THE SYSTEM H₂O-NaCl AT ELEVATED TEMPERATURES AND PRESSURES*

S. SOURIRAJAN** and G. C. KENNEDY

Institute of Geophysics, University of California, Los Angeles

ABSTRACT. The system H₂O-NaCl has been studied to pressures of 1240 bars and through the temperature interval 250°-700°C. We have determined the temperature and pressure of the gas-solid-liquid boundary curve. The solubility of solid NaCl in steam up to saturation pressures has been measured. The composition of coexisting gases and liquids at pressures above the melting pressure and below the critical pressure has been determined for isotherms ranging from 350°-700°C. The critical composition and pressure for various isotherms have been determined. The NaCl concentration of saline hot springs is not inconsistent with the postulate that the sodium chloride was transported from the magmatic hearth in gaseous H₂O.

INTRODUCTION

Our interest in the system $\rm H_2O$ –NaCl stems from a variety of considerations. Some proposals are current for the production of power by detonating a fission or fusion device in an underground salt bed or salt dome. The energy released will melt a quantity of NaCl. High pressure water, admitted to this body of molten salt will be converted to steam. A knowledge of temperatures, pressures, and compositions of coexisting liquids and vapors is needed to evaluate such a system. Various methods of sea water demineralization have been proposed that involve evaporations at high temperatures and high pressures. Values for equilibrium concentration of salt in vapor are thus needed.

The system $\rm H_2O-NaCl$ is of fundamental physiochemical interest. It has long been known that systems of two components fall into two contrasting classes. One class of systems shows a continuous three-phase surface and a continuous critical curve that extends from the critical temperature and pressure of one of the components to that of the other component. The second class of systems shows a discontinuous three-phase region and a discontinuous critical curve ending in two critical end points. Prior to this work, no inorganic system of either of these two classes has been studied through the critical region. The system $\rm H_2O-NaCl$ illustrates the case of the continuous critical curve, and the system $\rm H_2O-SiO_2$ (Kennedy, Wasserburg. Heard and Newton, in press), which has just been completed, illustrates the case of the discontinuous critical surface and discontinuous critical curve ending in two critical end points, with two three-phase regions.

Certain features of the system H_2O -NaCl are directly applicable to the problem of the origin of hot spring and geyser waters. This will be discussed in a later section of this paper.

PREVIOUS WORK

Keevil (1942) has shown that the binary system $\rm H_2O-NaCl$ belongs to the class of systems in which a continuous three-phase surface extends from the pure $\rm H_2O$ end of the system to the pure NaCl end. Thus the saturation curve for the aqueous sodium chloride solution is continuous up to the melting point

- * Publication No. 196, Institute of Geophysics, University of California, Los Angeles.
- ** Present address: Division of Applied Chemistry, National Research Council, Ottawa,

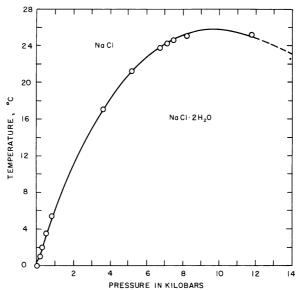


Fig. 1. The influence of pressure on the incongruent melting of NaCl·2H₂O. Data of Adams and Gibson (1930). The two points where the line for 25°C crosses the curve correspond to the pressures between which the dihydrate is the stable phase (see fig. 2) at 25°C .

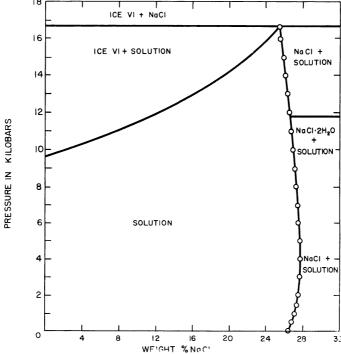


Fig. 2. Equilibrium diagram for the system NaCl-H2O under pressure at 25°C; after Adams.

of the salt. The critical curve is at higher pressures than the saturation curve. Critical phenomena are shown only by unsaturated solutions.

Adams and Gibson (1930) have shown that the eutectic in the system H₂O-NaCl is at -21.1°C. The solid phases present are ice plus the hydrate NaCl·2H₂O. Liquid in equilibrium with the two solid phases at the eutectic point contains 23.3 wt percent sodium chloride. The cryohydrate melts incongruently at 0.1°C to crystalline NaCl, and a liquid containing 26.3 wt percent sodium chloride.

Adams and Gibson (1930) have determined the incongruent melting of NaCl·2H₂O up to 12.000 bars. Their data are plotted in figure 1. The results of Adams and Gibson on the system NaCl·2H₂O are most surprising and, as far as we know, unique among hydrates. We know of no other case where the value of $\Delta s/\Delta v$ for a hydrate changes from sharply positive to negative over a narrow pressure interval. as indicated in this figure.

Adams (1931) has also determined the equilibrium diagram for the system $H_2O-NaCl$ at 25°C up to 16,000 bars. These results are shown in figure 2.

The generalized phase diagram for a binary system. A–B over a wide range in temperatures and pressures of the type water-sodium chloride, has been discussed by Morey (1957). Figure 3 is a projection of the three-dimensional model showing pressure-temperature-composition. The curve $L_A + A$ shows the change in melting point of solid A with pressure. $G + L_A$ shows the vapor pressure of pure A ending at the critical point of A. namely A_C . These two curves intersect at the triple point of A, namely A_t . The curve $G + A_t$ is the solution of A_t and A_t .

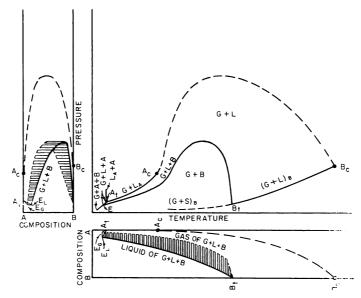


Fig. 3. Projections of a solid pressure-temperature-composition model for a binary system A-B, where no compounds are formed; there is no liquid immiscibility and the solubility curve does not intersect the critical curve.

L + A also radiates from the triple point to the eutectic at E. G + A + B extends from the eutectic E to lower temperatures and pressures. The curve G + L + B also extends from the eutectic. This curve rises to a maximum and then falls to the triple point of B at B_t. The curve G + L + B shows the vapor pressure of saturated solutions in the composition A-B at different temperatures. The vapor pressure curves of solid B and liquid B also extend from the eutectic B_t. These are the binary curves $(G + S)_B$ and $(G + L)_B$. These two curves show the vapor pressure curve for solid B and the vapor pressure curve for liquid B. The curve $(G + L)_B$ ends at the critical point of B, B_C. The curve $A_C B_C$, which extends from the critical points of the pure components, A and B, shows the distribution of critical points of various compositions in the system A-B.

The eutectic E appears as two points in the T-x and P-x projections. These two points show the coexisting compositions of the gas and liquid phases at the eutectic. Curves A_tE_G and A_tE_L show the compositions of gases and liquids that coexist with solid A down to the eutectic. The curves E_GB_t and E_LB_t show compositions of gases and liquids coexisting with B from the eutectic to the triple point of B at B_t .

The regions G+B and G+L show the stable fields of gas + liquid and gas + solid. In the system $H_2O-NaCl$, the solid phase is crystalline sodium chloride. The gas is steam with dissolved sodium chloride, and in the G+L region the liquid phase is an unsaturated solution of sodium chloride in water. The G+L region is bounded by the critical curve.

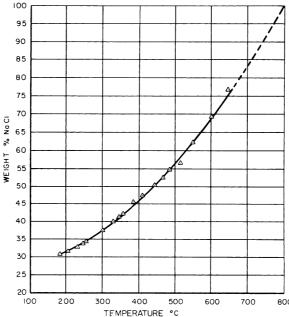


Fig. 4. Composition of the liquid phase of saturated aqueous sodium chloride solutions. Data from Keevil.

Only a limited portion of the system H₂O-NaCl above room temperatures has been studied prior to this work. Keevil (1942) has determined the three-phase vapor pressure and the composition of the liquid phase of saturated aqueous solutions of sodium chloride in the temperature range 180°-650°C. We have not redetermined the composition of saturated aqueous solutions of sodium chloride over this temperature interval and have relied on Keevil's data. Keevil's data on the composition of the saturated liquid NaCl solutions

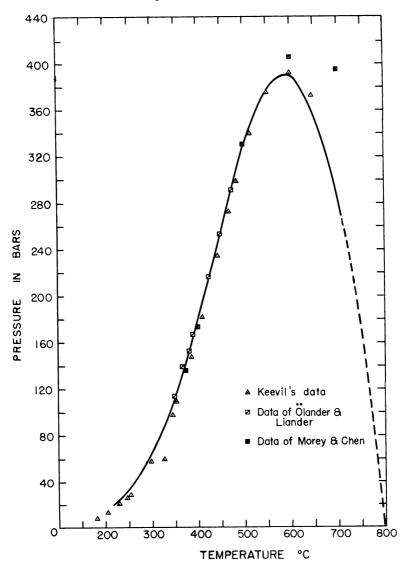


Fig. 5. Three-phase vapor pressures in system $\rm H_2O-NaCl$ showing our curve and results of Keevil, Olander and Liander, and Morey and Chen.

are shown in figure 4. Keevil's determinations, those by Ölander and Liander (1950), and determinations by Morey and Chen (1956) are shown in figure 5. The solid line in figure 5 represents our current determinations of the best value of vapor pressure. Our determinations, made on both a rising and a falling temperature cycle, are shown in figure 6.

Ölander and Liander (1950) also studied phase equilibrium relations of sodium chloride solutions above the critical point of water. They determined the critical end points for isotherms ranging from 380°-440°C, and they studied compositions of gases in equilibrium with solid NaCl between 350°

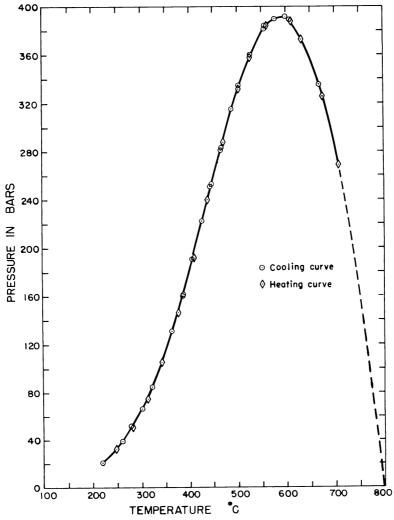


Fig. 6. Determinations of three-phase vapor pressures in system $\rm H_2O-NaCl$ made on rising and falling temperatures.

and 380°C. Our results are in only fair agreement with the results of Ölander and Liander; however, there is no systematic deviation between our data and theirs. Styrikovich, Khaibullin, and Zkhvirashvily (1955) have determined the solubility of sodium chloride in superheated steam in the temperature interval 400°-550°C and through the pressure interval 30-180 bars. Their method was a dynamic and not a static method, and results of their investigations are not directly comparable to ours. Other papers have appeared by Styrikovich (1957) and Styrikovich and Khaibullin (1956). Copeland, Silverman, and Benson (1953) have measured the densities of gases and liquids in the system H₂O–NaCl over the temperature interval 385°-396°C. Benson, Copeland, and Pearson (1953) also calculated apparent molal volumes, partial molal volumes, and compressibilities of the H₂O–NaCl system over the same temperature region, 385°-396°C. Data on phase relations over essentially the

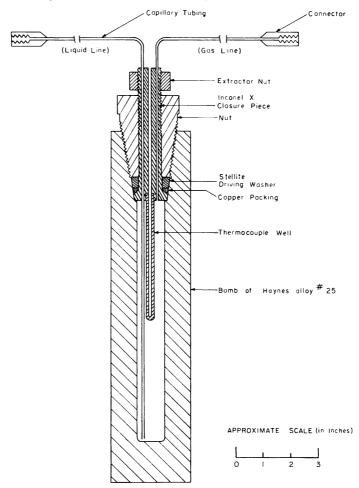


Fig. 7. Details of bomb employed in these experiments.

same region as that studied by Ölander and Liander (1950) have also been presented by Antony and Berkowitz (1958).

The electrical conductivity of supercritical solutions of NaCl and H₂O vapor have been studied by Spillner (1940).

THESE INVESTIGATIONS

We have redetermined the vapor pressure of saturated aqueous sodium chloride solutions over the temperature interval 250°-700°C. These determinations fix the temperatures and pressures of the gas-solid-liquid boundary curve. In addition, we have determined the solubility of solid NaCl steam in the gas-solid equilibrium region through the temperature interval 350°-750°C, at pressures up to saturation pressure. We have also determined the compositions of coexisting gases and liquids up to critical pressures for isotherms ranging from 350°-700°C. The maximum pressure in these investigations was the critical pressure at 700°C, approximately 1240 bars.

APPARATUS

Stellite bombs of Haynes alloy no. 25 were used throughout this investigation. The design of the bombs was similar to those previously employed (Kennedy, 1950). A diagram of the bomb is shown in figure 7. The bomb had a ratio of outside diameter to inside diameter of approximately 3. The effective volume of the bomb was approximately 105 cc. A tapered nut was used to seal the bomb. The nut had eight threads per inch and a taper of three inches per foot. Because of the tapered nut, the bomb can be easily disassembled. A partial turn of the nut immediately releases all threads. The driving washer and nut were made of the same alloy as the bomb. An unsupported area copper packing was used to provide a gas tight closure. The closure piece of the bomb, pierced with three holes, was made of Inconal X. The central hole was fitted with a stainless steel thermocouple sheath. The other holes were fitted with stainless steel capillary tubing of 0.100 inch o.d. and 0.018 inch i.d. One of these capillary tubes extended to the bottom of the bomb and was used to

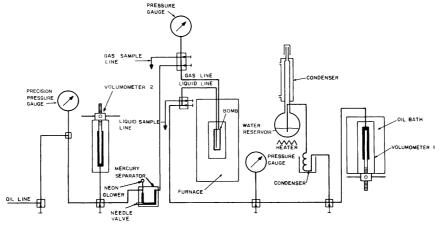


Fig. 8. Schematic diagram of apparatus.

sample liquid. The other capillary tubing extended through the closure piece and was used as a gas sample line. These tubes were welded in place.

The bomb was heated in a furnace of 3 inches inside diameter and 24 inches length. The temperatures were determined by a platinum-platinum 10% rhodium thermocouple and type K potentiometer. The thermocouples were regularly compared against two other thermocouples calibrated at the National Bureau of Standards.

Pressure measurements were made with two 15-inch face diameter Heise Bourdon Tube gauges. These gauges had ranges of 0-500 bars with scale divisions of one-half-bar intervals and 0-1400 bars with scale divisions at two-bar intervals. The gauges were calibrated by comparison against a free piston gauge. Their precision and hysteresis was within less than one scale division.

A schematic diagram of apparatus is shown in figure 8. The bomb was connected to the Heise gauge through the mercury U-block separator and the oil-filled volumometer 2. The surface of the mercury in the U-block was located with a neon glower connected to an insulated needle. The approximate pressure in the bomb was noted from a rough gauge connected directly to the bomb (fig. 8). The piston in volumometer 2 was then advanced until the pressure shown on the Heise gauge was approximately equal to the pressure shown by the rough gauge. The needle was then opened in the mercury U-block so that the pressure on the Heise gauge adjusted to that in the bomb. The piston in volumometer 2 was again adjusted so that the level of the mercury in the U-block barely made contact with the tip of the insulated needle. as shown by the neon glower. The pressure reading on the Heise gauge now showed the exact pressure in the bomb.

MEASUREMENTS OF VAPOR PRESSURE OF SATURATED AQUEOUS SODIUM CHLORIDE SOLUTIONS

Approximately 60 gm of analytical grade sodium chloride were taken into the bomb and the bomb closed and sealed. The bomb was placed in the furnace and the temperature raised to approximately 700°C. Conductivity water from the condenser (fig. 8) was drawn into volumometer 1 and by appropriate manipulation of the valve, then compressed and forced into the bomb. The water was introduced into the bomb in small increments, allowing about three hours between each increment. The water was introduced until further water did not increase the pressure in the bomb. It was clear at this point that the three-phase boundary line had been encountered with gas-solid-liquid equilibrium. Measurements of vapor pressure versus temperature were made on a cooling curve from 700°-200°C and then repeated on a heating curve in which temperatures ranged from 200°C up to 700°C. A period of at least six hours was allowed for the attainment of equilibrium at each temperature, although after about two hours no further changes in pressure at a given temperature were observed. At least three identical or consistent readings were taken at each temperature and pressure.

The results of these determinations are shown in figure 6. Our data are consistent with the data by Keevil, Ölander, and Liander, and by Morey and Chen shown in figure 5. Our results from the cooling and heating cycle are

Table 1
Vapor pressure of saturated aqueous sodium chloride solutions.
Temperature-pressure data for the gas-solid-liquid boundary curve for the system H₂O-NaCl

Tempera- ture °C	Vapor pressure bars	Tempera- ture °C	Vapor pressure bars	Tempera- ture °C	Vapor pressure bars
707.0	269.5	425.8	222.0	313.2	75.6
668.1	335.5	405.3	190.6	343.5	105.8
609.3	389.5	386.2	161.6	375.0	146.5
600.0	392.0	384.6	160.6	406.8	191.9
577.5	390.0	363.5	131.2	438.8	240.0
558.6	384.0	343.5	106.0	470.0	288.0
555.3	381.5	323.0	84.8	501.9	332.2
527.8	360.0	300.8	66.6	525.0	358.2
504.4	334.5	279.3	52.0	560.0	384.0
502.6	333.5	259.8	38.8	604.3	391.0
488.9	314.5	219.5	21.5	610.0	388.0
466.9	283.0	249.5	33.5	633.9	373.5
465.0	281.0	280.0	51.0	675.0	326.2
446.6	253.0	312.2	75.1	708.5	269.0
444.3	250.5				

shown in table 1. The data obtained from the cooling curve and the heating curve are in excellent agreement.

COMPOSITIONS IN THE GAS-SOLID REGION IN THE SYSTEM H₂O-NaCl

The solubility of the solid NaCl in H₂O vapor has been determined at temperatures ranging from 350°-750°C up to saturation pressures. The following experimental method was employed: Approximately 60 gm of solid analytical grade sodium chloride were introduced into the bomb and the bomb sealed. The bomb was then brought to a desired temperature. Conductivity water was then introduced into the bomb in small increments until saturation pressures were reached. The temperature and pressure of the bomb were recorded immediately before sampling. A sample was then drawn through the gas line connected to the top of the bomb. The gas line was slowly opened and a few bubbles of steam allowed to condense in the gas line and escape, thus rinsing the gas-sampling capillary tube with a sample of the material to be analyzed. A sample of the steam ranging from 0.05-0.15 gm was then slowly drawn into an accurately weighed 25-cc standard volumetric flask about half filled with conductivity water. The difference between the initial and final weight of the volumetric flask gave the exact weight of the sample taken. Pressure drop during the sampling procedure was kept within two bars. After the sample was taken, the temperature and pressure of the system were recorded. The mean of initial and final temperature and pressure readings were recorded as the condition of the steam sample withdrawn from the bomb. In all cases during sampling, the temperature drop was less than 0.5°C. After sampling, the pressure was again brought back to the initial temperature by introducing a small amount of water via volumometer 1. Three hours allowed for equilibrium to be reattained and a second sample drawn. At least two samples were drawn

for each temperature and pressure, and the mean value of the sodium chloride dissolved in steam was recorded. At concentrations below one percent NaCl, duplicate runs agreed within a maximum concentration deviation of 8 parts

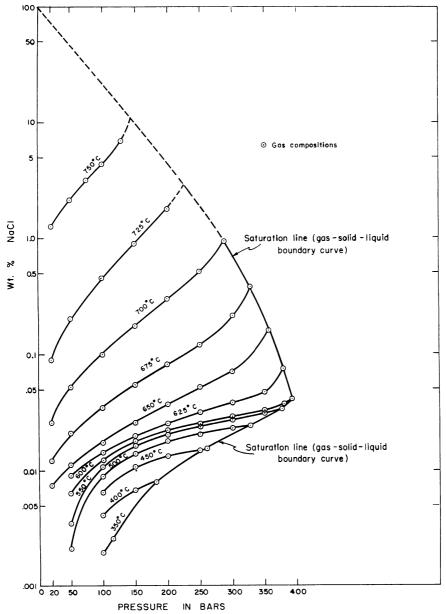


Fig. 9. Isothermal solubility of crystalline NaCl in $\mathrm{H}_2\mathrm{O}$ at various temperatures and pressures.

per million. It was found convenient to carry out experiments along isotherms from higher pressures to successively lower pressures.

The sample of H₂O + NaCl, extracted from the bomb, was analyzed by the following methods: A supply of conductivity water was made by passing distilled water through the "Bantom Demineralizer". The resulting conductivity water usually contained about 0.03 parts per million of extraneous ions expressed as NaCl. The steam sample drawn from the bomb into the partially filled 25-cc standard flask was first made up to 25 cc. At concentrations below one percent, the NaCl content in the sample of the made-up solution was determined by use of the Beckman Model DU Flame Spectrophotometer. A photomultiplier attachment, used in conjunction with the Flame Spectrophotometer.

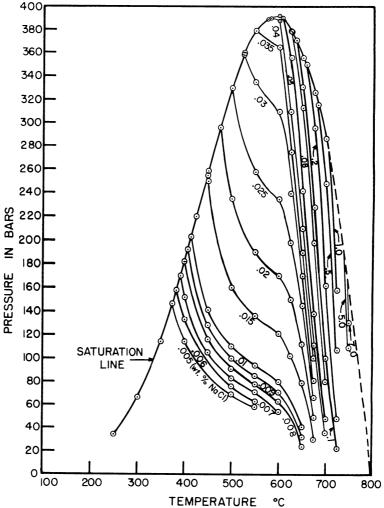


Fig. 10. Isocompositional curves showing solubility of crystalline NaCl in H₂O gas.

increased the flame signal many fold so that very small concentrations of NaCl could be measured accurately. The concentration of NaCl in our unknown samples was determined by comparing the flame signal against signals obtained from a series of standard solutions.

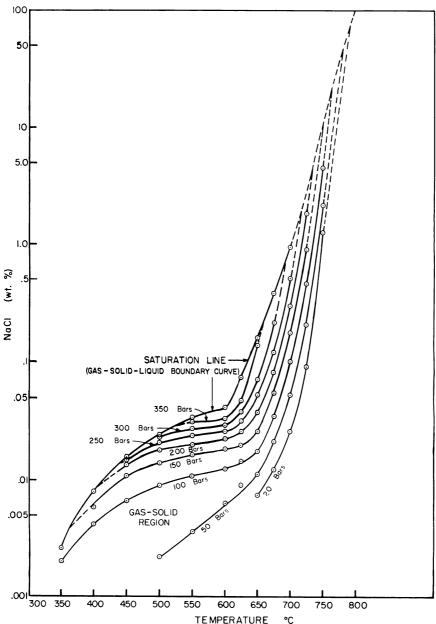


Fig. 11. Isobaric curves showing solubility of crystalline NaCl in H2O gas.

 $\begin{array}{c} \text{Table 2} \\ \text{Solubility of sodium chloride in steam in the gas-solid equilibrium region} \\ \text{for the system H_2O-NaCl} \end{array}$

Tempera- ture °C	Pressure bars	Wt percent NaCl in steam	Tempera- ture °C	Pressure bars	Wt percent NaCl in steam
350	114	0.0026*	625	379	0.0744*
350	100	0.0020	625	350	0.0472
			625	300	0.0382
400	182	0.0080*	625	250	0.0319
400	150	0.0069	700	. 287	0.9416*
400	100	0.0042	700	250	0.5086
			700	200	0.3004
450	259	0.0157*	700	150	0.1755
45 0	250	0.0149	700	100	0.1006
450	200	0.0134	700	50	0.0531
450	150	0.0109	700	20	0.0260
450	100	0.0067			
500	330	0.0243*	725	200	1.8235
500	300	0.0234	725	150	0.9009
500	250	0.0209	725	100	0.4609
500	200	0.0180	725	50	0.2052
500	150	0.0140	725	20	0.0906
500	100	0.0090	750	120	7.015
500	50	0.0022	750	130	7.015
300	JU	U.0022	750 750	100	4.526
550	379	0.0343*	750	75 75	3.206
550	350	0.0314	750	50	2.155
550	300	0.0276	750	20	1.282
550	250	0.0240	625	200	0.0255
550	200	0.0203	625	150	0.0233
550	150	0.0164	625		
550	100	0.0107	625 625	100 50	0.0145
550	50	0.0036	025		0.0092
			650	356	0.1600*
600	392	0.0414*	650	300	0.0712
600	380	0.0377	650	250	0.0527
600	350	0.0334	650	200	0.0376
600	300	0.0293	650	150	0.0260
600	250	0.0256	650	100	0.0178
600	200	0.0225	650	50	0.0112
600	150	0.0184	650	20	0.0075
600	100	0.0124			
600	50	0.0064	675	326	0.3815*
C 1	1		675	300	0.2148
Saturated s	solution.		675	250	0.1200
			675	200	0.0821
			675	150	0.0550
			675	100	0.0352
			675	50	0.0213
			675	20	0.0123

^{*} Saturated solution.

All concentrations of NaCl above one percent were determined by Volhard's method of volumetric analysis. The chloride was precipitated with an excess of silver nitrate and the excess silver nitrate back-titrated with standard ammonium thiocyanate (Furman. 1939. p. 271).

Our experimental results of solubility of solid crystalline NaCl in H₂O gas are shown in figures 9, 10, and 11. Figure 9 shows the isothermal solu-

bility of crystalline NaCl in H₂O gas. Figure 10 shows the isocompositional curves of solid NaCl in H₂O gas bounded by the three-phase temperature-pressure-composition line. The isobaric solubility curves are shown in figure 11. Our experimentally determined values for the composition of vapor in the solid-gas region are shown in table 2.

COEXISTING GAS-LIQUID COMPOSITIONS IN THE SYSTEM H2O-NaCl

A region with two coexisting fluid phases is present at pressures above the melting pressure of crystalline NaCl and below the critical pressure. Measurements of the composition of coexisting fluid phases and of the critical pressure for each isotherm were made as follows: A solution of sodium chloride in water was made up of the approximate critical composition expected for the isotherm to be investigated. Approximately 60-80 cc of this solution were taken into the sealed bomb via the liquid sample capillary line. The bomb was then taken to the required temperature. A sufficient amount of sodium chloride solution was initially introduced into the bomb so that at the isotherm under investigation the initial pressure developed in the bomb was above the critical pressure for the isotherm. Thus, at temperature, initially only one fluid phase existed in the bomb, and the compositions of the samples drawn from the top and the bottom outlets were identical. The pressure in the bomb was then reduced in successively small steps by extracting some of the fluid from the bomb. After each extraction of fluid, and consequent reduction in pressure. samples of the solution were drawn from the bomb through both the top and the bottom capillary outlets. The composition of these samples was determined. As long as the compositions of the two samples remained identical, there was

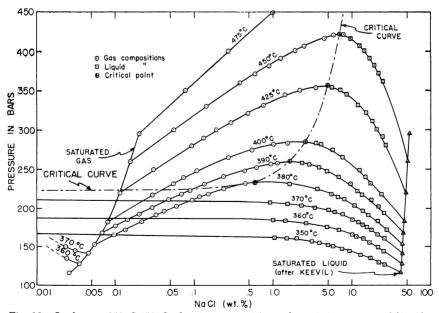


Fig. 12. Isotherms, 350°C-450°C, showing compositions of coexisting gases and liquids,

evidence that only one fluid phase existed in the bomb and that pressures were still supercritical. Eventually, however, a pressure was reached at which two fluid phases appeared, i.e. the sample drawn from the top and the bottom of the bomb showed different compositions. These two fluid phases thus showed the gas and liquid compositions immediately below the critical pressure. The gas and liquid compositions, in equilibrium with each other, were then determined at successively lower pressures along the isotherm down to a pressure approaching the three-phase equilibrium pressure, i.e. the previously determined saturation pressure for gas-solid-liquid equilibrium. A period of one and a half hours was found sufficient for attainment of gas-liquid equilibrium for each pressure. All experiments were made at two- to three-hour intervals. The technique of withdrawing sample and analysis was as previously described. Approximately 0.1-0.2 gm of sample were taken for analysis of both the fluid and gas phases for each pressure. During sampling the total pressure drop was less than two bars, and the temperature drop was less than 0.5°C in all cases.

Isotherms ranging from 350°-700° were studied. The maximum pressure encountered for two-phase equilibrium was at the critical pressure of 1237

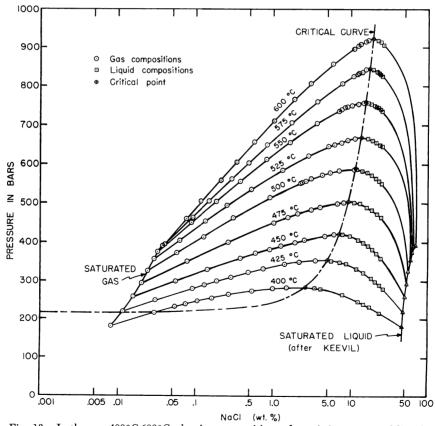


Fig. 13. Isotherms, 400°C-600°C, showing compositions of coexisting gases and liquids.

Table 3 Pressure-temperature-composition data in the gas-liquid equilibrium region in the system sodium chloride—water (*Keevil's data) $$350^{\circ}\text{C}$$

	330 C			300°C	
Pressure	Wt percent NaCl in		Pressure	Wt perce	ent NaCl in
bars	gas phase	liquid phase	bars	gas phase	liquid phase
165	0	0	187	0	0
162		1.040	184		1.007
161		1.500	183		1.426
160		2.016	180		2.600
157		3.110	175		4.840
155		3.917		_	
155	_		172		6.820
153		4.913	166		10.00
151	_	5.762	164		11.21
148		7.603	160	_	13.90
145		9.526	156		16.82
140		12.96	150	_	21.18
135		17.00	145		25.46
130		21.92	135	0.0024	
127		25,6	127	0.0035	42.25*
114	0.0026	41.5*	12.	0.0000	(Saturated
111		Saturated solution)			solution)
		Jararateu solutioil)			SOTUTION)
	370°C			380°C	
210	0	0	234	0.6	0.6
207	U	0.9128	234		
	_		252	0.4458	1.662
205	_	1.526	225	0.2340	3.706
203		2.341	219	0.1498	5.512
200		3.348	215	0.1172	6.668
197		5.003	211	0.0928	7.950
195		6.012	203	0.0600	10.81
191		7.622	196	0.0416	13.72
185		10.37	191	0.0328	16.53
182		12.08	183	0.0217	21.30
179		13.42	172	0.0133	27.51
175		15.62	165	0.0133	21,31
	_				44.0*
172	_	17.91	153	0.0056	44.0*
166		21.30			(Saturated
160		25.9 6			solution)
150	0.0024	_			
145	0.0031				
140	0.0046	43.1*			
		Saturated solution)			
	390°C			400°C	
260	1.66	1.66	285	2.6	2.6
259	1.143	2.305	283	1.510	3.483
257	0.9426	2.889	281	1.000	4.118
253	0.6189	3.856	274	0.5420	5.680
249	0.4318	4.810	265	0.2710	7.820
241	0.2350	6.802	248	0.1070	12.41
231			240 240	0.1070	14.60
$\frac{251}{224}$	0.1336	9.717 11.81	232	0.0741 0.0542	17.14
	0.0882				
219	0.0684	13.67	218	0.0296	23.54
211	0.0467	17.12	182	0.0080	46.0*
201	0.0296	21.20			(Saturated
193	0.0203	25.61			solution)
185	0.0142				
177	0.0100	_			
167	0.0068	45.0*			
•		Saturated solution)			

S. Sourirajan and G. C. Kennedy

TABLE 3 (Continued)

40.5	0	0
425	~	ι.

450°C

	720 C			100 0		
Pressure	Wt percent NaCl in		Pressure	Wt percent NaCl in		
bans	gas phase	liquid phase	bans	gas phase	liquid phase	
356 354	5.0 3.512	5.0 5.610	422 421	7.1 6.021	7.1 7.780	
350	2.196	7.204	417	4.620	9.656	
345	1.432	8.736	407	2.526	12.44	
332	0.7640	11.95 14.88	400	1.926	14.47	
322	0.4810	14.88	391	1.285	16.79	
310	0.2902	18.14	382	0.9080	18.99	
300	0.1900	20.53	372 360	0.6000	$21.73 \\ 24.62$	
290 280	$0.1310 \\ 0.0920$	23.51 26.51	330	$0.3810 \\ 0.1421$	24.02	
250 250	0.0305	20.51	300	0.0552		
220	0.0303	48.5*	259	0.0157	51.0*	
220	0.0110	(Saturated			(Saturated	
		solution)			solution)	
	475°C			500° C		
505	9.3	9,3	590	11.5	11.5	
504	8.926	9.718	588	11.18	11.70	
503	8.012	11.00	583	7.068	13.98	
500	6.667	13.03	579	5.423	16.15	
490	3.994	15.89	573	4.324	18.51	
484	3.101	18.80	565 550	3.198 2.651	$21.04 \\ 23.02$	
472 464	2.051 1.558	$21.54 \\ 24.11$	559 553	2.350	23.92	
450	1.012	24.11	552	2.246	25.06	
400	0.2660		515	0.9080		
350	0.0770	_	462	0.3090		
296	0.0200	53.5*	413	0.1280		
		(Saturated	373	0.0570		
		solution)	330	0.0243	56.1*	
					(Saturated solution)	
	525°C		550°C			
670	13.6	13.6	760 750	15.6	15.6	
669	13.41 11.06	13.72	759 754	14.86	16.59 18.12	
667 663	0.120	16.82 18.96	754 750	12.56 10.32	20.31	
005 658	7.621	21.20	748	9.170	21 02	
658 654	6.841	22.04	745	8.507	22.91	
651	6.092	23.74	740	7.702	23.99	
647	5 .166	25.61	736	7.081	25.86	
622	2.852		704	3.652	_	
585 536	$1.311 \\ 0.5202$	_	658 612	$\frac{1.662}{0.8320}$	_	
493	0.3202	_	612 555	0.3751	_	
452	0.1331	_	503	0.1833		
403	0.0618		450	0.0893		
359	0.0292	59.5*	379	0.0342	62.0*	
		(Saturated			(Saturated	
		solution)			solution)	

Table 3 (Continued)

575°C

600°C

Pressure		ent NaCl in	Pressure		ent NaCl in
bars	gas phase	liquid phase	bars	gas phase	liquid phase
845	17.6	17.6	922	19.6	19.6
842	15.62	19.21	920	18.26	20.85
837	14.03	21,90	918	16.85	22.93
832	12.84	23.08	913	15.72	24.86
830	12.40	23.79	907	13.34	26.82
825	10.92	25.81	902	12.27	
807	7.706	_	897	11.00	-
760	3.696		858	5.962	
706	1.729		806	3.077	
650	0.8386	_	766	1.896	_
603	0.4821	_	710	1.016	
561	0.2908	_	656	0.5724	_
505	0.1496	_	603	0.3392	
464	0.0932		559	0.2102	
389	0.0380	65.0*	503	0.1186	
		(Saturated	460	0.0761	
		solution)	392	0.0414	69.0*
					(Saturated
					solution)
1000	01.5	01.5	1000	າາ າ	23.2
1002	21.5	21.5	1082	23.2	
1000	20.32	22.82	1080	21.58	24.50
998	18.61	23.95	1077	18.71	27.46
993	16.76	25.57	1069	15.16	
983	14.06		1061	13.96	_
973	11.98	_	1051	11.82	_
919	5.816		1041	10.19	
862	3.361		1031	9.176	
792	1.790		1021	8.210	
718	0.9663	-	1011 963	7.387 4.887	_
686	0.7521	_	963 911	4.887 3.401	_
630	0.4884			2.356	
579	0.3298		859 80 5	2.350 1.710	
535	0.2375		805 750	1.710	
	0.1632 0.1292	_	700 700	0.9517	
484	0.1292		650	0.7209	
453		79.9*		0.1407	
	0.0744	72.2*			
453		(Saturated	602	0.5618	
453			602 551	0.5618 0.4348	
453		(Saturated	602	0.5618	

Table 3 (Continued)

	675°C			700°·C		
Pressure	Wt percent NaCl in		Pressure	Wt percent NaCl in		
bars	gas phase	liquid phase	bars	gas phase	liquid phase	
1163	24.8	24.8	1237	26.4	26.4	
1160	21.20	26.44	1234	24.30		
1157	18.92		1228	19.61		
1145	15.96		1218	15.82		
1131	12.91		1210	13.94		
1113	10.33		1200	12.06		
1097	8.682		1192	10.91		
1087	8.183		1180	9.613		
1072	7.381	-	1170	8.804		
1059	6.612	-	1150	7.510	_	
1045	6.023		1132	6.631		
1033	5.632		1108	5.810		
1017	5.100	-	1078	5.048		
997	4.613		1050	4.500		
977	4.150		1030	4.182		
959	3.801		1000	3.810		
939	3.501		970	3.480		
927	3.306	-	940	3.200	_	
915	3.151		910	2.930	_	
903	3.004		860	2,596		
858	2.500	_	810	2.331		
797	1.988		758	2.103		
750	1.698		705	1.901		
702	1.427	The same of the sa	657	1.720		
649	1.180		604	1.567		
591	0.9610		504	1.313		
525	0.7570		403	1.120		
464	0.6190	-	287	0.9416	84.0*	
326	0.3815	*0.08	201	0.3410		
		(Saturated			(Saturated	
		solution)			solution)	

Critical temperature °C	Critical pressure bars	Critical composition wt percent NaCl
374	221	0
380	234	0.6
390	260	1.7
400	285	2.6
425	356	5.0
450	422	7.1
475	505	9.3
500	590	11.5
525	670	13.6
550	760	15.6
575	845	17.6
600	922	19.6
625	1002	21.5
650	1082	23.2
675	1163	23.2
700	1237	24.0 26.4

bars at 700°C. Unfortunately, no NaCl solubility much above 25 percent could be determined with this apparatus. At concentrations above 25 percent, crystals of NaCl precipitated out and blocked the sampling capillary line.

The compositions of coexisting gases and liquids for 18 isotherms have been determined. These isotherms are shown in figures 12, 13, and 14. These isotherms are terminated by saturated gas and saturated liquid. In all cases we have used Keevil's value for the composition of the saturated liquid, and in figures 12, 13, and 14, the branch of the curve trending toward saturated liquid has been sketched in, using Keevil's data for saturated liquid. The experimentally determined compositions of coexisting phases for each tempera-

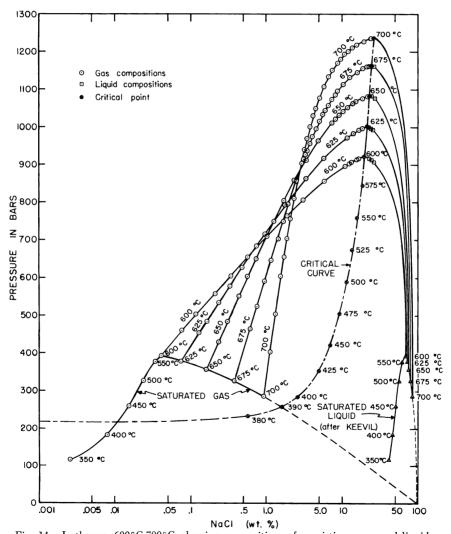


Fig. 14. Isotherms, 600°C-700°C, showing compositions of coexisting gases and liquids.

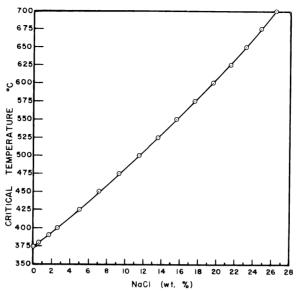


Fig. 15. Critical temperatures of unsaturated aqueous sodium chloride solutions.

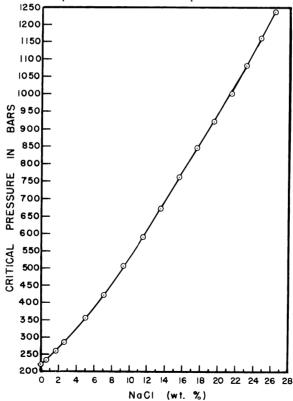


Fig. 16. Critical pressures of unsaturated aqueous sodium chloride solutions.

ture investigated are shown in table 3. For every isotherm, the last entry in the column marked "liquid phase" is the composition of the saturated liquid as taken from Keevil. The composition of the saturated gas is from this work. The distribution of critical temperatures and pressures is shown in figures 12, 13, and 14. Our determined values for critical pressure and critical composition for the various isotherms are shown in table 4. Critical temperatures, pressures. and compositions in the system H₂O–NaCl are plotted in figures 15 and 16. Critical compositions are surprisingly linear with temperature and pressure throughout the studied portion of this system. A crude extrapolation of the curve relating critical composition to critical temperature suggests that the critical temperature of pure NaCl should be approximately 1900°C with a critical pressure of roughly 9.8 bars.

All our data on the system H₂O-NaCl are shown in the three-dimensional diagram, figure 17, where pressure, temperature, and composition are related. Figure 17 shows compositions of gas in equilibrium with solid, the melting surface with coexisting gases, liquids, and solids, the envelope of curves relat-

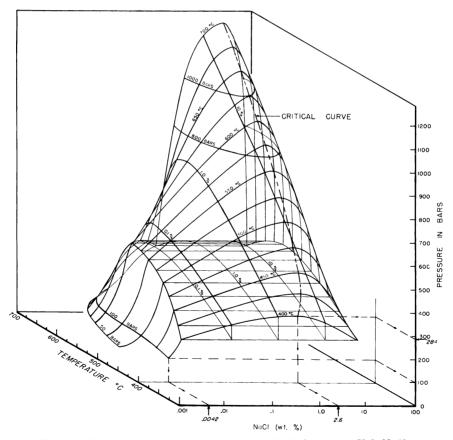


Fig. 17. Temperature-pressure-composition model of the system H₂O-NaCl.

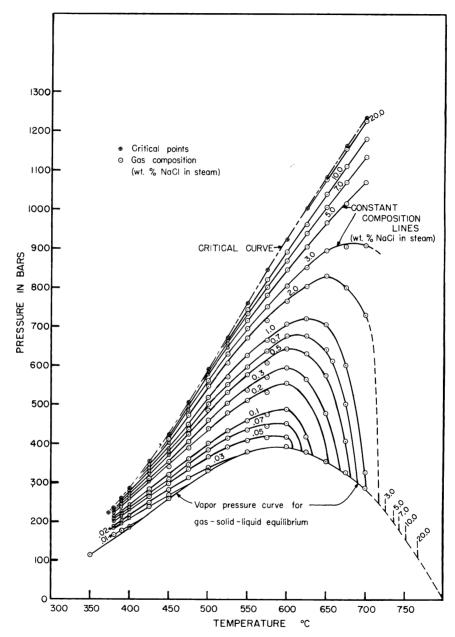


Fig. 18. Isocompositional curves in the gas-liquid region in the system H₂O-NaCl.

ing the composition of the two fluid phases, and the critical composition and pressure for each temperature studied. Isocompositional and isobaric curves in the gas-liquid region are shown in figures 18 and 19.

It would have been highly desirable throughout these experiments to determine the densities of gases and liquids as well as the densities of the fluid at the critical point for each isotherm. Unfortunately, these measurements have not yet been made, and without them it is almost impossible to make any remarks about association or dissociation in this system at high temperatures and pressures. Certain surprising changes in slope of various curves may be noted. In particular, the composition of gas in equilibrium with solid, as shown in figures 9, 10. and 11, is marked by rather abrupt changes in slope at approximately 600°C. This temperature corresponds to the temperature of maximum pressure on the three-phase surface. No simple picture relating solubility in the

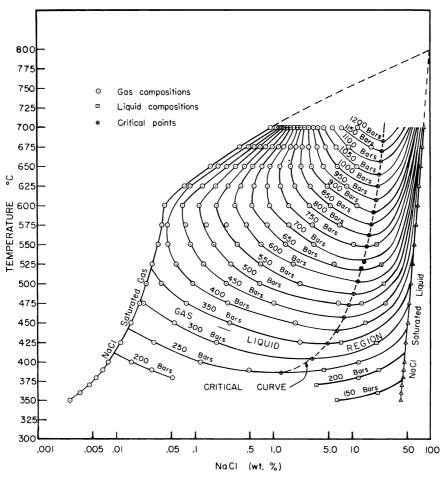


Fig. 19. Isobaric curves in the gas-liquid region in the system H₂O-NaCl.

gas phase to specific volume of water may be seen, as was shown by the system H_2O-SiO_2 (Kennedy, 1950).

IMPLICATIONS OF THE SYSTEM H₂O-NaCl to the problem of THE ORIGIN OF THERMAL WATERS AND HOT SPRINGS

The problem of the origin of sodium chloride waters in hot springs has been extensively discussed by White (1957). White points out that the alkali ratios of most, if not all, sodium chloride springs suggest that the halogens have been transported as alkali halides dissolved in the magmatic vapor phase. The hot springs rich in sodium chloride, as tabulated by White (1957), contain up to 2500 parts per million sodium chloride. Reference to figure 9 of this paper shows that no severe limitations on the magmatic mechanism are placed by these concentrations of sodium chloride. At pressures of 200 bars and temperatures of 725°C, reasonable pressures and temperatures for the separation of gases from shallow seated magmatic intrusions, escaping supercritical water can contain up to approximately 3 percent NaCl. This is sufficient NaCl to account for even the most saline of White's hot springs and still allows the dilution of magmatic emanations with meteoritic water by as much as ten-fold.

ACKNOWLEDGMENTS

Particular thanks are owing to Dr. W. T. Holser for aid in the initial portions of this program. Our apparatus was constructed and maintained in good repair and working condition by Mr. Terrence Thomas and Lester Emarine. This research was partially supported by funds from the Lawrence Radiation Laboratory, Office of Naval Research Contract 233(28) and from the Seawater Research Project, Engineering College, University of California at Los Angeles. Particular thanks are owing to Myron Tribus, L. M. K. Boelter and W. C. Hurty of the Engineering College, University of California at Los Angeles for their support and encouragement on this project.

REFERENCES

- Adams, L. H., 1931, Equilibrium in binary systems under pressure, I. An experimental and thermodynamic investigation of the system NaCl-H₂O at 25°: Am. Chem. Soc. Jour., v. 53, p. 3769-3813.
- Adams, L. H., and Gibson, R. E., 1930, The melting curve of sodium chloride dihydrate: Am. Chem. Soc. Jour., v. 52, p. 4252-4264.
- Anthony, B., and Berkowitz, L., 1958, A study of the feasibility of a supercritical pressure distillation process for the separation of fresh water from sea water: U. S. Natl. Acad.
- Sci. Pub. 568, p. 80-90.

 Benson, S. W., Copeland, C. S., and Pearson, D., 1953, Molal volumes and compressibilities of the system NaCl-H₂O above the critical temperature of water: Jour. Chem.
- Physics, v. 21, p. 2208-2212. Copeland, C. S., Silverman, J., and Benson, S.W., 1953, The system NaCl-H₂O at supercritical temperatures and pressures: Jour. Chem. Physics, v. 21, p. 12-16.
- Furman, N. H., ed., 1939, Scott's standard methods of chemical analysis, 5th ed., v. 1:
 New York, D. Van Nostrand Co.
 Holser, W. T., and Kennedy, G. C., 1958, Properties of water. Part IV. Pressure-volume-temperature relations of water in the range 100-400C and 100-1400 bars: Am. Jour. Sci., v. 256, p. 744-754.
- 1959, Properties of water. Part V. Pressure-volume-temperature relations of water in the range 400-1000C and 100-1400 bars: Am. Jour. Sci., v. 257, p. 71-77.
- Keevil, N. B., 1942, Vapor pressures of aqueous solutions at high temperatures: Am. Chem. Soc. Jour., v. 64, p. 841-850.

- Kelley, K. K., 1935, Contributions to the data on theoretical metallurgy. III. The free energies of vaporization and vapor pressures of inorganic substances: U. S. Bur. Mines Bull. 383, 132 p.
- Kennedy, G. C., 1950, A portion of the system silica-water: Econ. Geology, v. 45, p. 629-
- 1950, Pressure-volume-temperature relations in water at elevated temperatures
- and pressures: Am. Jour. Sci., v. 248, p. 540-564. Kennedy, G. C., Knight, W. L., and Holser, W. T., 1958, Properties of water. Part III. Specific volume of liquid water to 100C and 1400 bars: Am. Jour. Sci., v. 356, p. 590-
- Kennedy, G. C., Wasserburg, G. J., Heard, H. C., and Newton, R. C., in press, The upper three phase regions in the system SiO₂-H₂O: Am. Jour. Sci.
- Morey, G. W., 1957, The solubility of solids in gases: Econ. Geology, v. 52, p. 225-251.
- Morey, G. W., and Chen, W. T., 1956, Pressure-temperature curves in some systems containing water and a salt: Am. Chem. Soc. Jour., v. 78, p. 4249-4252.
- Ölander, A., and Liander, H., 1950, The phase diagram of sodium chloride and steam above the critical point: Acta Chemica Scandinavica, v. 4, p. 1437-1445.
- Spillner, F., 1940, Hochgespannter wasserdampf als lösungsmittel: Chemische Fabrik, Band 13, p. 405-424.
- Styrikovich, M. A., 1957, Investigations of the solubility of low volatility substances in high pressure steam in radioisotopes: UNESCO/NS/RIC 73.
- Styrikovich, M. A., and Khaibullin, I. Kh., 1956, Diagrams of phase equilibria of the systems: NaCl-H₂O; Na₂SO₄-H₂O; CaSO₄-H₂O and SiO₂ (quartz) - H₂O: Acad. Sci.
- U.S.S.R. Repts., v. 109, p. 962-965.
 Styrikovich, M. A., Khaybullin, I. Kh., and Zkhvirashvily, D. G., 1955, A study of the solubility of salts in water vapor at high pressure: Acad. Sci. U.S.S.R. Repts., v. 100, p. 1123-1126.
- White, D. E., 1957, Thermal waters of volcanic origin: Geol. Soc. America Bull., v. 68, p. 1637-1657.