 5.18E-05	7.30 7.45	-12.48 -12.34	-12.48 -12.37	-12.48 -12.36
517	Digiyeone deld	[Aspartam ²⁻]	3.33E 03	3.10L 03	7.45	12.54	12.57	-12.50
47_1	10 ⁻⁵ M Aspartate	5.00E-06	1.28E-05	1.24E-05	7.27	-12.23	-12.25	-12.24
47_2	10 ⁻⁴ M Aspartate	1.00E-04	1.22E-05	1.22E-05	7.23	-12.27	-12.27	-12.27
47_3	10 ⁻³ M Aspartate	1.00E-03	1.57E-05	1.70E-05	7.27	-12.17	-12.13	-12.15
47_4	0.003 M Aspartate	3.00E-03	2.10E-05	2.33E-05	7.26	-12.07	-12.03	-12.05
47_5 47_6	0.01 M Aspartate 0.03 M Aspartate	0.01 0.03	2.88E-05 3.52E-05	3.21E-05 3.70E-05	7.27 7.31	-11.95 -11.87	-11.90 -11.85	-11.93 -11.86
47_7	0.1 M Aspartate	0.1	3.51E-05	3.42E-05	7.34	-11.88	-11.90	-11.89
	*	[Glutamate ²⁻]						
W22	L-glutamic	5.00E-06	1.53E-05	1.55E-05	6.85	-12.80	-12.80	-12.80
W25	L-glutamic	5.00E-05	1.15E-05	1.15E-05	6.90	-12.75	-12.75	-12.75
W31	L-glutamic	5.00E-04	2.12E-05	2.39E-05	6.95	-12.64	-12.59	-12.62
W34	L-glutamic	1.00E-03	1.10E-05	1.16E-05	7.10	-12.56	-12.53	-12.55
W37 W40	L-glutamic L-glutamic	5.00E-03 1.00E-02	1.56E-05 1.85E-05	1.53E-05 1.64E-05	7.30 7.10	-12.40 -12.34	-12.41 -12.39	-12.41 -12.37
	-	[Polysaccharide] _{to}						
48_1	10 ⁻⁴ M Sorbitol	1.00E-04	1.10E-05	9.42E-06	5.87	-12.36	-12.43	-12.40
48_8	3·10 ⁻⁴ M Sorbitol	3.00E-04	8.51E-06	9.70E-06	5.77	-12.51	-12.45	-12.48
48 2	5·10 ⁻⁴ M Sorbitol	5.00E-04	1.02E-05	9.18E-06	5.81	-12.40	-12.44	-12.42
48_3	0.002 M Sorbitol	0.002	1.20E-05	1.25E-05	5.86	-12.33	-12.31	-12.32
48_4	0.01 M Sorbitol	0.01	1.31E-05	1.37E-05	5.9	-12.30	-12.28	-12.29
48_5	0.02 M Sorbitol	0.02	1.47E-05	1.44E-05	5.81	-12.26	-12.27	-12.26
48_6 48_7	0.05 M Sorbitol 0.1 M Sorbitol	0.05 0.1	1.47E-05 1.26E-05	N.D. N.D.	5.81 5.90	-12.27 -12.34	N.D. N.D.	-12.27 -12.34
G_1	2.8·10-4 M Glucose	2.80E-04	2.35E-05	2.51E-05	6.10	-12.47	-12.44	-12.45
G_1 G_2	0.0028 M Glucose	0.0028	1.65E-05	1.75E-05	6.05	-12.53	-12.50	-12.51
G_3	0.014 M Glucose	0.014	2.30E-05	2.25E-05	6.06	-12.33	-12.34	-12.34
G_4	0.028 M Glucose	0.028	6.63E-05	5.60E-05	6.20	-12.49	-12.57	-12.53
G_5 G 6	0.056 M Glucose 0.084 M Glucose	0.056 0.084	3.27E-04 1.59E-04	3.16E-04 2.04E-04	6.15 6.20	-12.39 -12.28	-12.41 -12.18	-12.40 -12.23
56-3	Saccharose	1.00E-04	1.62E-05	1.46E-05	8.5	-12.28	-12.18	-12.23
56-4	Saccharose	1.00E-03	1.53E-05	1.45E-05	8.5	-12.92	-12.94	-12.93
56-5	Saccharose	5.00E-03	1.59E-05	1.49E-05	8.4	-12.9	-12.93	-12.92
56-6 56-7	Saccharose Saccharose	1.00E-02 5.00E-02	1.50E-05 1.47E-05	1.51E-05 1.48E-05	8.4 8.3	-12.92 -12.93	-12.92 -12.92	-12.92 -12.93
56-8	Saccharose	1.00E-01	1.47E-05 1.49E-05	1.48E-05 1.49E-05	8.2	-12.93	-12.92	-12.93
W51	D-mannit	1.00E-05	9.40E-06	7.80E-06	10.7	-13.6	-13.64	-13.62
W54	D-mannit	1.00E-04	1.31E-05	4.15E-06	11.1	-13.42	-13.92	-13.67
W57	D-mannit	5.00E-04	1.27E-05	3.20E-06	11.0	-13.44	-14.03	-13.74
W60 W63	D-mannit D-mannit	3.00E-03 1.00E-02	1.05E-05 8.00E-06	3.00E-06 2.70E-06	10.9 11.0	-13.52 -13.64	-14.06 -14.11	-13.79 -13.88
W66	D-mannit	5.00E-02	6.60E-06	1.05E-06	10.9	-13.73	-14.51	-14.12
		[Carbamid ⁻]						
W53	Urea	1.00E-05	9.80E-06	1.04E-05	10.95	-13.56	-13.52	-13.54
W56	Urea	1.00E-04	1.44E-05	7.80E-06	11.0	-13.39	-13.64	-13.52
W59 W62	Urea Urea	5.00E-04 3.00E-03	1.35E-05 1.10E-05	6.95E-06 6.40E-06	11.0 11	-13.41 -13.5	-13.69 -13.73	-13.55 -13.62
W62 W65	Urea Urea	3.00E-03 1.00E-02	8.50E-06	6.40E-06 6.00E-06	11	-13.5 -13.61	-13.76	-13.62
W68	Urea	5.00E-02	7.80E-06	5.64E-06	11	-13.67	-13.78	-13.73

Table A3 (continued)

N	ligand	[Ligand]	[Ca], M	[Si], M	pН	log R _{Ca}	log R _{Si}	log R _{avg}
		[Mannitol] _{tot}						
62-1	Mannitol	2.00E-06	6.50E-06	8.50E-06	10.80	-13.38	-13.27	-13.32
62-2	Mannitol	2.00E-05	7.00E-06	7.40E-06	10.90	-13.34	-13.32	-13.33
62-3	Mannitol	1.00E-04	5.60E-06	7.68E-06	10.87	-13.44	-13.31	-13.37
62-4	Mannitol	1.00E-03	6.50E-06	6.70E-06	10.81	-13.38	-13.36	-13.37
62-5	Mannitol	1.00E-02	8.40E-06	7.09E-06	10.87	-13.27	-13.34	-13.30
62-6	Mannitol	0.03	9.00E-06	7.10E-06	10.84	-13.24	-13.34	-13.29
62-7	Mannitol	0.10	9.50E-06	ND	10.95	-13.22	ND	-13.22
62-8	Mannitol	0.30	8.40E-06	ND	10.88	-13.25	ND	-13.25
		[H-Glucosamine]. M	I					
61-1	Glucosamine	1.00E-05	3.00E-05	3.30E-05	7.07	-12.69	-12.65	-12.67
61-2	Glucosamine	1.00E-04	3.05E-05	3.23E-05	7.04	-12.70	-12.67	-12.68
61-3	Glucosamine	1.00E-03	4.19E-05	3.50E-05	7.02	-12.57	-12.65	-12.61
61-4	Glucosamine	5.00E-03	4.02E-05	3.76E-05	6.99	-12.59	-12.62	-12.61
61-5	Glucosamine	0.01	4.09E-05	4.06E-05	6.88	-12.60	-12.60	-12.60
61-6	Glucosamine	0.02	3.25E-05	3.47E-05	6.89	-12.70	-12.67	-12.69
61-7	Glucosamine	0.05	3.10E-05	3.30E-05	6.78	-12.70	-12.67	-12.68
61-8	Glucosamine	0.10	3.21E-05	3.42E-05	6.58	-12.70	-12.67	-12.69
		Carboxylic groups						
60-1	1 mg/L Alginate	4.00E-06	2.16E-05	1.81E-05	6.95	-12.80	-12.88	-12.84
60-2	10 mg/L Alginate	4.00E-05	2.18E-05	1.74E-05	6.95	-12.82	-12.92	-12.87
60-3	100 mg/L Alginate	4.00E-04	2.01E-05	1.66E-05	6.86	-12.85	-12.93	-12.89
60-4	200 mg/L Alginate	8.00E-04	1.94E-05	1.72E-05	6.95	-12.87	-12.92	-12.90
60-5	400 mg/L Alginate	1.60E-03	1.80E-05	1.70E-05	6.82	-12.91	-12.93	-12.92
60-6	1 g/L Alginate	4.00E-03	ND	6.18E-05	7.09	ND	-12.96	-12.96
60-7	2 g/L Alginate	8.00E-03	ND	1.32E-04	7.05	ND	-12.95	-12.95
		[Pectin] _{tot} . M						
P 1	50 mg/L Pectin	7.69E-07	1.74E-05	1.78E-05	5.96	-12.48	-12.47	-12.48
P 2	500 mg/L Pectin	7.69E-06	1.80E-05	1.72E-05	5.97	-12.49	-12.51	-12.50
P_3	2,5 g/L Pectin	3.85E-05	2.00E-05	2.12E-05	6.05	-12.49	-12.47	-12.48
P 4	5 g/L Pectin	7.69E-05	1.52E-05	1.72E-05	6.12	-12.62	-12.57	-12.59
P 5	10 g/L Pectin	1.54E-04	2.35E-05	2.18E-05	6.08	-12.61	-12.65	-12.63
P 6	15 g/L Pectin	2.31E-04	2.08E-05	2.02E-05	6.10	-12.64	-12.65	-12.64
	Pectin = Polygalacturonic acid methy	vl ester, $Mr = 30,000-100,000$: we postulate !	Mr = 65,000				
W71	0.05 g/L Pectin	7.69E-07	5.10E-06	3.10E-06	7.75	-12.71	-12.91	-12.81
W74	0.5 g/L Pectin	7.69E-06	4.90E-06	3.40E-06	7.65	-12.74	-12.87	-12.81
W77	2.5 g/L Pectin	3.85E-05	4.40E-06	3.70E-06	7.75	-12.83	-12.84	-12.84
W80	5 g/L Pectin	7.69E-05	4.30E-06	4.00E-06	7.85	-12.83	-12.82	-12.83
W83	15 g/L Pectin	2.31E-04	4.80E-06	4.40E-06	7.8	-12.89	-12.89	-12.89
W86	50 g/L Pectin	7.69E-04	9.90E-06	1.89E-05	7.85	-13.39	-13.07	-13.23
		[Gum_Xanthan]tot. M	⁄I					
X_1	50 mg/L Gum Xanthan	0.000005	1.00E-05	1.02E-05	7.64	-12.66	-12.65	-12.66
X_2	500 mg/L Gum Xanthan	0.00005	1.05E-05	1.30E-05	7.45	-12.64	-12.55	-12.60
X_3	2.5 g/L Gum Xanthan	0.00025	3.61E-05	3.15E-05	7.45	-12.25	-12.31	-12.28
X^{4}	5 g/L Gum Xanthan	0.0005	5.00E-05	4.40E-05	7.37	-12.21	-12.26	-12.23
$X^{-}5$	10 g/L Gum Xanthan	0.001	2.44E-04	2.51E-04	7.41	-12.00	-11.98	-11.99
X_{6}	15 g/L Gum Xanthan	0.0015	3.15E-04	2.86E-04	7.50	-11.77	-11.81	-11.79
	Gum Xanthan from Xanthomonas ca	mpestris:: Mr = 10.000 is pos	stulated					

REFERENCES

Adamo, P., and Violante, P., 2000, Weathering of rocks and neogenesis of minerals associated with lichen activity: Applied Clay Science, v. 16, p. 229–256, doi:10.1016/S0169-1317(99)00056-3.

Allison, J. D., Brown, D. S., and Novo-Gradac, K. J., 1991, MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 user's manual: Athens, Georgia, U.S. Environmental Protection Agency, 106 p.

Amhrein, C., and Suarez, D. L., 1988, The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite: Geochimica et Cosmochimica Acta, v. 52, p. 2785–2793, doi:10.1016/0016-7037(88)90146-9.

Antweiler, R. C., and Drever, J. I., 1983, The weathering of a late Tertiary volcanic ash: Importance of organic solutes: Geochimica et Cosmochimica Acta, v. 47, p. 623–629, doi:10.1016/0016-7037(83)90283-1. Aristovskaya, T. V., 1965, Microbiology of Podzol Soils: Nauka, Moscow, 186 p. (in Russian).

Axe, K., and Persson, P., 2001, Time-dependent surface speciation of oxalate at the water-boehmite (γ-AlOOH) interface: Implications for dissolution: Geochimica et Cosmochimica Acta, v. 65, p. 4481–4492, doi:10.1016/S0016-7037(01)00750-5.

Bales, R. C., and Morgan, J. J., 1985, Dissolution kinetics off chrysotile at pH 7 to 10: Geochimica et Cosmochimica Acta, v. 49, p. 2281–2290, doi:10.1016/0016-7037(85)90228-5.

- Balkwill, D. L., 1989, Numbers, Diversity, and Morphological Characteristics of Aerobic, Chemoheterotrophic Bacteria in Deep Subsurface Sediments from a Site in South Carolina: Geomicrobiology Journal, v. 7, p. 33–52, doi:10.1080/01490458909377848.
- Barker, W. W., Welch, S. A., and Banfield, J. F., 1997, Biogeochemical weathering of silicate minerals, in Banfield, J. F., and Nealson K. H., editors, Geomicrobiology: Interactions Between Microbes and Minerals: Mineralogical Society of America, Reviews in Mineralogy, v. 35, p. 391–428.
- Behrens, U., and Ringpfeil, M., 1963, Verfahren zur Herstellung von Fructose, insbesondere für Infusionswecke: Pat. 24763. DDR. 1963. WP 30h/72537.
- Belkanova, N. P., Karavaiko, G. I., and Avakyan, Z. A., 1985, Cleavage of the syloxane bond in quartz by
- Bacillus mucilaginosus: Microbiology, v. 54, n. 1, p. 27–30 (in Russian). Belkanova, N. P., Eroschev-Shak, V. A., Lebedeva, E. V., and Karavaiko, G. I., 1987, Dissolution of kimberlite minerals by heterotrophic microorganisms: Microbiology, v. 56, n. 4, p. 613-620 (in Russian).
- Bennett, P. C., Hiebert, F. K., and Choi, W. J., 1996, Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater: Chemical Geology, v. 132, p. 45–53, doi:10.1016/S0009-2541(96)00040-X.
- Berner, R. A., 1992, Weathering, plants and the long-term carbon cycle: Geochimica et Cosmochimica Acta, v. 56, p. 3225–3231, doi:10.1016/0016-7037(92)90300-8.
- Biber, M. V., Dos Santos Afonso, M., and Stumm, W., 1994, The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals: Geochimica et Cosmochimica Acta, v. 58, p. 1999–2010, doi:10.1016/0016-7037(94)90280-1.
- inhibiting the dissolution: Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 79, p. 157–174. Bondietti, G., Sinniger, J., and Stumm, W., 1993, The reactivity of Fe(III) (hydr)oxides: effects of ligands in
- Bonneville, S., Smits, M. M., Brown, A., Harrington, J., Leake, J. R., Brydson, R., and Benning, L. G., 2009. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale: Geology, v. 37, p. 615–618, doi: 10.1130/G25699A.1.
- Brantley, S. L., 2004, Reaction kinetics of primary rock-forming minerals under ambient conditions, in Drever, J. I., editor, Surface and Ground water, Weathering, and Soils: Oxford, United Kingdom, Elsevier-Pergamonom, Treatise on Geochemistry, v. 5, p. 73–117, doi:10.1016/B0-08-043751-6/05075-1. Brantley, S. L., and Chen, Y., 1995, Chemical weathering rates of pyroxenes and amphiboles: Reviews in
- Mineralogy, v. 31, p. 119–172.
- Bruno, J., Stumm, W., Wersin, P., and Brandberg, F., 1992, On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25°C: Geochimica et Cosmochimica Acta, v. 56, p. 1139–1147, doi:10.1016/0016-7037(92)90051-J.
- Casey, W. H., 1991, On the relative dissolution rates of some oxide and orthosilicate minerals: Journal of Colloid and Interface Science, v. 146, p. 586-589, doi:10.1016/0021-9797(91)90225-W.
- 2008, Glass and mineral corrosion: Dynamics and durability: Nature Materials, v. 7, p. 930-932, doi:10.1038/nmat2326.
- Casey, W. H., and Westrich, H. R., 1992, Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds: Nature, v. 355, p. 157–159, doi:10.1038/355157a0.
- Casey, W. H., Westrich, H. R., Banfield, J. F., Ferruzzi, G., and Arnold, G. W., 1993, Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals: Nature, v. 366, p. 253-256, doi: 10.1038/366253a0.
- Christensen, B. E., and Characklis, W. G., 1990, Physical and chemical properties of biofilms, in Characklis,
- W. G., and Marshall, K. C., editors, Biofilms: New York, John Wiley & Sons, p. 93–130.

 Davis, K. J., Nealson, K. H., and Lüttge, A., 2007, Calcite and dolomite dissolution rates in the context of microbe-mineral surface interactions: Geobiology, v. 5, p. 191-205, doi: 10.1111/j.1472-4669.2007.00112.x.
- Drever, J. I., 1994, The effect of land plants on weathering rates of silicate minerals: Geochimica et Cosmochimica Acta, v. 58, p. 2325–2332, doi:10.1016/0016-7037(94)90013-2.
- Drever, J. I., and Stillings, L. L., 1997, The role of organic acids in mineral weathering: Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 120, p. 167–181, doi:10.1016/S0927-7757(96)03720-X.
- Duckworth, O. W., and Martin, S. T., 2001, Surface complexation and dissolution of hematite by C₁-C₆ dicarboxylic acids at pH = 5.0: Geochimica et Cosmochimica Acta, v. 65, n. 23, p. 4289-4301.
- Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J., Francois, L., Millot, R., and Gaillardet, J., 2003, Rivers, chemical weathering and Earth's climate: Compte Rendus Geoscience, v. 335, p. 1141–1160, doi:10.1016/ j.crte.2003.09.015.
- Ehrlich, H. L., 1981, The geomicrobiology of silica and silicates, *in* Ehrlich, H. L., editor, Geomicrobiology, 2nd edition: New York, Marcel Dekker, Inc., p. 131–135.
- Emnova, E. E., Varbanets, L. D, Vasiliev, V. N., Ciocarlan, A. G., Brovarskaia, O. S., Caunova, N. Ju., Ganea, O. G., and Toma, S. I., 2007, Properties of exopolysaccharides from rhizospheric fluorescent bacteria of Pseudomonas genus: Bulletin of Moldovan Academy of Sciences, Life Sciences, v. 1, n. 310, p. 14–20.
- Fein, J. B., Gore, N., Marshall, D., Yassa, L., Loch, A., and Brantley, S. L., 1995, The effect of aqueous complexation and gibbsite surface sites on the decarboxylation rate of malonate: Geochimica et Cosmochimica Acta, v. 59, p. 5071–5080, doi:10.1016/0016-7037(95)00344-4.
- Friis, A. K., Davis, T. A., Figueira, M. M., Paquette, J., and Mucci, A., 2003, Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features: Environmental Science and
- Technology, v. 37, p. 2376–2382, doi:10.1021/es026171g.

 Ganor, J., Reznik I. J., and Rosenberg, Y. O., 2009, Organics in Water-Rock Interactions, *in Oelkers*, E. H., and Schott, J., editors, Thermodynamics and Kinetics of Water-Rock Interaction: Reviews in Mineralogy and Geochemistry, v. 70, p. 259-369, doi: 10.2138/rmg.2009.70.7.

- Geffroy, C., Foissy, A., and Persello, J., 1999, Surface complexation of calcite by carboxylates in water: Journal
- of Colloid and Interface Science, v. 211, p. 45–53, doi:10.1006/jcis.1998.5966.

 Golubev, S. V., and Pokrovsky, O. S., 2006, Experimental study of the effect of organic ligands on diopside
- dissolution kinetics: Chemical Geology, v. 235, p. 377–389, doi:10.1016/j.chemgeo.2006.08.004.
 Golubev, S. V., Pokrovsky, O. S., and Schott, J., 2005, Experimental determination of the effect of dissolved CO₂ on the dissolution kinetics of Mg and Ca silicates at 25° C: Chemical Geology, v. 217, p. 227–238, doi:10.1016/j.chemgeo.2004.12.011.
- Golubev, S. V., Bauer, A., and Pokrovsky, O. S., 2006, Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C: Geochimica et Cosmochimica Acta, v. 70, p. 4436–4451, doi:10.1016/ j.gca.2006.06.1557.
- Grandstaff, D. E., 1977, Some kinetics of bronzite orthopyroxene dissolution: Geochimica et Cosmochimica Acta, v. 41, p. 1097–1103, doi:10.1016/0016-7037(77)90104-1.
- 1986, The dissolution rate of forsteritic olivine from Hawaiiah beach sand, in Colman, S. M., and Dethier, D. P., editors, Rates of Chemical Weathering of Rocks and Minerals: Orlando, Florida, Academic Press, p. 41–57.
- Gregor, J. E., Fenton, E., Brokenshire, G., Van den Brink, P., and O'Sullivan, B., 1996, Interactions of calcium and aluminium ions with alginate: Water Research, v. 30, p. 1319-1324, doi:10.1016/0043-1354(95)00194-8.
- Hering, J. G., 1995, Interaction of organic matter with mineral surfaces—effects on geochemical processes at the mineral-water interface: Aquatic Chemistry-Advances in Chemistry, v. 244, p. 95–110, doi:10.1021/ ba-1995-0244.ch004.
- Heyes, A., and Moore, T. R., 1992, The influence of dissolved organic carbon and anaerobic conditions on mineral weathering. Soil Science, v. 154, p. 226–236, doi:10.1097/00010694-199209000-00006.
 Hongve, D., Van Hees, P. A. W., and Lundstrom, U. S., 2000, Dissolved components in precipitation water
- percolated through forest litter: European Journal of Soil Science, v. 51, p. 667–677, doi: 10.1111/j.1365-. 2389.2000.00339.x.
- Huang, W. H., and Keller, W. D., 1970, Dissolution of rock-forming minerals in organic acids: Simulated first stage weathering of fresh mineral surfaces: American Mineralogist, v. 55, p. 2076–2094.
- Huang, W. H., and Kiang, W. C., 1972, Laboratory dissolution of plagioclase feldspars in water and organic acids at room temperature: American Mineralogist, v. 57, p. 1849–1859.
- Hue, N. V., Craddock, G. R., and Adams, F., 1986, Effect of organic acids on aluminum toxicity in subsoils: Soil Science Society of America Journal, v. 50, p. 28-34.
- Jacobson, A. D., and Wu, L., 2009, Microbial dissolution of calcite at T = 28°C and ambient pCO₂: Geochimica et Cosmochimica Acta, v. 73, p. 2314–2331, doi:10.1016/j.gca.2009.01.020.
- Jordan, G., Pokrovsky, O. S., Guichet, X., and Schmall, W. W., 2007, Organic and inorganic ligand effects on magnesite dissolution at 100°C and pH = 5 to 10: Chemical Geology, v. 242, p. 484–496, doi:10.1016/ j.chemgeo.2007.05.015.
- Kaurichev, I. S., Ivanova, T. N., and Nozdrunova, Y. M., 1963, Low molecular weight organic acid content of water-soluble organic matter in soils: Soviet Soil Science (Pochvovedenie), n. 3, p. 27–35.
- Knauss, K. G., Nguyen, S. N., and Weed, H. C., 1993. Diopside dissolution kinetics as a function of pH, CO₂, temperature, and time: Geochimica et Cosmochimica Acta, v. 57, p. 285-294, doi:10.1016/0016-7037(93)90431-U
- Kraemer, S. M., and Hering, J. G., 1997, Influence of solution saturation state on the kinetics of ligand-controlled dissolution of oxide phases: Geochimica et Cosmochimica Acta, v. 61, p. 2855–2866, doi:10.1016/S0016-7037(97)00133-6.
- Kraemer, S. M., Chiu, V. Q., and Hering, J. G., 1998, Influence of pH and competitive adsorption on the kinetics of ligand-promoted dissolution of aluminum oxide: Environmental Science and Technology, v. 32, p. 2876–2882, doi:10.1021/es980253g.
- Kummert, R., and Stumm, W., 1980, The surface complexation of organic acids on hydrous γ-Al₂O₃: Journal
- of Colloid Interface Science, v. 75, p. 373–385, doi:10.1016/0021-9797(80)90462-2.
 Leyval, C., and Berthelin, J., 1991, Weathering of a mica by roots and rhizospheric microorganisms of pine: Soil Science Society of America Journal, v. 55, p. 1009–1016.
- Liermann, L. J., Kalinowski, B. E., Brantley, S. L., and Ferry, J. G., 2000, Role of bacterial siderophores in dissolution of hornblende: Geochimica et Cosmochimica Acta, v. 64, p. 587-602, doi:10.1016/S0016-7037(99)00288-4.
- Ludwig, C., Devidal J.-L., and Casey, W. H., 1996, The effect of different functional groups on the ligand-promoted dissolution of NiO and oxide minerals: Geochimica et Cosmochimica Acta, v. 60, p. 213–224, doi:10.1016/0016-7037(95)00394-0.
- Lundström, U., and Ohman, L.-O., 1990, Dissolution of feldspars in the presence of natural, organic solutes: Journal of Soil Science, v. 41, p. 359–369, doi: 10.1111/j.1365-2389.1990.tb00071.x. Lüttge, A., and Conrad, P. G., 2004, Direct observation of microbial inhibition of calcite dissolution: Applied
- and Environmental Microbiology, v. 70, p. 1627–1632, doi:10.1128/AEM.70.3.1627-1632.2004.

 Malinovskaya, I. M., Kosenko, L. V., Votselko, S. K., and Podgorskii, V. S., 1990, Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals: Mikrobiologiya, v. 59, p. 70–78 (English Transla-
- Malmstrom, M., and Banwart, S., 1997, Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry: Geochimica et Cosmochimica Acta, v. 61, p. 2779–2799, doi:10.1016/S0016-7037(97)00093-8.
- Manley, E. P., and Evans, L. J., 1986, Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids: Soil Science, v. 141, p. 106–112, doi:10.1097/00010694-198602000-00002.
- Martell, A. E., Smith, R. M., and Motekaitis, R. J., 1997, NIST Critically selected stability constants of metal complexes: Texas, College Station, Texas A & M University, Database software Version 3.0.

- Mejias, J. A., Berry, A. J., Refson, K., and Fraser, D. G., 1999, The kinetics and mechanism of MgO dissolution: Chemical Physics Letters, v. 314, p. 558–563, doi:10.1016/S0009-2614(99)00909-4.
- Morse, J. W., 1974, Dissolution kinetics of calcium carbonate in seawater. V. Effects of natural inhibitors and the position of chemical lysocline: American Journal of Science, v. 274, p. 638-647.
- Neaman, A., Chorover, J., and Brantley, S. L., 2005a, Implications of the evolution of organic acid moieties for basalt weathering over geological time: American Journal of Science, v. 305, p. 147–185, doi:10.2475/ ajs.305.2.147
- 2005b, Element mobility patterns record organics ligands in soils on early Earth: Geology, v. 33, p. 117–120, doi:10.1130/G20687.1.
- 2006, Effects of organic ligands on granite dissolution in batch experiments at pH 6: American Journal of Science, v. 306, p. 451–473, doi:10.2475/06.2006.03.
- Ochs, M., Brunner, I., Stumm, W., and Cosovic, B., 1993, Effects of root exudates and humic substances on weathering kinetics: Water Air & Soil Pollution, v. 68, p. 213–229, doi:10.1007/BF00479404.
- Oelkers, E. H., and Gislason, S. R., 2001, The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11: Geochimica et Cosmochimica Acta, v. 65, p. 3671–3681, doi:10.1016/S0016-7037(01)00664-0.
- Oelkers, E. H., and Schott, J., 1998, Does organic acid adsorption affect alkali-feldspar dissolution rates?: Chemical Geology, v. 151, p. 235–245, doi:10.1016/S0009-2541(98)00082-5.
- 2001, An experimental study of enstatite dissolution rates as a function of pH, temperature, and
- aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution: Geochimica et Cosmochimica Acta, v. 65, p. 1219–1231, doi:10.1016/S0016-7037(00)00564-0.

 Oelkers, E. H., Golubev, S. V., Chairat, C., Pokrovsky, O. S., and Schott J., 2009, The surface chemistry of multi-oxide silicates: Geochimica et Cosmochimica Acta, v. 73, p. 4617–4634, doi:10.1016/ j.gca.2009.05.028.
- Oliver, B. G., Thurman, E. M., and Malcolm, R. L., 1983, The contribution of humic substances to the acidity of colored natural waters: Geochimica et Cosmochimica Acta, v. 47, p. 2031–2035, doi:10.1016/0016-7037(83)90218-1.
- Olsen, A. A., and Rimstidt, D. J., 2008. Oxalate-promoted forsterite dissolution at low pH: Geochimica et Cosmochimica Acta, v. 72, p. 1758–1766, doi:10.1016/j.gca.2007.12.026.
 Perdue, E. M., and Ritchie, J. D., 2003, Dissolved Organic Matter in Freshwaters, in Drever, J. I., editor, Surface and Ground Water, Weathering, and Soils: Treatise on Geochemistry, v. 5, p. 273–318, doi:10.1016/j.000.09.042751.6/050015 doi:10.1016/B0-08-043751-6/05080-5.
- Peters, S. C., Blum, J. D., Driscoll, C. T., and Likens, G. E., 2004, Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1: Biogeochemistry, v. 67, p. 309-329, doi:10.1023/B:BIOG.0000015787.44175.3f.
- Pokrovski, G. S., and Schott, J., 1998. Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters: Geochimica et Cosmochimica Acta, v. 62, p. 3413–3428, doi:10.1016/S0016-7037(98)00249-X.
- Pokrovsky, O. S., and Choppin, G. R., 1997, Neptunium (V) complexation by acetate, oxalate, and citrate in NaClO₄ media at 25°C: Radiochimica Acta, v. 79, p. 167–172.
- Pokrovsky, O. S., and Savenko, V. S., 1994, Influence of dissolved organic matter on the kinetics of homogeneous precipitation of aragonite in seawater: Oceanology (English Translation), v. 34, n. 6, p. 760–767.
- Pokrovsky, O. S., and Schott, J., 2000, Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12: Geochimica Cosmochimica Acta, v. 64, p. 3313–3325, doi:10.1016/S0016-7037(00)00434-8.
- 2001, Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited: American Journal of Science, v. 301, p. 597-626, doi:10.2475/ajs.301.7.597.
- 2004, Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control: Geochimica et Cosmochimica Acta, v. 68, p. 31–45, doi:10.1016/ S0016-7037(03)00238-2.
- Pokrovsky, O. S., Bronikovski, M. G., Borkowski, M., Choppin, G. R., and Moore, R. C., 1998, Interaction of neptunyl(V) and uranyl(VI) with EDTA in NaCl media: Experimental study and Pitzer modeling: Radiochimica Acta, v. 80, p. 23–29.
- Pokrovsky, O. S., Mielczarski, J. A., and Schott, J., 2001, Surface speciation of dolomite and calcite in aqueous solutions, *in* Hubbard, A., editor, Encyclopedia of Surface and Colloid Science: New York, Marcel
- Dekker Inc., p. 5081–5095. Pokrovsky, O. S., Schott, J., and Castillo, A., 2005, Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals: Geochimica et Cosmochimica Acta, v. 69, p. 905– 918, doi:10.1016/j.gca.2004.08.011.
- Pokrovsky, O. S., Viers, J., Emnova, E. E., Kompantseva, E. I., and Freydier, R., 2008, Copper isotope fractionation during its interaction with soil and aquatic micoorganisms and metal oxy(hydr)oxides: Possible structural control: Geochimica et Cosmochimica Acta, v. 72, p. 1742–1757, doi:10.1016/ j.gca.2008.01.018.
- Pokrovsky, O. S., Golubev, S. V., and Jordan, G., 2009, Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60°C and 30 atm pCO₂: Chemical Geology, v. 265, p. 33–43, doi:10.1016/ j.chemgeo.2008.11.011.
- Rimstidt, J. D., and Dove, P. M., 1986, Mineral/solution reaction rates in a mixed flow reactor: Wollastonite $hydrolysis: Geochimica\ et\ Cosmochimica\ Acta, v.\ 50, p.\ 2509-2516, \\ doi: 10.1016/0016-7037(86)90033-5.$
- Rogers, J. K., and Bennett, P. C., 2004, Mineral stimulation of subsurface microorganisms: release of limiting nutients from silicates: Chemical Geology, v. 203, p. 91–108, doi:10.1016/j.chemgeo.2003.09.001.
- Rose, J., Manceau, A., Bottero, J.-Y., Masion, A., and Garcia, F., 1996. Nucleation and growth mechanisms of

- Fe oxyhydroxide in the presence of PO₄ ions. 1. Fe K-Edge EXAFS study: Langmuir, v. 12, p. 6701-6707, doi: 10.1021/la9606299, doi:10.1021/la9606299.
- Rose, J., Flank, A.-M., Marion, A., Bottero, J.-Y., and Elmerich P., 1997. Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO_4 ions. 2. P K-edge EXAFS study: Langmuir, v. 13, p. 1827– 1834, doi:10.1021/la961039d.
- Santelli, C. M., Welch, S. A., Westrich, H. R., and Banfield, J. F., 2001, The effect of Fe-oxidizing bacteria and the weathering of Fe-silicate mineral dissolution: Chemical Geology, v. 180, p. 99-115, doi:10.1016/ S0009-2541(0Ĭ)00308-4.
- Schalscha, E. B., Appelt, M., and Schatz, A., 1967, Chelation as a weathering mechanism—I. Effect of complexing agents on the solubilization of iron from minerals and granodiorite: Geochimica et Cosmochimica Acta, v. 31, p. 587–596, doi:10.1016/0016-7037(67)90035-X.
 Schindler, P. W., and Stumm, W., 1987, The surface chemistry of oxides, hydroxides, and oxide minerals, in
- Stumm, W., editor, Aquatic Surface Chemistry: New York, Wiley and Sons, p. 337–365.
- Schlemmer, U., 1989, Studies of the binding of copper, zinc and calcium to pectin, alginate, carrageenan and gum guar in $\rm HCO_3-CO_2$ buffer: Food Chemistry, v. 32, p. 223–234, doi:10.1016/0308-8146(89)90051-4.
- Schott, J., Pokrovsky, O. S., Spalla, O., Devreux, F., and Mielczarski, J. A., 2002, The mechanism of altered layers formation on wollastonite revisited: a combined spectroscopic/kinetic study, Abstracts of the VM Goldschmidt Conference, August 18-23, Davos, Switzerland: Geochimica et Cosmochimica Acta, v. 66, Supplement 1, p. A686.
- Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009, The link between mineral dissolution/precipitation kinetics and solution chemistry, in Oelkers, E. H., and Schott, J., editors, Thermodynamics and Kinetics of Water-Rock Interaction: Reviews in Mineralogy and Geochemistry, v. 70, p. 207-258, doi: 10.2138/ rmg.2009.70.6.
- Sigg, L., and Stumm, W., 1981, The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface: Colloids and Surfaces, v. 2, p. 101–117, doi:10.1016/0166-6622(81)80001-7.
- Stevenson, F. J., 1991, Organic matter-micronutrient reactions in soil, in Mortvedt, J. J., editor, Micronutri-
- ents in Agriculture: Madison, Wisconsin, The Soil Science Society of America, p. 145–186.
 Stillings, L. L., Drever, J. I., Brantley, S. L., Sun, Y., and Oxburgh, R., 1996, Rates of feldspar dissolution at pH 3–7 in 0–8 mM oxalic acid: Chemical Geology, v. 132, p. 79–89, doi:10.1016/S0009-2541(96)00043-5.
- Stumm, W., 1992, Chemistry of the Solid-Water Interface: New York, Wiley, 444 p. 1997, Reactivity at the mineral-water interface: dissolution and inhibition: Colloids and Surfaces A: Physicochemical and Engineerying Aspects, v. 120, p. 143–166, doi:10.1016/S0927-7757(96)03866-6
- Sutherland, I. W., 1977, Bacterial exopolysaccharides—their nature and production, in Sutherland, I. W.,
- editor, Surface Carbohydrates of the Procaryotic Cell: London, Academic Press, p. 27–96.
 Tejedor-Tejedor, M. I., and Anderson M. A., 1986, "In situ" attenuated total reflection Fourrier transform infrared studies of the Goethite (α-FeOOH)-aqueous solution interface: Langmuir, v. 2, p. 203–210, doi:10.1021/la00068a016.
- Tejedor-Tejedor, M. I., Yost, E. C., and Anderson, M., 1990, Characterization of Benzoic and Phenolic Complexes at the Goethite/Aqueous Solution Interface Using Cylindrical Internal Reflection Fourier Transform Infrared Spectroscopy. Part 1. Methodology: Langmuir, v. 6, p. 979–987, doi:10.1021/ la00095a016.
- 1992, Characterization of Benzoic and Phenolic Complexes at the Goethite/Aqueous Solution Interface Using Cylindrical Intenall Reflection Fourier Transform Infrared Spectroscopy. 2. Bonding
- Structures: Langmuir, v. 8, p. 525–533, doi:10.1021/la00038a036.

 Torsvik, V., Øvreas, L., and Thingstad, T. F., 2002, Prokaryotic diversity—Magnitude, dynamics, and controlling factors: Science, v. 296, p. 1064–1066, doi:10.1126/science.1071698.
- Ullman, W. J., Kirchman, D. L., Welch, S. A., and Vandevivere, P., 1996, Laboratory evidence for microbially mediated silicate mineral dissolution in nature: Chemical Geology, v. 132, p. 11-17, doi:10.1016/S0009-2541(96)00036-8.
- Van Hees, P. A. W., Lundström, U. S., and Mörth, C.-M., 2002, Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids: Chemical Geology, v. 189, p. 199–211, doi:10.1016/S0009-2541(02)00141-9.
- Vandevivere, P., Welch, S. A., Ullman, W. J., and Kirchman, D. L., 1994, Enhanced dissolution of silicate minerals by bacteria at near-neutral pH: Microbial Ecology, v. 27, p. 241–251, doi:10.1007/BF00182408.
- Watteau, F., and Berthelin, J., 1994, Microbial dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids: European Journal of Soil Biology, v. 30, p. 1-9.
- Webley, D. M., Duff, R. B., and Mitchell W. A., 1960, A Plate method for studying the breakdown of synthetic and natural silicates by soil bacteria: Nature, v. 188, p. 766–767, doi:10.1038/188766a0.

 Webley, D. M., Henderson, E. K., and Taylor, I. F., 1963, Microbiology of rocks and weathered stones: Journal
- of Soil Science, v. 14, p. 102–112, doi:10.1111/j.1365-2389.1963.tb00935.x.
- Welch, S. A., and Ullman, W. J., 1999, The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35°C: Geochimica et Cosmochimica Acta, v. 63, p. 3247–3259, doi:10.1016/S0016-7037(99)00248-3.
- Welch, S. A., and Vandevivere, P., 1994, Effect of microbial and other naturally occurring polymers on mineral dissolution: Geomicrobioogy Journal, v. 12, p. 227–238, doi:10.1080/01490459409377991.
 Welch, S. A., Barker, W. W., and Banfield, J. F., 1999, Microbial extracellular polysaccharides and plagioclase
- dissolution: Geochimica et Cosmochimica Acta, v. 63, p. 1405–1419. doi:10.1016/S0016-7037(99)00031-9.
- White, A. F., and Yee, A., 1985, Aqueous oxidation-reduction kinetics associated with coupled electroncation transfer from iron containing silicates at 25°C: Geochimica et Cosmochimica Acta, v. 49, p. 1263–1275, doi:10.1016/0016-7037(85)90015-8.

- Whitehead, D. C., 1964, Identification of p-Hydroxybenzoic, Vanilic, p-Coumaric and Ferulic acids in soils: Nature, v. 202, p. 412–418, doi:10.1038/202417a0.
- Wieland, E., Wehrli, B., and Stumm, W., 1988, The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals: Geochimica et Cosmochimica Acta, v. 52, p. 1969–1981, doi:10.1016/0016-7037(88)90178-0.
- Wogelius, R. A., and Walther, J. V., 1991, Olivine dissolution at 25°C: Effects of pH, CO₂, and organic acids: Geochimica et Cosmochimica Acta, v. 55, p. 943–954, doi:10.1016/0016-7037(91)90153-V.
- ----- 1992, Olivine dissolution kinetics at near-surface conditions: Chemical Geology, v. 97, p. 101–112, doi:10.1016/0009-2541(92)90138-U.
- Wogelius, R. A., Refson, K., Fraser, D. G., Grime, G. W., and Goff, J. P., 1995, Periclase surface hydroxylation during dissolution: Geochimica et Cosmochimica Acta, v. 59, p. 1875–1881, doi:10.1016/0016-7037(95)00070-G.
- Wu, L., Forsling W., and Schindler, P. W., 1991, Surface complexation of calcium minerals in aqueous solution. 1. Surface protonation at fluorapatite-water interface: Journal of Colloid and Interface Science, v. 147, p. 178–185, doi:10.1016/0021-9797(91)90145-X.
- Wu, L., Jacobson, A. D., Chen, H.-C., and Hausner, M., 2007, Characterization of elemental release during microbe-basalt interactions at T = 28°C: Geochimica et Cosmochimica Acta, v. 71, p. 2224–2239, doi:10.1016/j.gca.2007.02.017.
- Wu, L., Jacobson, A. D., and Hausner, M., 2008, Characterization of elemental release during microbe-granite interactions at $T = 28^{\circ}\text{C}$: Geochimica et Cosmochimica Acta, v. 72, p. 1076–1095, doi:10.1016/j.gca.2007.11.025.